
Received: 15 December 2023 | Accepted: 12 January 2024

DOI: 10.1002/maco.202314240

ART I C LE

Causal discovery to understand hot corrosion

Akhil Varghese | Miguel Arana‐Catania | Stefano Mori |

Adriana Encinas‐Oropesa | Joy Sumner

Cranfield University, Cranfield, UK

Correspondence
Miguel Arana‐Catania, Cranfield
University, Cranfield MK43 0AL, UK.
Email: miguel.aranacatania@cranfield.
ac.uk

Funding information
None

Abstract

Gas turbine superalloys experience hot corrosion, driven by factors including

corrosive deposit flux, temperature, gas composition, and component material.

The full mechanism still needs clarification and research often focuses on

laboratory work. As such, there is interest in causal discovery to confirm the

significance of factors and identify potential missing causal relationships or

codependencies between these factors. The causal discovery algorithm fast causal

inference (FCI) has been trialled on a small set of laboratory data, with the

outputs evaluated for their significance to corrosion propagation, and compared

to existing mechanistic understanding. FCI identified salt deposition flux as the

most influential corrosion variable for this limited data set. However, HCl was the

second most influential for pitting regions, compared to temperature for more

uniformly corroding regions. Thus, FCI generated causal links aligned with

literature from a randomised corrosion data set, while also identifying the

presence of two different degradation modes in operation.
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1 | INTRODUCTION

Gas turbines are used to generate power and provide
thrust.[1] In 2023 between 26% and 37% of UK electricity
was generated from natural gas combustion, with gas
turbines now shifting towards zero emission fuels such as
H2 or NH3, to meet UN goals. To increase efficiency, gas
turbines operate in a combined cycle with steam turbines,
and are required to operate at higher temperatures and
pressures, generating a more challenging environment for
the materials used for their manufacture. Furthermore,
contaminants such as sulphates, halides, and chlorides,
contained in the fuel, together with salt impurities from the
air, can create a highly corrosive environment.[2] Deposition

of such contaminants on to the gas turbine's component
blades and vanes gives rise to a corrosion mechanism called
‘hot corrosion’, which adversely affects the service life of the
gas turbines. Depending on the operating temperature
conditions inside the gas turbine, Type‐I or Type‐II hot
corrosion can occur.[3] Type‐I and Type‐II hot corrosion are
temperature‐dependent and deposit‐induced corrosion
mechanisms that occur across the approximate temperature
ranges of 850–950°C and 650–800°C, respectively.[2]

Melting temperatures of the salt contaminants influence
both these types of accelerated corrosion mechanisms, but
factors such as a high partial pressure of SO3 are crucial for
Type‐II hot corrosion to occur.[2] While it is known that
factors like operating temperatures, melting temperatures
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of salt contaminants, the deposition rate of the flux on gas
turbine surface, partial pressures of gas contaminants, and
material and gas compositions lead to hot corrosion in gas
turbines, the exact variation of the underlying mechanism
with changing parameters needs clarification.

Moreover, the degree of co‐dependence and indepen-
dence between these factors will help in understanding the
influence that each factor has on hot corrosion. Hence,
Causal Discovery[4,5] has been introduced to understand the
causal relationships between the different corrosion factors
from a statistical approach. These data‐driven, causal
relationships will help in understanding the underlying
causal relationships of each corrosion variable, and thus
clarifying the physical corrosion mechanism. Such findings
from this early‐stage study can also help in designing future
hot corrosion experiments, both in terms of the variables
and their values, and can become the foundation upon
which a predictive maintenance model can be developed.

1.1 | Hot corrosion

Hot corrosion is a type of material degradation which is
induced by the deposition of contaminants contained in the
exhaust stream of a gas turbine.[6] These deposits are
usually formed by alkali compounds that can increase the
corrosion rates if in molten state.[3] Some of the contami-
nants come from air intake (such as sodium, potassium,
and calcium), while others come from fuel. The amount of
deposition influences the corrosion rate of the materials in
such environments.[7] Based on the operating temperatures
and the type of contaminant attack, hot corrosion can be
further divided into Type‐I and Type‐II hot corrosion:

1.1.1 | Type‐I hot corrosion
(high‐temperature hot corrosion [HTHC])

Type‐I hot corrosion is also called HTHC because it occurs
within the temperature range of 850–950°C.[2] Various
compounds can form, for example, sodium from the
ingested air and sulphur from the fuel could combine to
form sodium sulphate (Na SO2 4), during the combustion
cycle of the gas turbine.[8,9] The sodium sulphate could then
condense onto the colder blading, and form a liquid
(molten) salt, which initiates Type‐I hot corrosion. In the
presence of further impurities, such as NaCl from the
industrial or marine atmosphere combines or K from sea
droplets,[9] the formation of mixtures with lower melting
points could occur which extend the temperature range of
Type‐I hot corrosion.[10]

Using a fluxing reaction, these eutectic mixtures
dissolve the protective layer of the superalloy and attack

the base material. These mixtures shorten the incubation
period. Type‐I hot corrosion is characterised by internal
sulfidation, depletion of protective layers formed by
chromium or aluminium, and leads to severe metal loss
from the base material, impacting the gas turbine life.
Sulfidation can be seen in Figure 1b,d.

1.1.2 | Type‐II hot corrosion
(low‐temperature hot corrosion [LTHC])

Type‐II hot corrosion, also called LTHC, occurs at tempera-
tures between 650°C and 800°C.[3] As in the case of Type‐I
hot corrosion, the formation of a molten deposit is also
involved in the mechanism controlling the corrosion
behaviour. However, the mechanism occurs at temperatures
below the melting temperature of many pure salts. In Type‐
II hot corrosion the Na SO2 4 forms mixtures with metallic
inorganic compounds,[2] which lowers the combined
melting temperature and initiates the corrosion process.
These inorganic metal compounds are formed by SO3

present in the combustion gas and the metal,[10] making
Type‐II hot corrosion not only a function of the tempera-
ture, but also a function of the partial pressure of the SO3

gas.[3] Type‐II hot corrosion is characterised by pitting with
localised failure as seen in Figure 1a.[2] The cause of pitting
initiation is currently under consideration and has been
linked to a wide range of factors including grain boundaries,
precipitates, gas environment and the salt deposit.

1.2 | Gas turbine materials

To increase efficiency, higher turbine operating temper-
atures and pressures are required. This has driven the
formulation and selection of materials to be used, which
need to have[10]:

• high mechanical strength at temperatures close to the
melting point

• high creep resistance
• high corrosion resistance

For these reasons ‘superalloys’ with better mechani-
cal properties than conventional alloys have been
developed. These alloys are nickel‐, iron‐nickel and
cobalt‐based,[12] with other elements in solution, such
as chromium and aluminium, which preferentially
oxidise to form a thin protective oxide layer to provide
resistance to corrosion and oxidation.[12]

To ensure resistance to hot corrosion, a minimum
amount of chromium is needed, for instance, 22%
chromium is present in Co‐base Haynes 188 superalloy,
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which provides high fatigue strength and strong resist-
ance to hot corrosion.[13] In comparison, even though
nickel‐base Haynes 214 contains 16% chromium, it
provides high oxidation resistance to temperatures above
900°C due to the presence of 4.5% aluminium.[12]

Microstructures can also be controlled with commer-
cially used single crystal superalloys like CMSX‐11C and
SC‐16 providing increased resistance to hot corrosion due
to the presence of more than 12% chromium.[6]

1.2.1 | Protective coatings

Despite the more recent advancements, most of the
superalloys are not able to provide the desired lifetime in
all conditions within gas turbines. Thus, for specific areas of
the turbines, coatings are required.[6,12] Aluminide diffusion
coatings, overlay coatings and thermal barrier coatings are
the most used types of coatings for gas turbine applica-
tions.[14] Platinum‐modified aluminide (Pt‐Al) coatings like
RT‐22 and CN‐91 are widely used[15] due to their great
resistance to Type‐I and Type‐II hot corrosion.[16] On the
other hand, overlay coatings provide excellent oxidation
and hot corrosion resistance due to their ability to form

alumina and chromia scales.[17] Figure 2 shows the
degradation resistance of a platinum‐aluminide diffusion
coating versus three overlay coatings.[8]

1.2.2 | Hot corrosion summary

Hot corrosion is dependent on different factors including
the chemistry of the corroding material, temperature,
partial pressure of contaminants and chemistry of the
contaminants. For this reason, it is not straightforward to

FIGURE 1 Optical micrograph of an uncoated SC2 after 500 h exposure in different conditions (a) air + 500 vpm SO2 at 700°C; (b) air +
500 vpm SO2 at 900°C; (c) air + 50 vpm SO2 + 500vpm HCl at 700°C; (d) air + 50 vpm SO2 + 500vpm HCl at 900°C. Adapted from[11]

FIGURE 2 Comparison of resistance performance between
platinum‐aluminide, and overlay coatings.[8] [Color figure can be
viewed at wileyonlinelibrary.com]
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understand the connection between the different parame-
ters and the rates of corrosion. Understanding the cause‐
effect relationship between the corrosion factors discussed
can help in analysing materials' degradation in gas turbines.
The discovery of cause‐effect relationships can be done
through the use of causal discovery techniques, which can
investigate the links between these corrosion factors.

1.3 | Causal discovery

Causal analysis techniques have been prominently used
in the fields of engineering, medicine, and economics.[4]

Manufacturing, however, has yet to fully embrace causal
discovery methods when compared to the previous fields,
and thus there is limited work on hot corrosion using
these techniques.[18]

One example of the use of causal discovery methods
was applied to detect strong relationships in degradation
data.[19] A neural network was used to assess the
degradation state of some equipment. The causal discovery
method FCI was used to create a model of the relationship
between the variables. The variables responsible for the
degradation state found using FCI, were then fed into long
short‐term memory (LSTM) neural networks for the
subsequent assessment. In this manner, the data‐driven
model was trained, and its interpretability was improved.

In a second example,[20] the method was applied to
the design process of energy‐efficient buildings. The
authors applied the causal discovery algorithm greedy
equivalence search (GES) to the variables that potentially
affect building design. Creating such a causal framework
is expected to allow designers, developers, and construc-
tion workers to inspect and continuously improve their
own designs and construction methodology.

In the final example reported here, causal discovery
algorithms were used on an Alzheimer's disease data set.[21]

The study compared between two causal discovery algo-
rithms and an existing standard graph on Alzheimer's
disease, which was formed using literature and prior
experience. FCI and Fast Greedy Equivalence Search were
the methods used to form causal graphs, with initial causal
graphs formed purely based on observational datasets that
is, without prior subject knowledge. Subsequently, ‘back-
ground knowledge’ was added to the algorithms and the
changes on average accuracy, recall and precision were
compared with the former results. These causal graphs
were later validated based on the existing standard graph
and the discovered graphs were found to be very close.

This research aims to understand the degree of
influence, independence and co‐dependence of several
hot corrosion variables causing material degradation in a
gas turbine setting using causal discovery techniques.

2 | METHODS

Section 2.1 explains the corrosion data set along with its
seven variables. Section 2.1.1 illustrates the arrangements
and the necessary fine‐tuning made to the data set to use as
input to the causal discovery algorithms. Section 2.2
explains the significance levels and the assumptions made
for analysing the causal graphs during the discussion.
Sections 2.2–2.5 explain the causal discovery algorithm and
everything required for its implementation.

2.1 | Corrosion data

The corrosion data set used in this work was formed by
Dr Adriana Encinas‐Oropesa in 2005, during her PhD
thesis in collaboration with the Advanced Long Life
Turbine Coating Systems project (ALLBATROS).[11] To
produce the corrosion data set, experiments were
conducted on a single crystal CMSX‐4. Three different
metallic protective coatings, RT22, CN91 and LCO22
were applied to the CMSX‐4 base alloy. The uncoated
CMSX‐4 material and the three coated versions of the
CMSX‐4 alloy were treated as four different materials
during the application of the causal discovery algorithm.
The data set consists of two different operating tempera-
tures, 700°C and 900°C, with varying levels of gas
compositions and deposit chemistries and fluxes.

After an exposure time of 1000 h, the material loss data
were collected. This data corresponded to three different flux
deposition rates of 0.5, 1.5 and 5 μg/cm2/h. The gas
composition consisted of a constant 300 vppm (volumetric
parts per million) of SO2 along with varying amounts of HCl
(0 or 100 vppm). Material loss values (due to hot corrosion)
corresponding to each deposition rate, temperature, mate-
rial, and amount of gas composition were tabulated.

2.1.1 | Data preprocessing

To assess the extent of hot corrosion, pre‐ and postexposure
sample dimensions were compared resulting in 30 values.
The data set formed gives material loss as a function of the
cumulative probability of each amount of metal loss. The
probability indicates the likelihood of having a certain
amount of metal loss or more. Thus, the most extensive
damage occurs with low probability. For simplicity,
the cumulatively distributed data set was truncated to
three values: highest, median, and lowest material loss. The
highest and the lowest material loss (HML and LML) are
used to understand the factors that are dominantly
influencing the hot corrosion at the opposite ends of the
material loss spectrum, while the median material loss
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(MML) helps in identifying the typical corrosion factors
leading to hot corrosion from an overall perspective.

‘Amount of salt’, ‘temperature’, ‘SO2’, ‘HCl’, ‘time of
exposure’, ‘material’, and ‘material loss’ were the seven
variables tabulated. Although the variables could take
continuous values, in the experiments they were fixed to
specific values. Thus all are considered categorial variables
for the causal discovery algorithm, except for the case of the
material loss which took different, continuous values.

2.2 | Statistical independence tests

The cause‐effect relationship between the corrosion
variables present in the data set are analysed from a
statistical point of view. The null hypothesis considered
is a lack of any causal relationship. As such, results are
presented with their significance level α, which repre-
sents the probability of incorrectly rejecting the null
hypothesis when it is true. The confidence level (CL)
follows the relation CL = 1‐α.[22,23]

Causal discovery methods use conditional indepen-
dence tests (CIT) to identify causal links between the
variables of the data set and attempt to eliminate the
spurious correlations within those variables.[24] The inde-
pendence between the set of nodes X and Y, conditional to
a set of nodes Z, is written as X ⊥ Y |Z.[4] The independence
between variables can be inferred locally from the CIT, but
also globally from the causal structures present in the graph
and how they are connected. Analysing all the causal paths
connecting any variables, it can be inferred what is their
causal relationship. A criterion commonly used in this
regard is the d‐separation of variables.[4]

Causal discovery algorithms use various statistical
tests to assess the independence between variables, such
as the χ² test (nonparametric test measuring the
goodness‐of‐fit between expected and observed frequen-
cies which works well with large discrete categorical
samples),[25,26] Fisher‐Z test (used for partial and zero
correlation, this parametric test assumes that the
variables are normally distributed and works mainly
on large sample sizes of continuous variables),[26,27]

G‐squared test (nonparametric test that highlights relation-
ships between categorical variables with more than two
levels),[25] or the Kernel‐based conditional independence
test (KCI). In this work, it was used the latter.

The KCI test is a nonparametric test that can be
derived from the kernel matrices of the variables under
consideration, which characterise the similarity of the
samples of those variables.[28,29] These kernel functions
recognise nonlinear relationships between data points.
This test can be applied to discrete or continuous variables.
Figure 3 shows the evolution of the accuracy of the test as a

function of the number of samples for the data set analysed
in the original publication of the method.

2.3 | Causal links, structures and graphs

The different causal nature of the relationships between
the variables can be represented with different types of
causal links,[30] as illustrated in Table 1. The relationship
depends on the variables measured and on possible
confounding variables (those unmeasured variables
which influence the underlying causal mechanism).[31]

After applying the CIT to the variables from the data
set, the result of the causal discovery algorithm is a
graphical representation of the causal links between the
variables called a causal graph.[30] Chains, forks, and
colliders (also called v‐structures) are the three building
blocks used in these causal graphical models to illustrate
the cause‐effect relationship between the variables.

Figure 4a shows the chain structure wherein X→ Y→Z
forms a chain where X causes Y and Y causes Z, therefore
the conditional independence can be written as X ⊥Z |Y.[34]

Figure 4b shows the fork structure Y←X→Z wherein the
node X forms a directed edge towards Y and Z making it
the common ancestor for Y and Z.[34] Since there is only
one path between Y and Z through X based on the d‐
separation criterion, conditional independence can be
written as Y ⊥Z |X. Figure 4c shows a collider X→Z←Y,
wherein the descendant Z has two common ancestors X
and Y. Even though there is one path between X and Y, the
presence of a collision node Z makes X and Y conditionally
dependent given the collision node Z, that is X Y |Z.
Figure 4d shows a collider structure with extra descendant
W where X Y |Z and X Y |W.

A causal directed acyclic graph (DAG) consists of a set
of random variables with edges between them which never
form a directed cycle within the graph.[4] Generally, causal
discovery algorithms do not allow identifying the causal

FIGURE 3 Accuracy of different conditional independence
tests to infer the correct Markov equivalence class as a function
of the sample size.[28]
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graph, but the Markov equivalence class (MEC) of the
graph. If two DAGs are Markov equivalent, they have the
same skeleton and set of colliders as well as the same
(conditional) independencies,[24] which is what the algo-
rithms can usually identify. Once the class is identified,
using interventions in the variables it is then possible to
identify the actual causal DAG.[35]

The example taken from Hasan et al.[30] in Figure 5
shows a completed partially DAG (CPDAG) of G and H
which represents the union of the Markov equivalent
DAGs G and H. The undirected edge between X and Z in
the CPDAG suggests that it might contain X→ Z (shown
in the DAG G) or Z→ X (shown in the DAG H).

Table 2, shows the different edges that can be
observed in each type of causal graph. Each causal
discovery algorithm produces as an output a different
type of causal graph.

2.4 | Causal discovery algorithms

The two main categories of causal discovery algorithms are
constraint‐based and score‐based methods. The first checks
the graph structure against the independence constraints
imposed by the data. In the second method, possible graphs
are scored for their ability to fit the data. In the latter, the
space of DAGs is searched to find the graph that maximises
the score. This last method is especially useful when
dealing with a large number of variables since the
combinatorial space of possible graphs grows exponentially.
In this work, since a small number of variables are studied
it is used a constraint‐based method.

The constraint‐based algorithms use CITs to investi-
gate the type of edges between the variables or their
absence.[5] One of the earliest and most common of these
algorithms is the PC (Peter & Clark) Algorithm.[40] It
uses CITs to understand the underlying causal mecha-
nism of the causal structures. It assumes independent
and identically distributed (i.i.d) samples and absence of
confounding variables.

Here it uses the fast causal inference (FCI) algo-
rithm.[40] It is a variant of the PC algorithm that provides
asymptomatically correct results while considering the
presence of confounding variables in a data set with i.i.d
samples.[5] The output causal graph of the FCI algorithm
is a partial ancestral graph (PAG), including the presence
of directed, undirected, partially directed and bi‐directed
edges.[30]

FIGURE 5 Example of Markov equivalence class.[30]

FIGURE 4 Building blocks of a Causal Graph.[30]

TABLE 1 Different types of causal links and their respective denotations ignoring any selection bias.[31–33]

Causal link Description

A→ B (directed) A is the cause of B

A—B (undirected) Undetermined. A can cause B and B can cause A

A↔ B (bidirected) A and B do not cause each other but have a latent common cause

Confounding variables between A and B

A o→ B (partially directed) A→ B A causes B (‘o’ turns into tail end)

A↔ B There exists a confounder between A and B (‘o’ turns into arrow end)

A o—o B (undirected with ‘o’ ends) A→ B A causes B

A← B B causes A

A↔ B A and B do not cause each other. Confounder between A and B

This last option can be also combined with the previous two

6 | VARGHESE ET AL.
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2.5 | FCI algorithm implementation

The causal‐learn1 package[41] was used for implementing
the FCI algorithm. The data set used as the input of the
FCI algorithm included the variables shown in Table 3.

From the initial seven variables available, mentioned in
Section 2.1.1, SO2 and Time of Exposure were removed
from the data set because of their constant values. The rest
of the variables were used as input to the algorithm. The
four materials used in the experiments were assigned
numbers from 1 to 4, respectively. The algorithm was
applied with the default parameter settings, CIT=KCI and
no background knowledge. Since the data set consisted of
only five variables, no background knowledge was intro-
duced into the causal algorithm to avoid selection‐ or
expert‐bias. Therefore, the causal graphs formed were
purely based on the observational data. A range of 1%–99%
significance level, with a 1% step increment, was imple-
mented to observe how the causal links would form with
high and low confidence levels.

3 | RESULTS

This section presents the causal graphs obtained by
implementing the FCI algorithm on the material loss
datasets. The descriptions of the algorithms, graphs
and types of links can be found in Sections 2.3 and 2.4.

Based on the degree of material loss, the data set was
divided into three parts: HML, MML and LML (see
Table 3). Varying significance levels from 1% to 99% were

considered in the FCI algorithm. The results are
differentiated according to HML, MML and MML and
the significance level of each graph.

Table 4 shows the causal graphs obtained by applying
KCI in the FCI algorithm on the HML data set. The ‘o’
termination in the causal link formed between amount of
salt and material loss at α = 1%, illustrates that it can be
either an arrowhead (>) or a tail end of a directed edge
(see Table 1). Hence, the direction of the causal
relationship is not clearly depicted at α = 1% between
the two variables.

At α = 7%, partially directed edges ‘o→’ from amount
of salt and HCl to material loss were formed. This means
that if ‘o’ becomes an arrowhead, it forms a bidirected
edge. Table 1 shows that the bidirected edge indicates
that there is an unmeasured confounder present between
the two variables. On the other hand, if ‘o’ becomes a tail
end, it confirms that the amount of salt and HCl causes
material loss. Similarly, temperature and material formed
partially directed edges with material loss at α = 8% and
α = 60% for HML conditions, respectively.

Table 5 shows the results for the MML data set. The
undirected edges with ‘o’ ends which formed between
amount of salt and material loss at α = 1%, get converted
to a partially directed edge from the amount of salt to
material loss, along with a partially directed edge from
temperature to material loss at α = 9%. Gradually,
partially directed edges were formed from HCl and
material to material loss at α = 20% and α = 60%,
respectively.

The causal graphs for the LML data set are presented
in Table 6. At α = 1% for the LML data set, an undirected
edge with ‘o’ ends was formed between the amount of
salt and material loss. With the increase in α to 20%, 50%

TABLE 2 Causal Graphs and their types of edges.[30,36–39]

Directed (→) Undirected (—) Bi‐directed (↔) Partially directed (o →)

Directed acyclic graph (DAG) X

Partially DAG (PDAG) X X

Completed PDAG (CPDAG) X X

Maximal ancestral graph (MAG) X X X

Partial ancestral graph (PAG) X X X X

TABLE 3 Categories of variables present in the datasets for highest (HML), median (MML), and lowest (LML) material loss.

Mat. Loss/Data set Materials Temperature (°C) Amount of salt (μg/cm2/h) HCl (ppm)

HML 1 2 3 4 700 900 0.5 1.5 5.0 0 100

MML 1 2 3 4 700 900 0.5 1.5 5.0 0 100

LML 1 2 3 4 700 900 0.5 1.5 5.0 0 100

1https://github.com/py-why/causal-learn.
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and 70%, partially directed edges were formed from
amount of salt and temperature, HCl and material to
material loss, respectively.

4 | DISCUSSION

In this section, it is discussed the nature of the current
corrosion data set and its drawbacks, as well as the causal
graphs formed by the FCI algorithm and their key findings.

The type of data set that is used as an input to the
algorithm is one of the major factors determining the result.

The current corrosion data set was designed to maintain
control over the corrosion variables to understand the
effects on the material loss. The causal graphs in
Tables 4–6, show that all the corrosion variables are
directed towards material loss with increasing significance
values. This means that the variables were controlled to
observe the amount of material loss in the base material.
However, for a pure causal inference study, randomisation
in the variables would have offered a greater benefit.[40] For
instance, if all the variables were uncontrolled and
randomised, observing causal links within the variables
could have been a possibility. This would have helped in

TABLE 4 Causal graphs using Kernel‐based conditional independence test (KCI) in fast causal inference (FCI) algorithm with
increasing significance levels for highest material loss (HML) data set.

8 | VARGHESE ET AL.
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understanding the cause‐effect relationship between the
variables and not just through the material loss. The degree
of influence that each variable has on material loss with
varying significance levels can be observed in Tables 4–6.
However, no claims can be made about the presence of
causal relationships between ‘amount of salt’, ‘tempera-
ture’, ‘HCl’, and ‘material’ using the current data set.

As discussed in Sections 1.1.1 and 1.1.2, the salt
deposition on the material surface is a significant factor
in causing hot corrosion and, indeed, hot corrosion is
also defined as a deposit‐induced accelerated form of
corrosion.[3] The salt deposits initiate the breakdown of

the protective oxide layer of the substrate which is the
starting point of hot corrosion.[2] Therefore, even at
smaller significance values, the amount of salt makes a
directed or an undirected causal link with material loss
for all the material loss levels (HML, MML, and LML).

Operating temperature facilitates a corrosive envir-
onment that enables hot corrosion.[3] Moreover, the
lower melting point of the eutectic mixtures formed by
different salts accelerates the corrosion process,[2] hence
proving that temperature is another factor that has a
significant influence on hot corrosion. Indeed, for MML
and LML temperature becomes the second significant

TABLE 5 Causal graphs using Kernel‐based conditional independence test (KCI) in fast causal inference (FCI) algorithm with
increasing significance levels for median material loss (MML) data set.
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variable that influences hot corrosion in the given data
set, at smaller significance values. For MML and LML
HCl in the gas only appears to form a causal link with
material loss at higher significance levels. Chloride‐
contaminated oxide layers are known to accelerate the
corrosion rate.[42] HCl is a crucial factor that participates
in increasing hot corrosion rates. More experimental
research is required to clarify the influence of HCl.
However, this analysis shows its significance for driving
extreme metal loss such as pitting.

Table 4, formed using the HML data set, shows that
at 1% significance level, the outcome from FCI shows

an undirected causal link between the amount of salt
and material loss with ‘o’ at either end. This means
that at such a conservative significance value, FCI is
only able to infer the existence of a link between the
two variables without pointing out the cause‐effect
relationship. The undirected causal link can also point
towards the probability of incorrectly accepting the
null hypothesis that is, Type‐II error. The ‘o’ ends can
be perceived as an arrowhead or a tail end of a directed
edge because the algorithm is too conservative in
assigning them to form a meaningful causal link. In
case both ‘o’ ends become arrowheads, then it means

TABLE 6 Causal graphs using Kernel‐based conditional independence test (KCI) in fast causal inference (FCI) algorithm with
increasing significance levels for lowest material loss (LML) data set.
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that there is a confounding variable that has not been
considered in the data set.

In Table 4, with a significance value of 7%, the three
partially directed (o→) causal links confirm that there is a
possibility of amount of salt, HCl, and temperature being
factors causing material loss, or there exist unmeasured
confounders between them that are influencing the
behaviour of those variables. The FCI algorithm is not
able to clarify the causal relationship between these
variables and shows the possibility that confounder
variables are present. HCl forms the same partially
directed edge with material loss and a similar argument
can be made for this causal link as well. Under the
specific conditions of the test, it seems that HCl is linked
to HML, so it seems as HCl is one of the driving forces
involved in the formation of pitting. This provides a very
useful insight into the mechanism of hot corrosion, as
the cause of pit initiation is still under debate. From
α = 7%, temperature also forms a partially directed
causal link with material loss. This suggests that for the
HML data set, HCl and temperature are the most
influential factors advancing material loss, after amount
of salt. There is also a possibility that unmeasured
confounders exist which influence all the said variables.
Therefore, datasets with a larger sample size and greater
number of variables can further help in understanding
the presence of these confounders.

Table 5 shows that the FCI algorithm is not
confident enough in forming causal links between
the variables up to 9% significance value, for the MML
data set. At this value, both amount of salt and
temperature form partially directed causal links
pointing towards material loss. The amount of salt
and temperature are observed to be the dominant
factors accelerating the material loss because the salt
deposits initiate the breaking of the protective layer of
the base material and high operating temperature
facilitates such corrosion mechanisms. There is a
possibility that the inclusion of variables like partial
pressure would have addressed the presence of the
unmeasured confounder at LTHC (700°C). This is
because LTHC is a function of temperature and partial
pressure, as discussed in Section 1.1.2.

For the LML condition in Table 6, the undirected
causal link with ‘o’ ends formed between amount of salt
and material loss at 1% significance value suggests that at
such a low level of material loss, amount of salt might
have just started to break down the protective layer to
cause the material loss. Or there is an unmeasured
variable that exists which is influencing both variables.

Results beyond the 10% significance level are not
discussed since they are not statistically significant.

The causal links shown in the previous tables suggest
the possible presence of confounding variables. This opens
up the avenue to design experiments that also cater to other
variables that were not included in this data set. The FCI
algorithm indicates that for the experimental conditions
represented in this study's limited data set, amount of salt
has the maximum influence on material loss.

5 | CONCLUSIONS

Understanding the underlying causal mechanisms
between the factors leading to hot corrosion in gas
turbines can highlight the inner workings of this process.
Implementing causal discovery methods can help in
recognising the causal relationships between these corro-
sion factors. These methods were applied to three different
datasets that were divided based on the degree of material
loss observed on the materials tested: highest, median, and
lowest material loss. The causal discovery algorithm FCI
was applied to produce the causal graphs that illustrate
the causal relationships between the corrosion variables
present in these three datasets. A wide range of
significance levels was analysed, to showcase the confi-
dence level with which the causal relationships were
formed between the corrosion variables.

After analysing the causal graphs for the given range
of significance levels, it was observed that the number of
causal links decreased in the order of highest to lowest
material loss. As the degree of material loss decreased to
the median range, only two causal links that is, amount
of salt and temperature to material loss were formed
within the set range of significance levels. Eventually,
only a single undirected causal link was formed between
amount of salt and material loss for LML conditions. This
showcased that there is uncertainty in claiming the real
causal relationship between the two variables at low
degrees of material loss. Causal graphs produced using
the FCI algorithm suggested the possible existence of
unmeasured confounding variables.

From this nascent‐stage study of causality in hot
corrosion, it can be concluded that amount of salt and
temperature were the typical factors causing material
loss from an overall perspective. However, HCl also
proved to be a dominant factor for the HML data set. As
this data set can include pitting regions this can give
insight into factors driving pit formation rather than
more average metal loss.

The FCI algorithm proved beneficial in understand-
ing the causal relationships, but a randomised and
uncontrolled type of corrosion data set can further help
in future causal research.

VARGHESE ET AL. | 11
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Since this study is at a nascent phase of its research
timeline, several avenues for future research can be
delved into to improve the understanding and applica-
tion of causal discovery techniques. Following are the
recommendations that can potentially improve the
quality of further studies:

1. A randomised data set which can help in performing a
more comprehensive causal discovery study should be
produced.

2. Including variables such as partial pressures of the
gaseous contaminants, crystalline structures, and varying
gas compositions can improve the depth of the data set.

3. The sample sizes must be increased to generate
stronger causal links with higher confidence levels.

4. If a time‐dependent data set is produced, causal discovery
algorithms for time series data can be implemented such
as Granger Causality‐based algorithms.[30]

These recommendations can help in designing the
next phase of the causal discovery study of hot corrosion.
Expanding upon this study can further help in develop-
ing predictive maintenance and material degradation
detection models.
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