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Abstract 

The objective of Integrated Vehicle Health Management 

(IVHM) is to increase platform availability and reduce 

maintenance times and costs through the use of health 

monitoring on key systems. The information generated using 

condition monitoring algorithms can be used to reduce 

maintenance times, improve the management of the support 

process and operate the fleet more efficiently. This paper 

discusses the effect of advanced health monitoring tools on 

the uncertainty of predicted downtimes and costs for vehicles 

and fleets and how they affect the management of the asset. If 

a health monitoring tool is to be installed it is critical to keep 

in mind that the objective is to maximise the use of the asset, 

not just reduce the average downtime. An improvement of the 

availability might not translate in a significant increase of 

effective active time since operational planning normally 

involves working with conservative estimations for the 

maintenance time. Thus, algorithms that result in a higher 

average downtime but present lower uncertainty can be more 

effective at maximising the use of a given vehicle. Most Cost 

Benefit Analyses (CBAs) focus on calculating the difference 

between the current average downtime and the expected 

downtime to determine the benefit of using algorithms to 

diagnose or predict a fault. Calculating the variation of these 

uncertainties with the introduction of health monitoring tools 

is critical to assess what the real impact on the downtime is 

going to be. The benefits of the approach presented in this 

paper are: (1) a better understanding of how uncertainties play 

a role in the downtime and maintenance cost of the asset, (2) 

being able to differentiate between improving the availability 

of the asset and its active operational time and (3) an 

improvement in the viability of CBAs for health monitoring 

tools. 

1 Introduction 

Integrated Vehicle Health Management (IVHM) comprises 

tools and procedures to monitor the condition of multiple 

components in order to improve the management of the 

support system of a given fleet and increase its availability. 

This can only be achieved through the use of diagnostic tools, 

which detect faults and their sources faster and more 

accurately than conventional techniques; and/or prognostic 

tools, which estimate the Remaining Useful Life (RUL) of 

certain components to schedule their replacement when the 

impact on operations is the lowest possible. This information 

can then be used by other computer-based tools to assist in 

the improvement of the management of logistics, maintenance 

and operations. The topic of this paper is focused on the effect 

diagnostic and prognostic tools have on vehicles and the 

fleets they belong to. 

While intuition dictates that the wider the coverage of a health 

monitoring system the more significant the improvement on 

availability will be, it is not practical, or even possible, to 

monitor the condition of all the elements of a vehicle. Cost 

Benefit Analyses (CBAs) are essential to determine which 

components are to be monitored and by which tools. Some 

authors propose the use of FMECAs as a basis for the design 

of IVHM tools and perform CBAs [1-3]. However, the need 

for accurate estimations of the changes in maintenance costs 

and times as well as their uncertainties calls for a different 

approach. Event Tree Analysis (ETA) has been used to 

determine the operational consequences of a failure [4] and to 

develop quantitative methods to determine the changes in 

maintenance cost and platform downtime based on the 

performance of individual IVHM tools [5]. 

 

 

 

 

 

 

 

 

 

 

Figure 1: CPF of the expected downtime with two different 

IVHM systems. System 2, which has a lower average 

downtime, is more reliable for a confidence level of 95%. 

However, choosing those tools which simply reduce the 

average maintenance cost and downtime by a greater amount 

without taking into account how their standard deviation is 

affected can have serious consequences. Not only can the use 

average values underestimate the final maintenance cost and 

time, but also it overlooks the importance of consistency for 

operational planning. Additionally, a combination with higher 

average cost and downtime can be cheaper and more efficient 
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for a given confidence level (Figure 1). Understanding that 

increasing the availability may not result in more operating 

hours and the role uncertainty plays in this issue is essential to 

implement the correct combination of health monitoring tools 

on a vehicle. In the following sections the different aspects of 

this problem are discussed in more detail. 

2 Uncertainty and health monitoring 

During the design of any system engineers often work with 

average values which have either been recorded in the past or 

estimated. In most cases the standard deviations are 

negligible, especially if safety margins apply. For example, 

while the stress limit of a certain material can be different 

between two samples, the variation is negligible when 

compared to other uncertainties in the design and the safety 

margin. However, the standard deviation of most parameters 

involved in the maintenance of an asset cannot be neglected.  

The sources of uncertainty can be divided into two main 

categories. Aleatoric or statistical uncertainties are those 

caused by the random variation of parameters over time. 

Recurring costs, time spent on different activities, delays and 

the performance of health monitoring tools are the most 

prominent. While the amount a supplier charges for a part can 

be fairly constant (this does not apply to expensive 

components with low failure rates and low stock), shipping 

and storage costs can vary considerably. The same can be said 

about the time dedicated to maintenance tasks, whose 

variability is related to the complexity of the task. The 

uncertainty of the performance of IVHM tools has been well 

documented. Lopez & Sarigul-Klijn [6], showed how the 

reliability of an IVHM tool varies depending on the 

characteristics of the fault, which are different on every 

occasion, and this translates into uncertainty about its 

performance. Furthermore, Saxena et al. [7] also analysed 

how the accuracy of prognostic algorithms evolves with time, 

with the RUL becoming more accurate as the component 

approaches its point of failure. 

The second group comprises the sources of epistemic or 

systematic uncertainty, which are caused by inaccuracies in 

the measurement, recording or modelling of a given 

parameter. These are the kind of uncertainties which affect 

the accuracy of maintenance records. To begin with, recorded 

times are never perfectly accurate but rounded to the nearest 

multiple of five, ten or fifteen minutes. Additionally, while 

the total maintenance time spent on each component is often 

recorded, this is not always the case for the different steps 

involved (e.g.: preparation, diagnosis, check-out, etc.) or the 

delays. Even in those few cases when records include this 

information values are most likely approximations written 

down after the work has been completed.  

Characterizing these probability distributions is a major 

problem in itself in which second order uncertainties might 

need to be considered. It would seem as if defining the 

confidence on the probability distributions of recorded 

parameters (e.g.: maintenance costs and times) is easy to 

determine based on the size of the dataset. However, 

epistemic uncertainties affect these parameters the most and 

cannot be ignored. Additionally, the uncertainty affecting the 

performance of health monitoring tools is also difficult to 

characterise without testing them in operational conditions. 

Since this can require a significant amount of time and 

resources, engineers are left with lab-based estimations during 

the conceptual design stage. In any case, the standard 

deviations caused by aleatoric and epistemic uncertainties are 

difficult to quantify and interviewing the maintenance team 

and the team in charge of the development of each tool is 

essential to estimate them. 

3 Quantifying uncertainty 

In order to compare different combinations of IVHM tools 

and carry out an accurate and reliable CBA the standard 

deviation of maintenance time and cost must be quantified. 

Feldman et al. [8] managed to obtain the probability 

distribution of the ROI using Monte Carlo simulations. 

Discrete even simulations of the full maintenance process can 

also be used. However, while these methods can generate 

very useful additional data for CBAs, they are also time 

consuming and are not practical to generate a quick estimate 

of costs and downtimes. It is possible to obtain analytical 

equations to calculate them using ETA [5] by defining the 

different possible outcomes of implementing diagnostic and 

prognostic tools.  

Diagnostic tools reduce the time dedicated to detect and 

isolate faults and have the potential to reduce the time 

necessary to replace the component being monitored provided 

administrative, technical and logistic delays are not too long. 

Maintenance is still carried out on a reactive manner, which 

does not allow for more efficient scheduling and can result in 

secondary damage of other components. If the algorithm is 

too sensitive to the reading of some signals these tools can 

produce false positives (a.k.a. false alarms) which can result 

in more time dedicated to check the condition of the 

component and, in some cases, to the replacements of healthy 

parts to minimise risks. False negatives can also occur, having 

the same consequences as not having any diagnostic tool 

monitoring the component. 

Prognostic tools estimate the RUL of the part based on the 

readings of certain parameters. This estimation becomes more 

accurate as the component approaches its point of failure. 

Consequently, prognostic tools can be divided into two 

categories. Long-term prognostic tools are capable of 

generating an accurate estimation of the RUL with enough 

anticipation to defer the replacement of the part until the next 

scheduled maintenance stop. Short-term prognostic tools, on 

the other hand, can only be used to inform maintenance 

personnel of the need to replace the component between 

missions. Depending on the time necessary to replace the part 

this can affect the availability of the vehicle. The RUL 

estimated by both long and short-term tools is not perfectly 

accurate and components could fail before they are replaced. 

As shown in Figure 2, there are six maintenance scenarios 

with different maintenance times and costs depending on 



whether the tools that monitor a certain component perform 

their function correctly or not. The diagram has two starting 

points: one defined by the probability of failure of the 

component per flying hour, PF, and a second in which the 

component is healthy. The diagram illustrates how, in case a 

long-term prognostic algorithm fails to provide an accurate 

prediction, there is still the possibility of a short-term 

algorithm generating a correct, yet shorter, prognosis. If the 

component still fails before it was replaced, a diagnostic tool 

can help to detect and isolate the fault.  

Detectability with IVHM 

Cost Time 
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Figure 2: Event tree for the health monitoring of a single 

component and the possible outcomes of using different 

IVHM tools. 

The probabilities of the component failing before it is 

replaced based on the indications of long-term and short-term 

prognostic tools are PLP and PSP respectively. The 

probabilities of false alarms, PFA, and false negatives, PFN, are 

also included. This diagram does not reflect the sequence in 

which health monitoring algorithms work, but the order in 

which the information they generate affects the conditions 

maintenance is going to be carried out in. 

Using this diagram as a starting point is very easy to define 

analytical equations for the maintenance cost and time per 

flying hour spent on a given component. Equations (1) and 

(2) can then be used to determine their probability 

distributions based on the variances of their variables. 

 
(1) 

  
(2) 

It is important to note that the criticalities of different costs 

and maintenance operations vary for each stakeholder [9] and 

depend on whether the vehicle is operated in a civilian or a 

military environment [10]. Therefore, a correct estimation of 

the uncertainty requires identifying which costs and benefits 

are allocated to each stakeholder. Techniques necessary to 

calculate some of these parameters have been described by 

Leao et al. [11], as well as Prabhakar and Sandborn [12]. 

4 Good performers vs. Consistent performers 

The use of IVHM technology has two counteracting effects. 

On one hand, maintenance costs and times become more 

consistent (lower standard deviation) because the detection 

and isolation of a fault is automatized (diagnostic tools) or 

tasks can be scheduled to avoid major delays (prognostic 

tools). On the other hand, the inaccuracy of these tools 

increases the uncertainty. That is because by implementing a 

given health monitoring tool on a component, maintenance is 

shifted from an original scenario in which the cost and time of 

the repair have a certain probability distribution to a 

combination of scenarios which result in different probability 

distributions for the maintenance cost and time (Figure 3). 

Therefore, the accuracy of a health monitoring tool should not 

be regarded as the only measurement of its performance; it is 

the final distributions of the maintenance costs and times that 

should be used to compare their effectiveness. 

As a consequence of the randomness of the factors involved, 

the comparison between different options cannot be based on 

the use of average values, nor can the CBA. A confidence 

level has to be defined in order to compare them. This 

confidence level is equal to the probability of the parameter 

used in the comparison being equal of lower than a certain 

value. This also reflects how operators scheduled assignments 

assuming conservative maintenance times to avoid changes in 

their plans. 

The confidence level used to compare different options 

should be the same used later in the CBA to avoid confusions. 

Therefore, the confidence level must be conservative enough 

to ensure the outcome is equal or better than expected without 

reducing the expected Return on Investment (ROI) so much 

that the project becomes unviable from a financial point of 

view. 

 

Figure 3: The result of implementing IVHM technology can 

be seen as combining the PDF of maintenance cost and 

time of different scenarios. 



 

 

 

 

 

 

 

 

 

Figure 4: Example of how reducing the time allocated for 

maintenance can result in no operational gains if 

additional assignments cannot be scheduled. 

CBAs normally focus on the reduction of maintenance costs 

and increase of availability as the main factors to justify the 

implementation of IVHM technology. These are perfectly 

valid arguments if the operator, maintainer and investor are 

part of the same company. However, if the operator 

outsources the maintenance of its fleet, the use of this 

technology can only be justified if it translates in an increase 

in the use of its assets. While the effectiveness of the tools is 

directly related to its availability, there is not a continuous 

correlation between the latter and the real use of the vehicle 

because assignments have minimum duration (Figure 4.) 

From an operational perspective, implementing an IVHM 

system is only justifiable if additional assignments can be 

scheduled, which is achievable by reducing the time spent on 

maintenance and/or reducing its standard deviation. If the 

maintenance is outsourced, service providers must engage 

with operators to avoid investing on health monitoring 

technology that will not improve the service they provide to 

their clients and, therefore, will not increase their revenue. 

Any improvement on availability that does not translate into 

an increase in operating time will only help to reduce 

maintenance labour costs. Since the availability can only be 

improved by investing on more effective and expensive 

technology, the return on investment will diminish quickly 

without an increase of revenue. 

Figure 5 shows the result of comparing two different 

diagnostic tools to monitor de condition of a component of an 

aircraft. Each has different false positives and false negative 

rates. The reason for the discrepancies in the standard 

deviations of both tools lies in the fact that, in this example, 

tool 1 operates with a sensitive algorithm that generated a 

significant number of false alarms which result in a long, but 

consistent, maintenance time. Tool 2, on the other hand, 

produced more false negatives requiring conventional fault 

identification and isolation, the duration of which is very 

variable. Additionally, while the probability of tool 1 

producing false alarms had a low standard deviation, the 

performance of tool 2 was more capricious.  

This example illustrates how different tools can have a 

significant effect on the standard deviation of the maintenance  

Figure 5: Comparison of maintenance time PDFs and their 

99% confidence intervals. 

time dedicated to a given component. Furthermore, this 

example also shows how a tool that increase the average 

maintenance compared to a non-monitored component can 

still be useful if the uncertainty is reduced enough. 

5 Combining IVHM tools to tackle uncertainty 

Basic on-board diagnostic tools have been used in aircraft for 

several years with mixed results. Built In Test Equipment 

(BITE) normally produces simple indications as to whether an 

electronic component is working correctly. Normally the 

interface is limited to a binary display of the condition of the 

component. In modern vehicles some parameters are 

monitored by a condition monitoring module during every 

flight. If any of them exceeds their predefined threshold an 

error code is generated in order for ground personnel to 

analyse the data and evaluate the condition of the asset. While 

most of these tools have proven to be very reliable, false 

negatives and false positives can be a problem in some cases. 

Given the inclination towards safety in aerospace industry, 

sometimes these tools can generate a significant number of 

false alarms. 

This problem is usually tackled by improving the algorithm 

used by the BITE or even removing this capability 

completely. However, it is possible to combine the existing 

systems with additional health monitoring tools to maximise 

the use of the asset. This presents the advantage of avoiding 

modifications of existing hardware which can result very 

expensive in those cases when re-certification is required. 

Sometimes, the inaccuracy of the BITE is not caused by the 

algorithm it is based on, but by the lack of precision of the 

signals it receives. Such problem can have its origin in the 

lack of accuracy, precision or resolution of the sensors; 

broadband limitations; or noise. Consequently, the only way 

to achieve major improvements with a new diagnostic tool 

requires hardware modifications which, as explained, can 

become financially unviable due to certification costs. 

The example Figure 6 shows the improvement achieved by 

retrofitting a long-term prognostic tool to monitor a 

component which already counts with diagnostic capabilities. 
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The design requirements in this example were a reduction of 

15% in maintenance cost and 40% in maintenance time (with 

95% confidence). An interesting phenomenon brought to light 

in this example is the possibility to reduce the uncertainty of 

one of the factors (maintenance cost in this case) while the 

standard deviation of the second is increased. 

 

 

Figure 6: Improvement on a vehicle with BITE by installing a 

prognostic tool. Vertical lines indicate the required reduction 

in cost and downtime by 15% and 40% respectively. 

6 Conclusions 

Uncertainty of maintenance cost and downtime are key to 

ensure the objectives set for IVHM technology are met. 

However, improvements in maintenance time will only 

translate in an increase in the use of the vehicle as long as 

operational planners can schedule additional assignments. 

This can only occur in a discrete progression while repair 

times diminish continuously.  

CBAs must acknowledge that it is the operators who are 

interested in the potential of IVHM technology to maximise 

the use of their fleets. If the cost of investing in health 

monitoring tools cannot be transmitted to the final user, the 

only use for this technology is the reduction maintenance 

costs. 

As it has been shown in this article, improvements in the 

standard deviation of maintenance costs do not necessarily 

translate in a reduction in the uncertainty of downtimes and 

vice versa. Consequently, the probability distributions of both 

factors must be calculated, even if the aim is to reduce only 

one of them, to avoid undesired results.  

The examples shown in this paper illustrate how maintenance 

cost and time for individual can be improved. However, 

analysing maintenance times at vehicle or fleet level is much 

more complex because maintenance actions can be performed 

in parallel. Computer-based model are essential to determine 

the effect IVHM tools have on the probability distribution of 

the final downtime. The principles explained in this article, 

however, are applicable to component, vehicle and fleet level. 

It can be inferred that accurate CBAs require a significant 

amount of reliability data which can be difficult to obtain. 

Maintenance logs available for legacy platforms put them in 

and advantaged position compared to new designs, especially 

regarding the trustworthiness of the CBA. 
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