
IFAC PapersOnLine 56-2 (2023) 11267–11272

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.319

10.1016/j.ifacol.2023.10.319 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Performance Analysis of eXogenous Kalman Filter for INS/GNSS Navigation 

Solutions 
 

Mushfiqul Alam*. James Whidborne. * and Murat Millidere* 

*School of Aerospace Transport and Manufacturing, Cranfield University, MK430AL 

United Kingdom (Tel: +44 (0) 1234 75 4494; e-mail: mushfiqul.alam@cranfield.ac.uk). 

There are several methods of fusing data for navigation solutions using Inertial Navigation System (INS) 

aided by Global Navigation Satellite System (GNSS). The most used solutions are nonlinear observer 

(NLO) and extended Kalman filter (EKF) of various architectures. EKF based estimation methods 

guarantees sub-optimal solutions but not stability, on the contrary NLO based estimation guarantees 

stability but not optimality. These complimentary features of EKF and NLO has been combined to design 

an eXogenous Kalman filter (XKF) where the estimate from the NLO is used as an exogenous signal to 

calculate the linearized model of the EKF. The performance of the designed XKF is tested on real flight 

test data collected using a Slingsby T67C ultra-light aircraft. The results show that during the outage of 

GNSS, in some cases the divergence of position estimates using XKF is lower compared to EKF and NLO, 

however no clear benefit is achieved.   
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1. INTRODUCTION 

MEMS (Micro-Electro-Mechanical System) based inertial 

measurement unit (IMU) consisting of consisting of tri-axial 

accelerometer (ACC) angular rate sensor (ARS) aided with 

GNSS (Global Navigation Satellite System) has been a 

popular choice for localization of a dynamic vehicle due its 

cost effectiveness. For a strapdown navigation solution, data 

fusion techniques can be applied for the estimation of position, 

velocity, and attitude (PVA) e.g., Rohac et al., 2017. 

There are several methods of fusing INS/GNSS in order to 

obtain PVA estimates, such as temporally interconnected 

observers, e.g. Bristeau and Petit, 2011, complementary filters 

or Kalman filters (KF) with various architectures e.g. Alam et 

al., 2016; Farrell, 2008; Simon, 2010, nonlinear observers 

(NLO) e.g. Fourati and Belkhiat, 2016, unscented Kalman 

filters (UKF) and particle filters (PF) e.g. Gustafsson et al., 

2002. Due to the dynamic motion of most vehicles being 

highly nonlinear, the most used approaches to estimate PVA 

in real-time utilizes nonlinear observers (NLO) and extended 

Kalman filter (EKF). 

The KF or its nonlinear variant EKF generally provide a 

recursive globally optimal (for the case of KF) or sub-optimal 

(for the case of EKF) estimate in terms of minimum error 

variance, e.g., Bar-Shalom et al., 2001. It is an established state 

estimation method for a linear or nonlinear state space model 

which assumes that the inputs have normal distribution and 

characterized by their mean and covariance values. The 

shortfall of the KF (and EKF) is computation of the inverse 

covariance matrix of the measurement vector due to round-off 

errors when implemented into microcontrollers and its high 

computational cost. In addition, for the case of EKF when 

approximate linearization is applied, the solution is sub-

optimal and global stability cannot be guaranteed in general, 

and existing stability analysis gives implicit conditions that 

cannot be verified before as they depend on initial errors and 

system trajectories e.g., Reif et al., 1998.  

On the other hand, NLOs are based on a deterministic 

approach, unlike the stochastic approach of the KFs/EKFs, 

motivated by the higher computational load. NLOs usually 

take global asymptotic or exponential stability (or at least a 

large region of attraction) as the primary starting point for the 

design, and then employ tuning parameters to pursue desired 

performance. In comparison when designing EKFs, the 

stability properties is determined explicitly due to no stability 

guarantee for nonlinear systems. 

Combining the property of EKFs providing estimates that are 

sub-optimal and NLOs providing estimates that are guaranteed 

globally stable, a two-stage estimator called eXogeneous 

Kalman Filter (XKF) has been proposed recently e.g., 

Johansen and Fossen, 2017. Within the XKF, the NLO and 

EKF are cascaded where the estimate from the nonlinear 

observer is fed as an exogenous signal only used for generating 

a linearised model to the EKF. It was shown that the estimates 

from XKF inherits the global stability property of the NLOs, 

and sub-optimal properties EKF can be achieved, see e.g., 

Johansen and Fossen, 2017. 

The purpose of the paper is to design and develop a data fusion 

technique for navigation data estimates (PVA estimates) using 

eXogeneous Kalman Filter estimation architecture and study 

the performance analysis for INS/GNSS navigation solutions 

from a real flight test data collected using a dynamic ultra-light 

Slingsby T67C aircraft. Rest of the paper is organised as 

follows, Section 2 outlines the design and development of 

XKF in addition to the design of a NLO and EKF. Section 3 

presents the experimental set-up, INS sensors used for data 

collection and flight trajectory. Section 4 presents the results 

on the performance analysis of the XKF. Section 5 finally 

concludes the paper with final remarks.  
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2. DESIGN OF XKF 

This section outlines the design of NLO and EKF followed 

by the design of XKF. 

2.1 NONLINEAR OBSERVER (NLO) 

The kinematic equations describing position 𝑝𝑝𝑒𝑒, linear 

velocity 𝑣𝑣𝑒𝑒 , attitude 𝑞𝑞𝑏𝑏
𝑒𝑒, and ARS bias 𝑏𝑏𝑏𝑏 are given as: 

𝑝̇𝑝𝑒𝑒 = 𝑣𝑣𝑒𝑒, 

(1) 

𝑣̇𝑣𝑒𝑒 = −2 𝑆𝑆(𝜔𝜔𝑖𝑖𝑖𝑖
𝑒𝑒 ) 𝑣𝑣𝑒𝑒 + 𝑓𝑓𝑒𝑒 + 𝑔𝑔𝑒𝑒(𝑝𝑝𝑒𝑒), 

𝑞̇𝑞𝑏𝑏
𝑒𝑒 = 1

2 𝑞𝑞𝑏𝑏
𝑒𝑒 ⊗ 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑏𝑏 − 1
2 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑒𝑒 ⊗ 𝑞𝑞𝑏𝑏
𝑒𝑒, 

𝑏̇𝑏𝑏𝑏 = 0, 
𝑏̇𝑏𝑓𝑓

𝑏𝑏 = 0. 
Subscript 𝑒𝑒 is defined in Earth-Centered-Earth-Fixed 

coordinate frame and subscript 𝑏𝑏 is defined in Body frame. The 

position and velocity are given in the ECEF-frame, while the 

ARS bias is in the Body-frame (BF), and the attitude is 

expressed as a unit quaternion describing the rotation between 

BF and ECEF. Here the skew-symmetric matrix 𝑆𝑆(∙) is such 

that the vector product is; 𝑥𝑥1 × 𝑥𝑥2 = 𝑆𝑆(𝑥𝑥1)𝑥𝑥2. The gravity 

vector, 𝑔𝑔𝑒𝑒(∙), is assumed known for a given position, while a 

vector 𝑥𝑥 ∈ ℝ3 can be represented as a quaternion with zero real 

part and vector part 𝑥𝑥, i.e. 𝑥̅𝑥 = [0; 𝑥𝑥]. The Earth rotation, 𝜔𝜔𝑖𝑖𝑖𝑖
𝑒𝑒 , 

is constant and known, and the product of two quaternions, 𝑞𝑞1 

and 𝑞𝑞2, is given as 𝑞𝑞1 ⊗ 𝑞𝑞2. The ARS bias, 𝑏𝑏𝑏𝑏, and ACC bias, 

𝑏𝑏𝑓𝑓
𝑏𝑏, are slowly time-varying. 

2.1.1 Nonlinear GNSS/INS Integration 

The nonlinear observer structure consists of two parts: an 

attitude estimator and a translational motion observer (TMO). 

The attitude estimator determines the vehicle attitude from 

inertial measurements, whereas the translational motion 

observer utilizes global measurements provided by a GNSS 

receiver as well as specific force measurements. 

An estimate of the specific force in the ECEF is fed back from 

the TMO to the attitude estimator, making the structure a 

feedback interconnection of two subsystems. The observer 

structure was shown to be semi-globally stable, see e.g., Grip 

et al., 2015. 

2.1.2 Attitude Estimation 

The vehicle attitude is represented by a unit quaternion, 𝑞̂𝑞𝑏𝑏
𝑒𝑒, 

describing the rotation from BF to ECEF. Furthermore, the 

attitude estimator also determines a ARS bias estimate, 𝑏̂𝑏𝑏𝑏, to 

compensate for sensor drift. The attitude estimation is given 

by 

𝑞̇̂𝑞𝑏𝑏
𝑒𝑒 = 1

2 𝑞̂𝑞𝑏𝑏
𝑒𝑒 ⊗ (𝜔̅𝜔𝑖𝑖𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 − 𝑏̅̂𝑏𝑏𝑏 + 𝜎̅̂𝜎) − 1
2 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑒𝑒 ⊗ 𝑞̂𝑞𝑏𝑏
𝑒𝑒, 

(2) 

𝑏̇̂𝑏𝑏𝑏 = Proj (−𝑘𝑘𝐼𝐼𝜎̂𝜎, ‖𝑏̂𝑏𝑏𝑏‖2 ≤ 𝑀𝑀𝑏̂𝑏). 

Here the projection function, Proj(∙,∙), limits the ARS bias 

estimate to be within a sphere of radius 𝑀𝑀𝑏̂𝑏, where 𝑘𝑘𝐼𝐼 is a 

constant gain and 𝜎̂𝜎 is an injection term. The injection term is 

based on the comparison of two vectors in the BF, 𝑣𝑣1
𝑏𝑏 and 𝑣𝑣2

𝑏𝑏 , 

with two corresponding vectors in the ECEF, 𝑣𝑣1
𝑒𝑒  and 𝑣𝑣2

𝑒𝑒: 

 

𝜎̂𝜎 = 𝑘𝑘1𝑣𝑣1
𝑏𝑏 × 𝑅𝑅(𝑞̂𝑞𝑏𝑏

𝑒𝑒)𝑇𝑇𝑣𝑣1
𝑒𝑒 + 𝑘𝑘2𝑣𝑣2

𝑏𝑏 × 𝑅𝑅(𝑞̂𝑞𝑏𝑏
𝑒𝑒)𝑇𝑇𝑣𝑣2

𝑒𝑒.  

The gains, 𝑘𝑘1 and 𝑘𝑘2, are positive and sufficiently large 

tuning constants. The vectors can be chosen in various ways 

utilizing e.g., magnetometer or pressure measurements. Here 

the vectors are chosen, based on specific force and heading 

from the GNSS velocity, as: 

𝑣𝑣1
𝑏𝑏 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏

‖𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 ‖2

,      𝑣𝑣1
𝑒𝑒 = 𝑓𝑓𝑒𝑒

‖𝑓𝑓𝑒𝑒‖2
 

(3) 

𝑣𝑣2
𝑏𝑏 = [

cos(𝜒𝜒)
− sin(𝜒𝜒)

0
],      𝑣𝑣2

𝑒𝑒 = 𝑅𝑅𝑛𝑛
𝑒𝑒 [

1
0
0
] 

where the specific force estimate, 𝑓𝑓𝑒𝑒, is determined by the 

translational motion observer. The reference vector 𝑣𝑣2
𝑒𝑒 denotes 

the direction North decomposed in the ECEF frame, while the 

corresponding body vector, 𝑣𝑣2
𝑏𝑏, utilizes the course angle 𝜒𝜒. The 

course angle can be obtained from a compass or in this case 

from GNSS velocity measurements in NED frame: 

𝜒𝜒 = tan−1 (𝑣𝑣𝑒𝑒
𝑣𝑣𝑛𝑛

),  

where 𝑣𝑣𝑛𝑛 and 𝑣𝑣𝑒𝑒 signifies the velocity in North and East 

direction. 

 
2.1.3 Accelerometer Bias Estimation 

The bias of the ACC measurements can be considered a slowly 

time-varying value added to the true measurements; 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 =

𝑓𝑓𝑏𝑏 + 𝑏𝑏𝑓𝑓
𝑏𝑏. Considering a combination of parameters 𝜃𝜃 =

[‖𝑏̂𝑏𝑓𝑓
𝑏𝑏‖2, (𝑏̂𝑏𝑓𝑓

𝑏𝑏)𝑇𝑇]
𝑇𝑇
and 𝜙𝜙 = [1, −2(𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 )𝑇𝑇]𝑇𝑇 the measurement 

for the injection term can be expressed as 𝑦𝑦𝑓𝑓 = ‖𝑏̂𝑏𝑓𝑓
𝑏𝑏‖2 −

2(𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 )𝑇𝑇𝑏̂𝑏𝑓𝑓

𝑏𝑏. The combination vector propagation is then 

expressed as: 

𝜃̇𝜃 = Γ𝜙𝜙(𝑦𝑦𝑓𝑓 − 𝜙𝜙𝑇𝑇𝜃̂𝜃),  

where Γ is a positive-definite symmetric gain matrix. The ACC 

bias is carried out under the assumption that there is sufficient 

excitation of the vehicle for the ACC to experience versatile 

acceleration. Formally this requirement is expressed as an 

assumption that: 

∫ 𝜙𝜙(𝜏𝜏)𝜙𝜙𝑇𝑇(𝜏𝜏)𝑑𝑑𝑑𝑑 ≥ 𝜖𝜖𝜖𝜖
𝑡𝑡+𝑇𝑇

𝑡𝑡
, 

 

where 𝜖𝜖 > 0 and 𝑇𝑇 > 0 such that for each 𝑡𝑡 ≥ 0 the condition 

is satisfied and the persistently excitation assumption is valid.  

The ACC bias estimation can be implemented similarly to the 

ARS bias estimation, 

𝜃̇𝜃 = Proj (Γ𝜙𝜙(𝑦̂𝑦𝑓𝑓 − 𝜙𝜙𝑇𝑇𝜃̂𝜃), ‖𝜃̂𝜃‖2 ≤ 𝑀𝑀𝑤̂𝑤),  

where 𝑀𝑀𝑤̂𝑤 is a bound on the length of the bias vector. 

2.1.4 Translational Motion Observer 

The translational motion observer (TMO) estimates 

position, linear velocity, and specific force of the vehicle by 
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using injection terms based on the difference in measured and 

estimated global position. A GNSS receiver provides the 

global position measurements. The TMO is given as: 

𝑝̇̂𝑝𝑒𝑒 = 𝑣̂𝑣𝑒𝑒 + 𝜃𝜃𝐾𝐾𝑝𝑝𝑝𝑝(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑒𝑒 − 𝑝̂𝑝𝑒𝑒) + 𝐾𝐾𝑝𝑝𝑝𝑝(𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑒𝑒 − 𝐶𝐶𝑣𝑣𝑣̂𝑣𝑒𝑒),  

𝑣̇̂𝑣𝑒𝑒 = −2𝑆𝑆(𝜔𝜔𝑖𝑖𝑖𝑖
𝑒𝑒 )𝑣̂𝑣𝑒𝑒 + 𝑓𝑓𝑒𝑒 + 𝑔𝑔𝑒𝑒(𝑝̂𝑝𝑒𝑒) + 𝜃𝜃2𝐾𝐾𝑣𝑣𝑣𝑣(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑒𝑒 − 𝑝̂𝑝𝑒𝑒) + 𝜃𝜃𝜃𝜃𝑣𝑣𝑣𝑣(𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑒𝑒 − 𝐶𝐶𝑣𝑣𝑣̂𝑣𝑒𝑒), 

𝜉𝜉̇ = −𝑅𝑅(𝑞̂𝑞𝑏𝑏
𝑒𝑒)𝑆𝑆(𝜎̂𝜎)𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 + 𝜃𝜃3𝐾𝐾𝜉𝜉𝜉𝜉(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑒𝑒 − 𝑝̂𝑝𝑒𝑒) + 𝜃𝜃2𝐾𝐾𝜉𝜉𝜉𝜉(𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑒𝑒 − 𝐶𝐶𝑣𝑣𝑣̂𝑣𝑒𝑒), 

𝑓𝑓𝑒𝑒 = 𝑅𝑅(𝑞̂𝑞𝑏𝑏
𝑒𝑒)(𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 − 𝑏𝑏𝑓𝑓
𝑏𝑏) + 𝜉𝜉.  

Here an auxiliary state, 𝜉𝜉, has been introduced for 

estimation of the specific force. The tuning parameter 𝜃𝜃 is 

typically chosen to be equal to 1. The additional injection term 

based on linear velocity measurements and estimates was 

shown in e.g., Grip et al., 2012, not to be essential to the 

observer stability, however, it does increase performance. 

Hence the matrix 𝐶𝐶𝑣𝑣 can be chosen to be zero. 

Introducing the error variables; 𝑝𝑝 = 𝑝𝑝𝑒𝑒 − 𝑝̂𝑝𝑒𝑒, 𝑣̃𝑣 = 𝑣𝑣𝑒𝑒 −
𝑣̂𝑣𝑒𝑒, and 𝑓𝑓 = 𝑓𝑓𝑒𝑒 − 𝑓𝑓𝑒𝑒, the state vector of the error dynamics 

can be stated as 𝑥̃𝑥 = [𝑝𝑝; 𝑣̃𝑣; 𝑓𝑓]. The gains of the translational 

motion observer can then be chosen to satisfy 𝐴𝐴 − 𝐾𝐾𝐾𝐾 being 

stable. The gains can be chosen to be constant without issue to 

the stability of the observer. Details of the gain calculation can 

be found in e.g., Rohac et al., 2017. 

 

2.2 EXTENDED KALMAN FILTER (EKF) 

 

This section describes the details of a two stage EKF for 

the navigation data estimation. The overall estimation process 

is divided into two main sections: an Attitude estimator and a 

Position/Velocity estimator. The details of the estimation can 

be found in e.g., Rohac et al., 2017. 

In the following sections, each part of the estimator 

structure will be introduced in detail. 

 

2.2.1 EKF based Attitude Estimator 

The vehicle attitude is represented in this case by Euler 

angles since we assume singularity free calculations. This 

assumption comes from the operation conditions and limits of 

any aircraft. The state vector, 𝒙𝒙 is updated via a transition 

function (4) and (5) when angular rates form a control vector. 

Expected measurements (6) are related to ACC readings when 

only gravity affects the sensor, which means non dynamic 

motion. 

𝒙𝒙 = [𝛉̂𝛉     𝒃̂𝒃g]
𝑇𝑇
, 

 𝒖𝒖 = ωib
𝑏𝑏 = [ 𝜔𝜔𝑏𝑏𝑥𝑥, 𝜔𝜔𝑏𝑏𝑦𝑦, 𝜔𝜔𝑏𝑏𝑧𝑧]

𝑇𝑇
 

(4) 

𝒙𝒙𝒌𝒌+𝟏𝟏 = 𝒙𝒙𝒌𝒌 + 𝑇𝑇 ×

[
 
 
 
 
 
 
[
1 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃
0 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 −𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙
0 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙 𝑠𝑠𝑒𝑒𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑠𝑠𝑒𝑒𝑠𝑠 𝜃𝜃

]([
𝜔𝜔𝑏𝑏𝑥𝑥
𝜔𝜔𝑏𝑏𝑦𝑦
𝜔𝜔𝑏𝑏𝑧𝑧

] − [
𝑏𝑏𝑔𝑔𝑥𝑥
𝑏𝑏𝑔𝑔𝑦𝑦

𝑏𝑏𝑔𝑔𝑧𝑧

])

0
0
0 ]

 
 
 
 
 
 

   (5) 

𝒛𝒛 =
[
 
 
 𝑓𝑓𝑥𝑥

𝑓𝑓𝑦𝑦
𝑓𝑓𝑧𝑧

𝜓𝜓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]
 
 
 
, 𝒛̂𝒛𝒌𝒌 = [

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜓𝜓
 ]         (6) 

The heading (𝜓𝜓) is evaluated based on the GNSS 

velocities. The detailed condition for using the GNSS 

velocities for the estimation of heading angle can be found in 

e.g., Rohac et al., 2017. 

 

2.2.2 EKF based Position/Velocity Estimator 

 

The position estimation is made in NED frame, velocity in 

the body-frame and ACC bias of the vehicles while using 

GNSS position and velocity as aiding measurements. The state 

vector (7) is updated via the transition function (9) where the 

control vector 𝒖𝒖 (8) contains ACC measurements in terms of a 

specific force, Euler angles and anti-centrifugal force (ACF). 

The measurement vector (10) contains position estimates from 

GNSS and downward velocity in body axis. The estimation 

equations are given as: 

 

𝒙𝒙 = [𝒑̂𝒑𝒏𝒏 𝒗̂𝒗𝒃𝒃   𝒃̂𝒃𝒂𝒂]
𝑇𝑇
 (7) 

𝒖𝒖 = [ 𝒇𝒇𝑏𝑏, 𝛉𝛉, 𝑨𝑨𝑨𝑨𝑨𝑨 ]𝑇𝑇 
(8) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑇𝑇 ×

[
 
 
 
 
 
 
 
 𝐶𝐶𝑏𝑏

𝑛𝑛 [
𝑈𝑈
𝑉𝑉
𝑊𝑊

]

𝐶𝐶𝑏𝑏
𝑛𝑛𝑇𝑇 [

0
0
𝑔𝑔
] + ([

𝑆𝑆𝑆𝑆𝑥𝑥
𝑆𝑆𝑆𝑆𝑦𝑦
𝑆𝑆𝑆𝑆𝑧𝑧

] − [
𝑏𝑏𝑎𝑎𝑎𝑎
𝑏𝑏𝑎𝑎𝑎𝑎
𝑏𝑏𝑎𝑎𝑎𝑎

]) − 𝐴𝐴𝐴𝐴𝐴𝐴

0
0
0 ]

 
 
 
 
 
 
 
 

, (9) 

𝑧𝑧 = [𝒑𝒑𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮
𝒏𝒏

𝑣𝑣𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑏𝑏 ] , 𝑧̂𝑧𝑘𝑘 = [ 𝒑̂𝒑𝒏𝒏

𝑣̂𝑣𝐷𝐷𝐷𝐷𝑤𝑤𝐷𝐷
𝑏𝑏 ].                                    (10) 

The ACF is the anti-centrifugal force calculation can be 

found in e.g., Rohac et al., 2017. 

2.3 Design of The Exogenous Kalman Filter 

The XKF is implemented in combination of the already 

designed NLO and EKF. The Jacobian or the linearization of 

the EKF’s of Eq (5) and Eq (9) to calculate the transition 

matrix is performed based on the estimated states by NLO. The 

details of the block diagram for XKF can be found in e.g., 

Johansen & Fossen, 2017. The tuning values of the NLO and 

EKF can be found in e.g., Rohac et al., 2017.  

3. EXPERIMENTAL SETUP 

The flight experiment was conducted using a Slingsby T67C 

aircraft (General Aviation category), shown in Fig.  1a. To 

obtain GNSS data and inertial data, a DMU-10 (Silicon 

Sensing) IMU was used which was connected with a MAX8W 

(µBlox) GNSS receiver. The DMU-10 is of commercial grade 

with 6 degree of freedom MEMS based IMU consisting of 3 

 

 

 

2. DESIGN OF XKF 

This section outlines the design of NLO and EKF followed 

by the design of XKF. 

2.1 NONLINEAR OBSERVER (NLO) 

The kinematic equations describing position 𝑝𝑝𝑒𝑒, linear 

velocity 𝑣𝑣𝑒𝑒 , attitude 𝑞𝑞𝑏𝑏
𝑒𝑒, and ARS bias 𝑏𝑏𝑏𝑏 are given as: 

𝑝̇𝑝𝑒𝑒 = 𝑣𝑣𝑒𝑒, 

(1) 

𝑣̇𝑣𝑒𝑒 = −2 𝑆𝑆(𝜔𝜔𝑖𝑖𝑖𝑖
𝑒𝑒 ) 𝑣𝑣𝑒𝑒 + 𝑓𝑓𝑒𝑒 + 𝑔𝑔𝑒𝑒(𝑝𝑝𝑒𝑒), 

𝑞̇𝑞𝑏𝑏
𝑒𝑒 = 1

2 𝑞𝑞𝑏𝑏
𝑒𝑒 ⊗ 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑏𝑏 − 1
2 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑒𝑒 ⊗ 𝑞𝑞𝑏𝑏
𝑒𝑒, 

𝑏̇𝑏𝑏𝑏 = 0, 
𝑏̇𝑏𝑓𝑓

𝑏𝑏 = 0. 
Subscript 𝑒𝑒 is defined in Earth-Centered-Earth-Fixed 

coordinate frame and subscript 𝑏𝑏 is defined in Body frame. The 

position and velocity are given in the ECEF-frame, while the 

ARS bias is in the Body-frame (BF), and the attitude is 

expressed as a unit quaternion describing the rotation between 

BF and ECEF. Here the skew-symmetric matrix 𝑆𝑆(∙) is such 

that the vector product is; 𝑥𝑥1 × 𝑥𝑥2 = 𝑆𝑆(𝑥𝑥1)𝑥𝑥2. The gravity 

vector, 𝑔𝑔𝑒𝑒(∙), is assumed known for a given position, while a 

vector 𝑥𝑥 ∈ ℝ3 can be represented as a quaternion with zero real 

part and vector part 𝑥𝑥, i.e. 𝑥̅𝑥 = [0; 𝑥𝑥]. The Earth rotation, 𝜔𝜔𝑖𝑖𝑖𝑖
𝑒𝑒 , 

is constant and known, and the product of two quaternions, 𝑞𝑞1 

and 𝑞𝑞2, is given as 𝑞𝑞1 ⊗ 𝑞𝑞2. The ARS bias, 𝑏𝑏𝑏𝑏, and ACC bias, 

𝑏𝑏𝑓𝑓
𝑏𝑏, are slowly time-varying. 

2.1.1 Nonlinear GNSS/INS Integration 

The nonlinear observer structure consists of two parts: an 

attitude estimator and a translational motion observer (TMO). 

The attitude estimator determines the vehicle attitude from 

inertial measurements, whereas the translational motion 

observer utilizes global measurements provided by a GNSS 

receiver as well as specific force measurements. 

An estimate of the specific force in the ECEF is fed back from 

the TMO to the attitude estimator, making the structure a 

feedback interconnection of two subsystems. The observer 

structure was shown to be semi-globally stable, see e.g., Grip 

et al., 2015. 

2.1.2 Attitude Estimation 

The vehicle attitude is represented by a unit quaternion, 𝑞̂𝑞𝑏𝑏
𝑒𝑒, 

describing the rotation from BF to ECEF. Furthermore, the 

attitude estimator also determines a ARS bias estimate, 𝑏̂𝑏𝑏𝑏, to 

compensate for sensor drift. The attitude estimation is given 

by 

𝑞̇̂𝑞𝑏𝑏
𝑒𝑒 = 1

2 𝑞̂𝑞𝑏𝑏
𝑒𝑒 ⊗ (𝜔̅𝜔𝑖𝑖𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 − 𝑏̅̂𝑏𝑏𝑏 + 𝜎̅̂𝜎) − 1
2 𝜔̅𝜔𝑖𝑖𝑖𝑖

𝑒𝑒 ⊗ 𝑞̂𝑞𝑏𝑏
𝑒𝑒, 

(2) 

𝑏̇̂𝑏𝑏𝑏 = Proj (−𝑘𝑘𝐼𝐼𝜎̂𝜎, ‖𝑏̂𝑏𝑏𝑏‖2 ≤ 𝑀𝑀𝑏̂𝑏). 

Here the projection function, Proj(∙,∙), limits the ARS bias 

estimate to be within a sphere of radius 𝑀𝑀𝑏̂𝑏, where 𝑘𝑘𝐼𝐼 is a 

constant gain and 𝜎̂𝜎 is an injection term. The injection term is 

based on the comparison of two vectors in the BF, 𝑣𝑣1
𝑏𝑏 and 𝑣𝑣2

𝑏𝑏 , 

with two corresponding vectors in the ECEF, 𝑣𝑣1
𝑒𝑒  and 𝑣𝑣2

𝑒𝑒: 

 

𝜎̂𝜎 = 𝑘𝑘1𝑣𝑣1
𝑏𝑏 × 𝑅𝑅(𝑞̂𝑞𝑏𝑏

𝑒𝑒)𝑇𝑇𝑣𝑣1
𝑒𝑒 + 𝑘𝑘2𝑣𝑣2

𝑏𝑏 × 𝑅𝑅(𝑞̂𝑞𝑏𝑏
𝑒𝑒)𝑇𝑇𝑣𝑣2

𝑒𝑒.  

The gains, 𝑘𝑘1 and 𝑘𝑘2, are positive and sufficiently large 

tuning constants. The vectors can be chosen in various ways 

utilizing e.g., magnetometer or pressure measurements. Here 

the vectors are chosen, based on specific force and heading 

from the GNSS velocity, as: 

𝑣𝑣1
𝑏𝑏 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏

‖𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 ‖2

,      𝑣𝑣1
𝑒𝑒 = 𝑓𝑓𝑒𝑒

‖𝑓𝑓𝑒𝑒‖2
 

(3) 

𝑣𝑣2
𝑏𝑏 = [

cos(𝜒𝜒)
− sin(𝜒𝜒)

0
],      𝑣𝑣2

𝑒𝑒 = 𝑅𝑅𝑛𝑛
𝑒𝑒 [

1
0
0
] 

where the specific force estimate, 𝑓𝑓𝑒𝑒, is determined by the 

translational motion observer. The reference vector 𝑣𝑣2
𝑒𝑒 denotes 

the direction North decomposed in the ECEF frame, while the 

corresponding body vector, 𝑣𝑣2
𝑏𝑏, utilizes the course angle 𝜒𝜒. The 

course angle can be obtained from a compass or in this case 

from GNSS velocity measurements in NED frame: 

𝜒𝜒 = tan−1 (𝑣𝑣𝑒𝑒
𝑣𝑣𝑛𝑛

),  

where 𝑣𝑣𝑛𝑛 and 𝑣𝑣𝑒𝑒 signifies the velocity in North and East 

direction. 

 
2.1.3 Accelerometer Bias Estimation 

The bias of the ACC measurements can be considered a slowly 

time-varying value added to the true measurements; 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 =

𝑓𝑓𝑏𝑏 + 𝑏𝑏𝑓𝑓
𝑏𝑏. Considering a combination of parameters 𝜃𝜃 =

[‖𝑏̂𝑏𝑓𝑓
𝑏𝑏‖2, (𝑏̂𝑏𝑓𝑓

𝑏𝑏)𝑇𝑇]
𝑇𝑇
and 𝜙𝜙 = [1, −2(𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼

𝑏𝑏 )𝑇𝑇]𝑇𝑇 the measurement 

for the injection term can be expressed as 𝑦𝑦𝑓𝑓 = ‖𝑏̂𝑏𝑓𝑓
𝑏𝑏‖2 −

2(𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 )𝑇𝑇𝑏̂𝑏𝑓𝑓

𝑏𝑏. The combination vector propagation is then 

expressed as: 

𝜃̇𝜃 = Γ𝜙𝜙(𝑦𝑦𝑓𝑓 − 𝜙𝜙𝑇𝑇𝜃̂𝜃),  

where Γ is a positive-definite symmetric gain matrix. The ACC 

bias is carried out under the assumption that there is sufficient 

excitation of the vehicle for the ACC to experience versatile 

acceleration. Formally this requirement is expressed as an 

assumption that: 

∫ 𝜙𝜙(𝜏𝜏)𝜙𝜙𝑇𝑇(𝜏𝜏)𝑑𝑑𝑑𝑑 ≥ 𝜖𝜖𝜖𝜖
𝑡𝑡+𝑇𝑇

𝑡𝑡
, 

 

where 𝜖𝜖 > 0 and 𝑇𝑇 > 0 such that for each 𝑡𝑡 ≥ 0 the condition 

is satisfied and the persistently excitation assumption is valid.  

The ACC bias estimation can be implemented similarly to the 

ARS bias estimation, 

𝜃̇𝜃 = Proj (Γ𝜙𝜙(𝑦̂𝑦𝑓𝑓 − 𝜙𝜙𝑇𝑇𝜃̂𝜃), ‖𝜃̂𝜃‖2 ≤ 𝑀𝑀𝑤̂𝑤),  

where 𝑀𝑀𝑤̂𝑤 is a bound on the length of the bias vector. 

2.1.4 Translational Motion Observer 

The translational motion observer (TMO) estimates 

position, linear velocity, and specific force of the vehicle by 
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gyros, 3 ACCs and a temperature sensor. The data from the 

GNSS receiver and DMU-10 were pooled by a microcontroller 

STM32F746ZGT6 (STMicroeletcronics). The data from the 

IMU and GNSS receiver were sampled at 200 Hz and 5 Hz 

respectively. 

 
(a) 

 

(b) 

Fig.  1. Slingsby T67C aircraft (a), the sensory compartment 

inside Pelicase 1450 (b). 

The data from an X91+ GNSS receiver were sampled at 5 Hz 

and were related to measurements obtained from GNSS 

stationary reference station placed in Pribram city, which is a 

part of Czech Reference GNSS Station Network (CZEPOS). 

The GNSS data were processed in the open source RTKlib to 

give an accurate RTK-GNSS based position used as a 

reference (true) data source for this article. The navigation unit 

was mounted in a sensory compartment inside a Pelicase 1450 

as depicted in Fig.  1b and placed onboard the aircraft. 

3.1 DESCRIPTION OF EXPERIMENT 

The flight included various flight patterns including slow 

turns and rapid altitude changes, see Fig.  2a. The flight 

included rapid altitude change from 450 m up to 1040 m and 

vice-versa. The flight took about 33 minutes including rolling, 

take-off, climb, cruise, descent, and landing as marked Fig.  

2b. Since different stages during the flight had different 

conditions for the navigation unit to operate, we divided the 

obtained data according to flight stages and analyzed the 

navigation solution performance separately in each of them. 

During the flight, there were conditions with high dynamics 

reaching angular rates up to ± 50°/s and values of a total 

acceleration of -5.2 g and +2.3 g. 

 

(a) 

(b) 

Fig.  2. 2D trajectory of the flight performed – referential data 

obtained with RTKlib 2.4.2 with an indicated status of the 

GNSS receiver (blue – fix, red - float) (a); an altitude profile 

of the flight with emphasized stages b). 

 

4. PERFORMANCE ANALYSIS 

 

To assess the performance of the XKF with respect to the NLO 

and EKF, the GNSS aiding data was artificially turned off for 

30 seconds in each 5-minute interval; except the first one 

which was left for initialization of estimating process as shown 

in Fig.  3 marked in red circles. 

 
Fig.  3. Positions where the GNSS is artificially turned off. 
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Three types of estimation are compared with each other as 

below: 

1. Estimation using EKF only 

2. Estimation using NLO only 

3. Estimation using XKF 

Fig.  4 shows the results of the PVA estimations along with the 

ACC and ARS bias estimates. From the position and velocity 

plots in Fig.  4c and Fig.  4d the estimates using EKF diverges 

rapidly when there is no GNSS aiding available. In contrast the 

estimate using XKF diverges slowly. It is because the bias 

estimation in the accelerometers is not stabilised by the EKF.  

 
(a) Euler’s angle estimation. 

 
(b) Angular rate sensor’s bias estimate. 

 
(c) Position estimates. 

 
(d) Velocity estimates in body frame. 

 
(e) Accelerometer bias estimation.  

Fig.  4. PVA estimates using NLO, EKF and XKF. 

It can also be seen from that the bias estimates for ACC and 

ARS Fig.  4b and Fig.  4e varies significantly using EKF 

compared to the XKF. Bias does not vary as fast as estimated 

by the EKF; hence it can be said that bias estimation by EKF 
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is not stabilised. In comparison the bias estimate using XKF is 

stabilized.   

To quantify the results of the estimation during the GNSS 

outages, RMSE was calculated with respect to the absolute 

GPS position and velocity. Resultant RSME values in position 

are summarized in Table 1. In the table green refers to the 

improvement in performance, amber denotes the moderate 

performance and red indicates the worse performance in terms 

of the deviation from the actual position.  

Table 1. Resultant RMSE values for NED position estimates 

during GNSS outages. 

 RMSE in position – direction North, East, Down 

Outage 

Position 

North (m) East (m) Down (m) 

EKF NLO XKF EKF NLO XKF EKF NLO XKF 

1 7.9 15.8 14.1 16.6 12.4 11.4 1.8 25.7 24.7 

2 7.5 14.9 14.9 10.4 9.4 9.4 12.1 4.9 4.3 

3 6.7 23.5 23.6 28.8 13.1 13.3 31.8 27.6 25.6 

4 31.5 15.1 14.3 129.1 22.2 21.4 50.0 18.9 18.2 

5 38.2 11.3 11.2 18.4 12.6 11.8 5.4 12.5 12.0 

 

It can be seen in Table 1 that in the easternly and downward 

direction the XKF always performed better in terms of the 

reduced divergence from the actual position. In the North 

direction it is sometimes EKF estimates better and sometime 

the XKF estimates better. This might be due to the use of 

heading correction in the EKF using the GNSS velocity. 

Overall, from the Table 1 it can be said that XKF performs 

better in situation where there is GNSS outage compared to 

EKF and NLOs alone. There is not clear evidence that XKF 

globally improves the performance of the PVA estimates when 

compared to EKF or NLO.  

 

5. CONCLUSIONS 

In this paper the performance of a recently proposed 

eXogenous Kalman filter (XKF) has been analysed and 

compared using real flight test data for INS/GNSS based 

navigation solutions for Position, Velocity and Attitude (PVA) 

estimates. The performance of the XKF was compared against 

nonlinear observer (NLO) and two-stage extended Kalman 

Filter (EKF). For the performance analysis of the XKF, EKF 

and NLO for navigation data estimation, GNSS outage was 

artificially created to study which filter diverges the most. It 

was found that XKF diverges the least in the East and Down 

position estimation compared to EKF and NLO. On the other 

hand, the Northern position estimates provided similar 

performance for using EKF and XKF. Even though no extra 

benefit was achieved in North position estimate using XKF, it 

stabilized the bias estimates of the sensors under dynamic 

conditions. Hence the use of XKF is suitable for PVA 

estimates. 
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