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ABSTRACT

Operators and maintainers are faced with the task of

selecting which health monitoring tools are to be acquired or

developed in order to increase the availability and reduce

operational costs of a vehicle. Since these decisions will

affect the strength of the business case, choices must be

based on a cost benefit analysis. The methodology presented

here takes advantage of the historical maintenance data

available for legacy platforms to determine the performance

requirements for diagnostic and prognostic tools to achieve

a certain reduction in maintenance costs and time. The

effect of these tools on the maintenance process is studied

using Event Tree Analysis, from which the equations are

derived. However, many of the parameters included in the

formulas are not constant and tend to vary randomly around

a mean value (e.g.: shipping costs of parts, repair times),

introducing uncertainties in the results. As a consequence

the equations are modified to take into account the variance

of all variables. Additionally, the reliability of the

information generated using diagnostic and prognostic tools

can be affected by multiple characteristics of the fault,

which are never exactly the same, meaning the performance

of these tools might not be constant either. To tackle this

issue, formulas to determine the acceptable variance in the

performance of a health monitoring tool are derived under

the assumption that the variables considered follow

Gaussian distributions. An example of the application of

this methodology using synthetic data is included.

1. INTRODUCTION

The objective of Integrated Vehicle Health Management

(IVHM) is to increase platform availability and reduce

maintenance costs through the use of health monitoring on

key systems. The information generated using condition

monitoring algorithms can be used to reduce maintenance

times, improve the management of the support process and

operate the fleet more efficiently. Although IVHM can

include the use of tools to improve the management of

logistics, maintenance and operations (Khalak & Tierno,

2006), this methodology focuses on diagnostic and

prognostic tools.

In order to run the algorithms it is necessary to read a set of

parameters with a given accuracy and enough resolution to

generate trustworthy information for the maintainer.

Additionally, the data generated by sensors has to be

transmitted, postprocessed, stored and analyzed. Although it

is possible to carry out part of this process off-board, legacy

vehicles rarely have the sensors, data buses, memory or

computer power still required on-board. However, legacy

platforms are expensive to modify to accommodate new

hardware, especially if the modifications have to be

certified. Therefore, it is not always possible to use the best

hardware available for every tool and its performance will

not reach its full potential. Furthermore, the implementation

of the new health monitoring tools must have the lowest

impact possible on the normal operation of the fleet, a

problem not found in vehicles which are still being designed

or manufactured. Thus, health monitoring tools for legacy

platforms have a lower performance, a higher cost and a

shorter payback period than if they were used on new

vehicles.

On the other hand, the historical maintenance data generated

by fleets provide information that can be used to select the

components to retrofit health monitoring tools on, validate

diagnostic and prognostic algorithms, and carry out Cost-

Benefit Analyses (CBA). This is an important advantage

since the expectations regarding the performance of the tool

and their impact on the operational costs and availability are

much more accurate for legacy platforms. Additionally,

FMECAs, which are widely used for the design of health
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monitoring tools and perform CBAs (Banks, Reichard,

Crow and Nickell, 2009; Kacprzynski, Roemer, and Hess,

2002; Ashby & Byer, 2002) become easier to populate and

more precise. Even the experience of maintenance personnel

and operators on qualitative aspects has a huge value for the

development of IVHM tools.

This information can be used to define the performance

requirements of any diagnostic or prognostic tool. Since the

main objective of retrofitting IVHM is the reduction of

maintenance cost and time, these are the constraints used in

the methodology presented here. Teams in charge of

developing health monitoring algorithms need to know not

only the performance expected from their tools, but also the

budget constraints to make them profitable. This data can be

used to calculate the performance expected from a

diagnostic or prognostic tool if it is to achieve a certain

reduction of the cost and downtime associated with the

maintenance of component it monitors. It is important to

note that the criticalities of different costs and maintenance

operations vary for each stakeholder (Wheeler, Kurtoglu

and Poll, 2009) and depend on whether the vehicle is

operated in a civilian or a military environment (Williams,

2006).

In some cases it is possible to generate mathematical

expressions to relate the return on investment with certain

design parameters (Kacprzynski et al., 2002; Hoyle, Mehr,

Turner, and Chen, 2007; Banks & Merenich, 2007), but this

approach restricts major changes in the design and the

equations are not applicable to other monitoring systems.

Working with historical maintenance data involves using

average values of many recorded parameters which are

really random variables. Therefore, there is a certain degree

of uncertainty in any calculation of the performance

requirements which must be taken into account to avoid

arriving at overconfident results. Furthermore, the reliability

of an IVHM tool varies depending on the characteristics of

the fault, which are different on every occasion, and this

translates into uncertainty about its performance (Lopez &

Sarigul-Klijn, 2010). As a result, the acceptable standard

deviations of the performance parameters of each tool have

to be calculated to ensure the targets are met.

2. PERFORMANCE OF IVHM TOOLS

IVHM is enabled by the use of sensors to gather data of a

component and those systems that interact with it in order to

detect malfunctions – diagnostic tools – or to predict the

failure of the part – prognostic tools. Diagnostic tools help

to identify the component responsible for the malfunction of

a system, reducing the diagnosis and localization times.

Additionally, they can prevent the vehicle to continue

running with an unnoticed fault.

If a diagnostic tool is too sensitive it can trigger false alarms

which could result in unnecessary checks, waste of

resources and, in some cases, aborting the mission. On the

other hand, if the sensitivity is too low and faults are not

detected, the investment on the tool will not produce any

benefits. Therefore, the main performance parameters of a

diagnostic tool in an analysis of its effect on maintenance

cost and time are the probability of triggering a false alarm,

PFA, and the probability of producing a false negative, PFN.

Prognostic tools calculate the RUL of a component at a

given moment providing maintainers with a lead time to

accommodate the replacement or repair of that part in the

future. If the lead time is long and accurate enough, the

maintenance of the component can be carried out along with

other scheduled tasks (long-term prognosis). Otherwise, the

part will have to be replaced between missions (short-term

prognosis), but this approach is still safer, cheaper and less

time-consuming than running the component until failure.

While long-term prognostic tools enable the deferral of the

maintenance action until the next scheduled service, short-

term prognostic tools can affect the availability of the

vehicle if the time available for maintenance between

missions is shorter that the time necessary to repair the fault.

The performance of a prognostic tool is determined by the

reliability of the information it provides and how it is used,

in other words, by the probability of the component failing

before it was planned to be replaced (PLP for long-term tools

and PSP for short-term tools). As shown in Figure 1, it is

necessary to define a maximum admissible probability of

failure, Pmax, to determine how long the component can

remain in service, tmax. This requires choosing a degradation

curve from those generated by the prognostic tool from

which tmax is estimated. The probability of the component

failing is a function of the average life of the components

removed, tm, which depends on the period between

scheduled services (long-term tools) or the mean time

between missions (short-term tools).

Figure 1. Degradation curves generated by a prognostic tool

used to estimate the probability of failure of a component

before it has been replaced.
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3. EVENT TREE ANALYSIS

The failure of a component has a different cost and repair

time depending on whether an IVHM tools has performed

its function correctly or not. This can be studied using Event

Tree Analysis (ETA) where the probability of the failure of

the component, PF, is the triggering event and each tool

introduces a fork in the diagram as shown in Figure 2. A

correct prognosis prevents the need for a diagnosis and, if it

is incorrect, a diagnostic tool can still be used. For the same

reason long-term prognostic tools are further to the left on

the diagram than short-term tools. It is important to remark

that this is not a representation of the way the algorithms

work, but how the performance of each tool leads to

different outcomes.

In case a component presents different failure modes that

need to be monitored by different tools, costs and

downtimes need to be estimated independently for each

mode. This is not a problem since most algorithms for

diagnostic and prognostic tools track specific failure modes.

The tree shows six possible outcomes or maintenance

scenarios, including the lack of need to replace a healthy

component. Maintenance cost and time are calculated for

each scenario according to how the use (or malfunction) of a

health monitoring tool affects maintenance process. In case

a prognostic tool is used, it is necessary to take into account

factors such as the reduction of the delays, the value of the

RUL of the component, the lower operational for costs on

scheduled operations, and the avoidance of secondary

failures. The use of diagnostic tools can help to reduce the

maintenance time as well as the use of resources and

personnel since searching for the cause of the malfunction is

no longer necessary. However, false alarms, or false

positives, can lead to unnecessary checks or even the

removal of healthy components which could be disposed of

(Trichy, Sandborn, Raghavan and Sahasrabudhe, 2001).

Techniques necessary to calculate some of these parameters

were described by Leao, Fitzgibbon, Puttini and de Melo

(2008) as well as Prabhakar and Sandborn (2010.)

Since the event tree can be used to calculate the probability

of each outcome, the resulting total maintenance cost, C,

and time, T, can be calculated using the following

expressions:

ி ௅௉ ௅௉ ௅௉ ௌ௉ ௌ௉
ௌ௉ ிே ஽ ிே ிே ி ி஺ ி஺ (1)

ி ௅௉ ௅௉ ௅௉ ௌ௉ ௌ௉
ௌ௉ ிே ஽ ிே ிே ி ி஺ ி஺ (2)

These polynomial functions can be used to calculate the

sensitivities of the maintenance cost and time to the

performance of health monitoring tools. Additionally, it

must be noted that the data used to calculate the cost and

downtime of each scenario are not constant and vary around

average values (e.g.: time to repair or shipping costs), and

these equations can be used as the basis to calculate the

standard deviation of the resulting maintenance costs and

times.

Detectability with IVHM

Cost TimeLong Term

Prognosis

Short Term

Prognosis
Diagnosis

1-PLP
CLP tLP

SUCCESS

PF 1-PSP
CSP tSP

PLP SUCCESS

FAILURE 1-PFN
CD tD

PSP SUCCESS

FAILURE PFN
CFN tFN

FAILURE

1-PFA
0 0

1-PF SUCCESS

PFA
CFA tFA

FAILURE

Figure 2. ETA for the use of health monitoring tools on a

single component.

4. PERFORMANCE REQUIREMENTS WITH EXACT DATA

The performance of an IVHM tool must guarantee that the

maintenance cost and time associated with the component it

monitors are below C* and T* respectively.

Prognostic tools can be used to monitor a system which

already has some diagnostic capability in order to combine

the benefits from estimating its RUL and being able to

identify the source of a malfunction if the component fails

before it was expected. However, it is difficult to imagine

developing a diagnostic algorithm for a part which is no

longer run until failure thanks to the use of prognostics.

Therefore, the equations for the probability of false negative

and false alarm only take into consideration the parameters

of scenarios in which diagnostic tools are used.

∗ ி ிே ஽ ிே ிே ி ி஺ ி஺ (3)

∗ ி ிே ஽ ிே ிே ி ி஺ ி஺ (4)

ி஺ ிே (5;6)

ி஺ ∗ ி ிே ஽ ிே ிேி ி஺ (7)

ி஺ ∗ ி ிே ஽ ிே ிேி ி஺ (8)
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Equations (5-8) define a space which encloses all the

possible solutions that comply with the requirements. This

space can be represented as sown in Figure 3.

The following expressions can be used to determine the

probability of failure of a long-term prognostic tool given

time and cost constraints. The equations for short-term tool

are obtained the same way.∗ ி ௅௉ ௅௉ ௅௉ ிே ஽ ிே ிே
ி ி஺ ி஺ (9)

∗ ி ௅௉ ௅௉ ௅௉ ிே ஽ ிே ிே
ி ி஺ ி஺ (10)

௅௉ (11)

௅௉
∗ ி ி஺ ி஺ி� ௅௉ிே ஽ ிே ிே ௅௉ (12)

௅௉
∗ ி ி஺ ி஺ி� ௅௉ிே ஽ ிே ிே ௅௉ (13)

Since the system is overdetermined the most stringent

solution must be selected.

5. UNCERTAINTY

Most parameters used to perform a CBA are not constant

since the conditions under which each job is carried out are

different. Costs of personnel and parts can change

depending on the location or the shift. Active maintenance

times, delays and the time dedicated to the diagnosis and

localization of a fault are never exactly the same.

Consequently, the variables used to define a maintenance

activity are approximated to average values. This also

affects the frequency of failure of the component, which is

approximated to the Mean Time Between Failures (MTBF)

for most quantitative analyses despite being extremely

variable for those components that can benefit the most

from IVHM. Additionally, the performance of health

monitoring tools over a fixed period can also vary,

increasing the uncertainty of the cost and downtime

calculated in the previous sections.

Although the total maintenance time dedicated to a single

component can be broken down into several steps including

delays, repair time and checkout time (British Standard,

1991), they tend to be poorly recorded. Since the whole

process involves different teams, it is difficult to keep track

of the exact amount of time dedicated to each component

(especially for delays and diagnosis). In addition,

technicians tend to focus on the task in hand and register

approximate values once the job is finished.

Therefore, there are uncertainties associated with the results

from a CBA and this affects the definition of the

performance requirements for IVHM tools. To avoid

overstating the benefits from using diagnostic and

prognostic tools it is necessary to include the standard

deviation of every parameter that does not remain constant.

It is also necessary to determine the acceptable standard

deviation for the performance of the algorithms to ensure

the maintenance costs and times will remain below

acceptable levels.

Taking into account the effects of uncertainties means that

for every performance parameter aforementioned an

additional variable has to be calculated. At the same time, it

is necessary to define the probability of the maintenance

cost and downtime being bellow the limits imposed; in other

words: how confident we are that the costs and times will

remain below limits. As a consequence, two additional

constraints are introduced: confidence to comply with cost

requirements, RC; and confidence to comply with time

requirements, RT.

The maintenance costs and times of different scenarios can

be considered independent since numerous factors included

in their calculation are random and uncorrelated. These

assumptions allows for analytical expression to be

formulated using the standard deviation of such random

factors. In order to simplify mathematical operations

variance is used instead of standard deviation. Therefore,

the following properties apply:

(14)ଶ ଶ (15)

Since the variations in costs and maintenance times are due

to numerous random factors, it has been assumed that both

the total maintenance time and total maintenance cost per

component follow Gaussian distributions.

Figure 3. Region of acceptable performance of a

diagnostic tool

PFN

PFA

Cost constraints

Time Constraints

Region of possible

solutions
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Diagnostic tools are now defined by four parameters:

probability of false alarm, PFA; probability of false negative,

PFN; and their variances, Var(PFA) and Var(PFN)

respectively. The limits of these variables are defined by the

following functions:

஼ ∗
(16)

் ∗
(17)

ி஺ ிே (18)

Where

ிே ி ிே ஽ ி ஽ ி஺ ி ி஺ (19)

ிே ி ிே ஽ ி ஽ ி஺ ி ி஺ (20)

ிே ி ிே ஽ ி ஽
ி஺ ி ி஺ (21)

ிே ி ிே ஽ ி ஽ி஺ ி ி஺ (22)

From equation (16)

∗ ଶିଵ ஼ ଶ (23)

Additionally

ଵ ிே ଶ ி஺ ଷ (24)

where

ଵ ி ଶ ிே ஽ ଶ ி ிே ஽ (25)

ଶ ி ଶ ி஺ଶ ி ி஺ (26)

ଷ ிேଶ ி ிே ஽
ி஺ଶ ி ி஺ ி ஽ (27)

As a result

ଵ ிே ଶ ி஺∗ ிே ி� ிே ஽ ி� ஽ ி஺ ி ி஺ ଶିଵ ஼ ଶ ଷ (28)

Following the same steps for the maintenance time

requirements from equation (17), the second condition is

ସ ிே ହ ி஺∗ ிே ி� ிே ஽ ி� ஽ ி஺ ி ி஺ ଶିଵ ் ଶ ଺ (29)

where

ସ ி ଶ ிே ஽ ଶ ி ிே ஽ (30)

ହ ி ଶ ி஺ଶ ி ி஺ (31)

଺ ிேଶ ி ிே ஽ ி஺ଶ ி ி஺
ி ஽ (32)

Therefore, any diagnostic tool that satisfies the requirements

and can generate the projected savings with the expected

accuracy must comply with equations (18), (28), and (29).

Prognostic tools are now defined by the probability of the

component failing before it is replaced and its variance. The

following formulas define the constraints for a prognostic

tool to comply with the cost and support requirements. To

keep the equations manageable, the parameters of diagnostic

tools are not included. In case they were necessary the full

equations can be obtained in a similar manner. As for

diagnostic tools:

஼ ∗
(33)

் ∗
(34)

The difference being

௅௉ (35)

௅௉ ி ிே ௅௉ ி ௅௉ (36)

௅௉ ி ிே ௅௉ ி ௅௉ (37)

௅௉ ி ிே ௅௉ ி ௅௉ (38)

௅௉ ி ிே ௅௉ ி ௅௉ (39)

From equation (33)

∗ ଶିଵ ஼ ଶ (40)

Combining equations (37), (38) and (40)

௅௉ ி ிே ௅௉∗ ி� ௅௉ ிே ௅௉ ி� ௅௉ ଶିଵ ஼ ଶ ி ௅௉ (41)

Using the properties described in equations (14) and (15)

and following the same steps with the equations for

maintenance time constraints the results are:



௅௉
∗ ி ௅௉ ிே ௅௉ ி ௅௉ ଶିଵ ஼ ଶ ி� ௅௉ ௅௉ଶ ி� ிே ௅௉

ி ଶ ிே ௅௉ ଶ ி ிே ௅௉ (42)

௅௉
∗ ி ௅௉ ிே ௅௉ ி ௅௉ ଶିଵ ் ଶ ி� ௅௉ ௅௉ଶ ி� ிே ௅௉

ி ଶ ிே ௅௉ ଶ ி ிே ௅௉ (43)

These parabolas define the limits for the performance

requirements of any prognostic tool as shown in Figure 4.

These expressions are for long-term prognostic tools. To

obtain the formulas for short term tools replace CLP and tLP

by CST and tLP respectively.

These formulas can be applied to any component of a

vehicle to quantify the performance requirements for

continuous monitoring tools. These requirements will be

then communicated to the internal teams in charge of

developing IVHM tools, the supplier of the component,

independent developers of health monitoring technology or

even can be used to call an open tender. Since the

performance parameters are determined based on economic

objectives, it is possible to calculate the maximum

acceptable cost for each tool based on the remaining useful

life of the fleet.

Additionally, this set of equations presents a framework to

include risk analysis on a CBA and strengthen the business

case for installing IVHM on the aircraft.

6. CASE STUDY

The following example is based on synthetic data for a

generic component that fails every 250 flying hours.

Although the values chosen for the parameters used in this

case do not belong to a specific real component, they are

representative of the costs and maintenance times of many

parts currently run until failure. All the factors taken into

account to calculate the maintenance cost and time of each

scenario, as well as their values, are listed in Table 1.

Standards deviations were chosen to ensure the uncertainties

would vary between ±5% and ±20% (assuming all

parameters follow Gaussian distributions so 99.7% of the

outcomes are within ±3σ from the mean). The results for

each scenario are shown in Figure 5.

The objective is to reduce the maintenance costs per flying

hour for this component by 15% and the maintenance time

by 40%. These goals must be met with, at least, 95%

confidence. As a result the performance requirements for

long and short term prognostic tools are shown in Figure 6.

Since the performance of diagnostic tools is described by

four variables it is not possible to represent the limits of the

requirements. To provide some guidance, the graphs for

diagnostic tools shown in Figure 6c represent the relation

between the probability of false alarm and the probability of

false negative, assuming there is no uncertainty about the

performance of the tool (i.e.: zero variance). To check if the

performance of a given tool complies with the requirements

it is necessary to use the equations previously shown.

Detectability with IVHM

Cost (£) Time (h)L-T

Prognosis

S-T

Prognosis
Diagnosis

1-PLP 773.5

[2.95E+02]

1.35

[9.00E-04]S

PF 1-PSP 906.1

[1.88E+02]

1.35

[9.00E-04]PLP S

F 1-PFN 1021.7

[1.86E+02]

1.35

[3.16E-03]PSP S

F PFN 1319.825

[3.10E+02]

3.375

[6.46E-03]F

1-PFA
0 0

1-PF S

PFA 330

[3.03E+01]

2

[2.27E-03]F

Total
5.279

[6.82E-02]

0.0135

[5.17E-07]

Figure 5. Costs, times and their variances (in brackets) for

each maintenance scenario.

PLP

Var(PLP)

Cost constraints

Time Constraints

Region of possible solutions

Figure 4. Region of acceptable performance and

variance of performance of a long-term prognostic tool
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Figure 6. Graphs for possible solutions for a) long-term and b) short term prognostic tools and c) diagnostic tools.
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a) b)

Figure 7. PDF of maintenance a) cost and b) time for the different IVHM tools proposed.

The probability density functions (PDFs) of the new

maintenance cost and time are calculated and compared to

the targets to verify if a diagnostic tool with a given

performance is capable of achieving the necessary

improvements. Figure 7 shows the PDF for three possible

IVHM tools (one of each kind) that reach the targets

compared to the original distributions. It also illustrates how

changing the probabilities of different maintenance

scenarios, with different variances, affects the standard

deviation of the final maintenance cost and time, which can

be reduced (diagnostic tool) or increased (long term

prognostic tool.)

Only the shaded area on left side of the graphs comprises

those tools that achieve the expected reduction in cost and

downtime. The area on the right is for those which match

the requirements with a confidence complimentary to what

is expected (i.e.: 5%) as illustrated in Figure 8.

The requirements for diagnostic and short term prognostic

tools illustrate an interesting phenomenon: in some cases

one of the targets can result in any possible solution

overperforming in other areas. In this example a diagnostic

tool that barely reaches the expected cost reduction will

improve maintenance times by much more than it is

required. The opposite happens to short term prognostic

tools.

PF 0.004

Cost of

component (£)

Scheduled M. 525

Unscheduled M. 628.9

False Alarm 65

Cost of Labor

(£)

Scheduled M. 90

Unscheduled M. 132.5

Value of RUL

(£)

Long Term Prog 68.5

Short Term Prog 12.2

Other costs

(£)

Compensation 0

Secondary damage 127.8

Flight Test 0

Loss Income 0

Warranty Parts (%) 0

Labor (%) 0

Time (h) MTTR 2

Check-out 0.25

MTTD 2

Localization 0.25

Technical delay 0.33

Administrative delay 1

Logistic delay 0

Table 1. List of parameters used in case study and their

values.
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7. CONCLUSIONS

This methodology represents a reliable way to define the

requirements of individual tools based on the expectations

of improving the maintenance of specific components and

the uncertainty of the available data. Since the equations

allow to carry out a quantitative risk analysis, business cases

that use this methodology are more robust and less likely to

overstate the benefits of installing the selected combination

of IVHM tools.

It is not always possible to obtain reliable data to determine

the standard deviation or variance of some of the variables

used to calculate the costs or maintenance times. In some

cases these variables are poorly recorded or not recorded at

all. To tackle this problem, personnel with experience

maintaining the aircraft should be interviewed to get

approximated values. This will always be a better option

than ignoring the effect of these uncertainties.

Quantifying the uncertainty of the expected revenue is

critical to estimate the present value of an investment on

IVHM technology given its long return period. For that

purpose, techniques like real options can be combined with

the methodology presented here.

IVHM tools can affect the uncertainty, or standard

deviation, of the resulting maintenance costs and times

significantly, either reducing it or increasing it. Since the

predictability of these factors is sometime as important as

decreasing their value, this effect must be analyzed carefully

in a CBA.

Further work is necessary to study how the diagnoses and

prognoses from several algorithms interact. If this new

information enables grouping maintenance activities the

total downtime can be reduced, increasing the availability of

the vehicle and generating additional savings.
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NOMENCLATURE

C Maintenance cost of component per flying hour

C* Target cost per flying hour

CD Maintenance cost of an effective automated

diagnosis

CFA Maintenance cost of a false alarm

CFN Maintenance cost of a false negative

CLP Maintenance cost of an effective long term

prognosis

CSP Maintenance cost of an effective short term

prognosis

PF Probability of failure of the component per flying

hour

PFA Probability of false alarm

PFN Probability of false negative

PLP Probability of long term prognosis being

ineffective

PSP Probability of short term prognosis being

ineffective

RC Expected confidence to comply with cost

requirements

RT Expected confidence to comply with time

requirements

T Maintenance time of component per flying hour

T* Target maintenance time per flying hour

tD Maintenance time of an effective automated

diagnosis

tFA Maintenance time of a false alarm

tFN Maintenance time of a false negative

tLP Maintenance time of an effective long term

prognosis

tm Average life of components replaced following the

indication of a prognostic tool

tmax Maximum time a component is run before its

probability of failure reaches a predetermined limit

tSP Maintenance time of an effective short term

prognosis
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