Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis

Ashley G.B. Willmott, Alicia G. Diment, Henry C. Chung, Carl A. James, Neil S. Maxwell, Justin D. Roberts, Oliver R. Gibson

PII: S0306-4565(24)00011-1

DOI: https://doi.org/10.1016/j.jtherbio.2024.103793

Reference: TB 103793

To appear in: Journal of Thermal Biology

Received Date: 18 June 2023

Revised Date: 3 January 2024

Accepted Date: 12 January 2024

Please cite this article as: Willmott, A.G.B., Diment, A.G., Chung, H.C., James, C.A., Maxwell, N.S., Roberts, J.D., Gibson, O.R., Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis, *Journal of Thermal Biology* (2024), doi: https://doi.org/10.1016/j.jtherbio.2024.103793.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

Title: Cross-adaptation from heat stress to hypoxia: a systematic review and exploratory metaanalysis.

Running Heading: Cross-adaptation from heat stress to hypoxia.

Authors: Ashley G. B. Willmott¹⁻³, Alicia G. Diment^{1,4}, Henry C. Chung⁵, Carl A. James^{6,7}, Neil S. Maxwell^{2,3}, Justin D. Roberts¹ and Oliver R. Gibson⁸

Affiliations:

- ¹Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge.
- ²Environmental Extremes Laboratory, University of Brighton, Eastbourne.
- ³Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex.
- ⁴Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk.
- ⁵School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex.
- ⁶Hong Kong Sports Institute, Sha Tin, Hong Kong China.
- ⁷Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong China.
- ⁸Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge.

Corresponding author: Ashley Willmott: <u>ash.willmott@aru.ac.uk</u>

Author details:

- Ashley Willmott: <u>ash.willmott@aru.ac.uk</u>, @AshWillmott, ORCID: 0000-0001-7322-2569.
- Alicia Diment: <u>aliciadiment@gmail.com</u>, @alicia_diment.
- Henry Chung: <u>henry.chung@essex.ac.uk</u>, @HChung2, ORCID: 0000-0003-3285-2892.
- Carl James: <u>carlalexanderjames@gmail.com</u>, @CJSportSci, ORCID: 0000-0003-2099-5343.
- Neil Maxwell: <u>n.maxwell@brighton.ac.uk</u>, @UoB_EEL, ORCID: 0000-0002-0684-404X.
- Justin Roberts: <u>justin.roberts@aru.ac.uk</u>, @drjustinroberts, ORCID: 0000-0002-3169-2041.
- Oliver Gibson: <u>Oliver.Gibson@brunel.ac.uk</u>, @iamolivergibson, ORCID: 0000-0001-6777-5562.

- 1 Title: Cross-adaptation from heat stress to hypoxia: a systematic review and exploratory meta-2 analysis.
- 3 Running Heading: Cross-adaptation from heat stress to hypoxia.
- 4 **Statements and Declarations:**
- 5 Competing Interests and Funding: The authors declare no competing interests and no sources of funding were used for this research. 6
- 7 Acknowledgments: The authors would like to thank Para-Monte, the Adam Savory Altitude
- Awareness Charity, Eastbourne, East Sussex (https://www.para-monte.org/) for their 8
- 9 charitable support that has underpinned our hypoxic research.

10 **1.0 Abstract**

Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia.

Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of Englishlanguage, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist.

21 Nine studies were included, totalling 79 participants (100% recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9±3 sessions, 22 89±24-min in duration and occurred within 39±2°C and 32±13% relative humidity. CA induced 23 a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g=0.60) 24 25 and during submaximal exercise (heart rate: g=-0.65, core temperature: g=-0.68 and skin 26 temperature: g=-0.72). A small effect was found for ventilation (g=0.24) and performance measures (peak power: g=0.32 and time trial time: g=-0.43) during maximal intensity exercise. 27 28 No effect was observed for perceptual outcome measures.

CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.

34 Key Points:

- Cross-adaptation refers to the process where individuals adapt to one environmental stressor, such as heat stress, but then demonstrate improved response to another environmental stressor, such as altitude exposure.
- Following repeated exercise sessions in heat stress, termed heat acclimation, humans
 demonstrate physiological adaptations, such as improved oxygen saturation at rest
 and reduced heart rate and core temperature during submaximal exercise in
 hypoxic/altitude conditions.

Cross-adaptation offers individuals, such as occupational and military workers, a time
 efficient alternative to traditional hypoxic training interventions, to adapt for
 submaximal activity at altitude.

45

46 **2.0 Introduction**

Cross-adaptation (CA) refers to the successful induction of adaptation in an organism under 47 one environmental stressor (such as heat or cold stress, or altitude exposure), with said 48 49 adaptation demonstrating subsequent tolerance or physiological advantage to another 50 environmental stressor (1). In the last decade, human CA has become an area of increased research interest given a historic paucity of data characterising human responses to 51 52 combinations of exercise stimuli and/or environmental stressors (2). Three types of CA have been identified (3): first, that adaptation to one stimulus provides tolerance to another (e.g., 53 passive heat adaptation improves systemic physiological responses in hypoxia); second, that 54 adaptation to two combined stimuli (e.g., exercise and heat) provide enhanced tolerance to a 55 third stressor (e.g., rest or exercise in hypoxia), and; third, that adaptation to one stressor 56 offers a level of advanced adaptation to another (e.g., heat adaptation enhances training 57 quality at altitude). Of these paradigms, the first and second construct are the most widely 58 examined (1, 4–8), with a paucity of evidence addressing the third (1, 9). 59

60 CA is considered independent of 'combined adaptation', which utilises multiple environmental 61 stressors simultaneously within an intervention (e.g., heat or cold and hypoxia) to induce specific adaptations for benefit in single/dual stressor situations (e.g., exercise-heat stress, 62 cold-hypoxic stress) (3, 10, 11). Regardless of the approach, combined adaptation subtly 63 64 differs from CA, where one environmental stressor (with or without exercise) is used to induce adaptation in another environmental stressor. In combined adaptation, two or more 65 environmental stressors are united (with or without exercise) to induce adaptation in another 66 67 context. Readers are directed towards original experimental work to understand the efficacy of this approach (10–14). Similarly, consideration of the use of heat stimuli for enhancing 68 normoxic (sea-level) performance is not considered within this article but has been addressed 69 elsewhere (15). 70

CA strategies have several proposed applications that are relevant for human performance and/or mitigation of illness. These are apparent when logistical barriers prevent optimal, stressor-specific protocols being implemented. For example, the CA concept may reduce or remove the need for extensive preparation of individuals who must perform optimally in unfamiliar environments. Specifically, heat adaptations can be induced following repeated consecutive or non-consecutive exposures (e.g., 60-90-min) within 4-14 days (16), whereas

77 hypoxic adaptations typically require more sustained exposures (e.g., several hours per day) 78 over a number of weeks (17). In this regard, a recent narrative review has postulated the benefits of CA for athletes and military personnel performing in hypoxia (6). Occupational 79 80 workers, including the military, may benefit from greater flexibility when preparing for rapid 81 deployment to unfamiliar, combined stressor and/or changeable environments. Individuals 82 undertaking sojourns to environmental extremes may also experience combined and/or 83 changeable environmental stressors and would likely benefit from a more generic or broad 84 adaptation. Finally, clinical/health applications of CA have been identified, with organ specific 85 benefits reported (e.g., improved cardiac mechanics and metabolic performance during ischemia and reperfusion) (8, 18-21). Human CA has been considered at cellular, 86 physiological, perceptual and performance levels, with experimental studies examining CA 87 88 between heat and hypoxia (22–32), hypoxia and heat (14, 33), heat and cold (34), and cold and hypoxia (35). Readers are directed towards a sample of specific literature examining heat 89 (9, 36, 37), cold (38-40) and altitude adaptations (30-35) for outcomes in these specific 90 environments. At the current time, interactions between heat and hypoxia are the most widely 91 92 considered, with demonstrable effects at rest and low/moderate exercise intensities, but 93 equivocal outcomes at maximal/performance intensities (1, 6).

94 A number of narrative reviews have considered CA (1, 4–7, 47–49), where authors are largely 95 in agreement with the conceptual benefits, however, empirical review studies examining the proposed mechanisms were lacking at the time of writing. The CA field has developed in the 96 97 last decade, such that a systematic review and meta-analysis now appears warranted to 98 determine a) whether the field warrants further investigation in general; b) the specific direction(s) any future research should follow; and if available, c) create evidence-based 99 recommendations for the implementation of CA strategies. Given that to-date, the 100 predominant experimental focus has considered the benefits of heat adaptation (via HA) for 101 subsequent hypoxic exposure, the aim of this systematic review and meta-analysis was to 102 comprehensively examine the interaction between these stressors at physiological, perceptual 103 and performance levels. The exploratory meta-analysis may also overcome the limitation of a 104 relatively low sample size found within previous experimental studies. Furthermore, where 105 106 possible, we seek to infer the specific resting and/or exercise intensity related applications 107 where CA may have the greatest efficacy to guide future application and research. Based 108 upon a recent narrative review (6), it is hypothesised that heat into hypoxic CA will enhance 109 aerobic performance when the exercise is undertaken in acute hypoxia.

110 **3.0 Methods**

111 **3.1 Search strategy**

This review was conducted in accordance with the Preferred Reporting Items for Systematic 112 reviews and Meta-Analyses (PRISMA) (50). A search strategy was formulated, consisting of 113 main syntax features medical subject headings (MeSH): 1) "hypoxia" OR "hypoxic" OR 114 "hypobaric" OR "normobaric"; OR "cross acclimation" OR "cross tolerance" OR "cross 115 adaptation" OR "altitude training"; AND 2) "heat acclimatization" OR "heat acclimation" AND 116 "heat adaptation" OR "thermoregulation"; AND 3) "exercise" OR "performance"; AND 4) 117 "human". The study selection process was conducted independently, in two stages, by two 118 119 authors. Searches were performed across two main databases, SCOPUS and PubMed. Other sources included reference lists of the selected studies. Multiple searches were conducted to 120 ensure no relevant studies were omitted. Searches occurred between 1st March 2022 and 1st 121 September 2023. Whilst CA was most completely defined in 2019 (3), there were no limitations 122 for the selected search dates, as we wanted to include all relevant literature on this topic. 123

124 3.2 Selection Criteria

A Population, Intervention, Comparator and Outcome model (PICO) was created to assess 125 the studies suitability, with those that did not meet the following criteria being excluded (51). 126 127 Population: a) stated as healthy, physically active humans (male or female), b) adults aged \geq 18 years; Intervention: c) a minimum duration of 3-days' active or passive HA within \geq 30°C; 128 Comparator: d) change in outcome measure between the pre- and post-HA hypoxic (>1500 129 m [i.e., FiO₂: <0.18]) test data at rest, or during submaximal and/or maximal exercise (via 130 131 screening, tolerance, sensitivity and/or performance tests); and Outcome: e) cardiovascular (heart rate [HR], stroke volume [SV], cardiac output [Q], peripheral capillary oxygen [O₂] 132 saturation [SpO₂]), f) respiratory (ventilation $[\dot{V}_{E}]$, breathing rate [BR], rate of O₂ uptake $[\dot{V}O_{2}]$), 133 (g) metabolic (respiratory exchange ratio [RER]), h) thermoregulatory (core temperature [T_{core}], 134 135 skin temperature [T_{skin}], i) performance (aerobic capacity, as defined by maximal or peak 136 oxygen uptake [VO_{2max/peak}], time trial [TT] time/work completed, peak power [PP]), and, j) perceptual (rating of perceived exertion [RPE], Lake Louise Questionnaire [LLQ] scores). Only 137 138 full-text articles in English were included into this review. Opinion statements, reviews, books, thesis', conference papers and surveys were excluded. 139

140 **3.3 Risk of Bias and Quality Assessment**

A COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist was implemented to assess the transparency and the Risk of Bias (RoB) of the included studies, by measuring study quality (52). The COSMIN RoB tool was used as it provides a valid, transparent and systematic assessment of the methodological quality of studies and the reliability and measurement error of outcome measures (51). This COSMIN

146 checklist was scored separately by two authors. Each COSMIN item for all categories were scored from 4-1 (4 = 'Very good', 3 = 'Adequate', 2 = 'Doubtful', 1 = 'Inadequate' and 'N/A' = 147 no score). Any disagreement between authors were resolved using the mean score. The 148 COSMIN 'worst score' approach was set for all items at \geq 3.0, to meet the acceptable 149 150 requirement of study quality and inclusion (53). Studies that scored lower than the total 151 threshold were excluded. Intraclass correlation coefficient ([ICC] with 95% upper, lower confidence intervals [CIs]) were used to assess the reliability between authors' rating scores, 152 with correlation thresholds interpretated as: 0.0-0.1 = 'Trivial', 0.1-0.3 = 'Small', 0.3-0.5 = 153 'Moderate', 0.5-0.7 = 'Large', 0.7-0.9 = 'Very large', and 0.9-1.0 = 'Nearly perfect' (54). To 154 evaluate the heterogeneity among the studies, l² test was implemented, with values of 0-40% 155 = 'Might not be important', 30-60% = 'Moderate', 50-90% = 'Substantial', and 75-100% = 156 'Considerable' (53). Further, Egger funnel plot was used to identify asymmetry, with Egger's 157 regression test set to $p \le 0.05$ (54). If asymmetry was found, re-analysis occurred following 158 "leave-one-out method", until studies that caused asymmetry were identified and subsequently 159 removed from meta-analysis. I² data was also independently used to examine if leave-one-out 160 161 analysis were required and was deemed necessary when I² demonstrated 'Considerable' (75-162 100%) heterogeneity. This was appropriate where symmetry was observed, yet high I² data 163 were found.

164 3.4 Data Extraction

Relevant data from intervention (and control if available) groups at baseline, and at pre- and 165 post-HA intervention time points in hypoxia/altitude were extracted from each study. Data 166 included the number of participants, mean, standard deviation (SD), p values, and 95% CIs (if 167 available). Study data were manually extracted and entered into a custom Excel spreadsheet 168 169 (Microsoft, USA). This was completed by two authors independently and cross-checked by a 170 third author. If any data were not available, authors were contacted in the first instance. Upon 171 request, if the data were not provided, the data were excluded from analysis. Mean and SD 172 data were both collected for each outcome measure. Data extraction were separated into three sections: 1) participant characteristics (number of participants, sex, aerobic capacity, age, 173 height, mass); 2) HA interventions (method, number of sessions, duration, ambient 174 temperature [T_{amb}], relative humidity [RH], activity) and hypoxic tests (hypoxic conditions 175 [elevation, pressure, partial pressure of inspired O₂ [PiO₂], FiO₂, O₂ %] duration, intensity, 176 modality, test, normobaric hypoxia [NH], hypobaric hypoxia [HH], T_{amb}, RH) and; 3) 177 physiological, perceptual and performance data (as discussed in the PICO outcome measures 178 above). The extracted data were then entered into the meta-analysis software (Meta-179 180 Essentials 1.4 [Microsoft Excel, USA]) and separated into rest, submaximal and maximal

sections, as per the study design and/or methods. Resting data were categorised where 181 studies specifically stated a rest period with a duration of ≥ 2 -min prior to, or during hypoxic 182 testing protocols. Submaximal data were categorised as an exercise intensity ≤90% of aerobic 183 184 capacity for a duration of ≥1-min. Maximal data were categorised as any performance test (e.g., TT), aerobic capacity test, and/or an exercise intensity >90%. Data were extracted from 185 the maximal part of the test or at test termination, as stated by the individual study. A minimum 186 of two studies were required to have reported the same variable outcome for comparison and 187 inclusion within the meta-analysis (55). To ensure consistency, absolute VO_{2max/peak} were 188 reported (i.e., mL.min⁻¹ or L.min⁻¹), with the closest reported mean body mass (i.e., pre- or 189 post-intervention kg) used to determine relative $\dot{VO}_{2max/peak}$ (mL.kg⁻¹min⁻¹) when this data was 190 not available. The standard deviation (SD) was proportionally inferred (28). Likewise, for TT 191 192 scores, seconds were computed into minutes where applicable.

193 **3.5 Statistical Analysis**

Descriptive data are reported as mean ± SD. All scores were converted from absolute to 194 relative individual specific scores where possible. The pre-to-post intervention mean ± SD data 195 196 from each study were used to calculate standardised mean differences (SMD), from which 197 Hedges' g effect sizes (ES), combined ES (CES), and 95% CIs are provided. Data pertaining 198 to the pre-to-post difference, mean difference and weighted mean difference are also 199 provided. Meta-Essentials spreadsheet 1.4 (Microsoft Excel, USA) was used to perform the 200 meta-analysis, produce forest and Egger's funnel plots, and undertake statistical analyses, with alpha set at p<0.05 (55). Study weightings for all forest plots were also calculated using 201 Meta-essentials code. Where 95% CIs crossed the 'no effect' line at zero, the pre-to-post 202 intervention SMD were not considered statistically significant (56). A random effects model 203 204 was implemented, with heterogeneity across studies assessed using I² test. Continuous data were pooled and SMD (Hedges' g ES/CES) calculated to show the size and effect of the HA 205 206 intervention, with interpretations for Hedges' g ES/CES as: <0.19 = 'Trivial', 0.20-0.49 'Small', 207 0.50-0.79 = 'Moderate' and $\geq 0.80 = Large'$ (57). For descriptive purposes only, where studies 208 had >1 trial (e.g., multiple VO_{2max} tests in different environmental conditions within White et al. 209 (28) and Salgado et al. (27), and/or multiple exercise intensities within a single trial (e.g., 10min at 40% then 10-min at 65% VO_{2peak} within Gibson et al. (31), individual trial data are 210 provided in the Tables. Where multiple data were extracted from the same study using the 211 212 same participants (albeit from different trials, conditions and/or exercise intensities), data were 213 combined to create a single pair-wise comparison (as per Section 16.5.4 Cochrane Handbook for Systematic Reviews of Interventions (58)). This avoided unit-of-analysis error during 214 215 statistical analysis (e.g., double counting), which can affect the accuracy of results (57). Sample size, mean and SD were adjusted to reflect the combination of data (as per Section 216

7.7.3.8 and formulas provided in Table 7.7.a (58)). Where adjusted analysis occurred, the 217 reported mean ± SD data are still provided in Tables, however, only combined data were used 218 for statistical analyses. If only 1 study were found that included multiple data sets of the same 219 220 outcome variable, they were excluded from statistical analysis (55) and used for descriptive 221 purposes only. I² and Egger regression test data for all outcome measures were initially screened, with specific individual study data being excluded from statistical analyses for rest 222 SpO_2 (Table 4) and submaximal HR and T_{skin} (Table 5). Submaximal BR and LLQ (Table 5), 223 and maximal RER and BR data (Table 6) were also excluded from statistical analysis due to 224 these data pertaining to 1 study only. 225

226 4.0 Results

227 4.1 Search results, RoB and heterogeneity overview:

Average COSMIN scores for 10 identified research studies were: 3.2 ± 0.7 (range: 1.6-3.9), 228 with a mean difference between authors of 0.0 ± 0.3 . COSMIN RoB assessment excluded 1 229 study (59) from a full review and subsequent analysis, due to a score of <3 (mean 1.6), 230 reflecting a low sample size (n = 4 males) and a lack of experimental control during HA 231 prescription. The COSMIN score for the remaining 9 studies was 3.4 ± 0.3. An ICC of 0.73 232 (95% CI: 0.30, 0.91) was found between authors' rating scores. RoB assessment for the 233 remaining studies demonstrated an acceptable, low risk of bias, based on thresholds set by 234 the COSMIN tool for the methodological quality and transparency of the research. 235

Figure 1 illustrates the stages of the selection criteria in accordance with the PRISMA guidelines (50, 53), which resulted in 9 research studies being included in this review and meta-analysis.

239

Add Figure. 1 A PRISMA flow diagram outlining the systematic review identification, screening, inclusion and exclusion process (COSMIN: COnsensus-based Standards for the selection of health status Measurement INstruments, HA: heat acclimation).

243

244 **4.2** Participant characteristics and testing designs

The CA research included a total of 79 participants (9 ± 2 participants per study [range: 7-13]), of which, 100% were male. Participant characteristics from each study are presented in Table 1. A summary of the HA protocols are presented in Table 2. The most common method of HA was fixed-intensity (number of studies [n] = 7), followed by isothermic (n = 2). Overall, HA consisted of 9 ± 3 sessions (range: 3-12 sessions) with a duration of 89 ± 24-min per session (range: 60-120-min) and occurred within 39 ± 2°C (range: 35-40°C) and 32 ± 13% RH (range:

251 20-56%). The most common modality of exercise stimuli was cycling (n = 7), followed by 252 treadmill walking/running (n = 2). Of the cycling fixed-intensity studies (n = 5), the exercise 253 intensity equated to 52 ± 3% of aerobic capacity (range: 50-55%). The treadmill-based fixedintensity studies (n = 2) utilised the same absolute exercise intensities of 5 km.hr⁻¹ and 2% 254 255 incline. The isothermic studies (n = 2) both targeted the maintenance of a T_{core} of $\geq 38.5^{\circ}C$, achieving this via cycling at 65% VO_{2peak} (31) or 50% PP (25) from normoxic data, until the 256 257 target T_{core} was reached. Thereafter the target T_{core} was typically maintained using intermittent periods of exercise. 258

A summary of the hypoxic test protocols are presented in Table 3. Resting measures were 259 assessed prior to submaximal trials beginning (n = 4 [range: 2-15-min prior]), as part of the 260 submaximal test (n = 1 [10-min]) or during a long-term exposure (n = 1 [1-hr and 23-hrs within 261 a 30-hr exposure]). Eight studies included submaximal tests. Gibson et al. (31) utilised 2 262 incremental exercise intensities within a single test (40% and 65% VO_{2peak}), whilst Salgado et 263 264 al. (29) included 2 different tests in alternate hypoxic conditions (elevation: 1600 m and 4350 m, PiO₂: 123 and 86 mmHg), totalling 9 overall submaximal tests pre-to-post HA. All tests were 265 266 undertaken on a cycle ergometer at an intensity corresponding to 58 \pm 14% $\dot{V}O_{2peak}$ (range: 267 40-80%) for 37 ± 10 -min (range: 30-60-min). Six tests were conducted in NH, the remaining 3 268 tests were conducted within HH. Four studies included VO_{2max} tests in hypoxic conditions (2860 ± 1399 m [range elevation: 1600-4350 m and PiO₂: 123-86 mmHg]). Two of these 269 270 studies included multiple tests in different conditions (both: 1600 m and 4350 m), totalling 6 271 $\dot{V}O_{2max}$ tests pre-to-post HA. Five of the 6 tests were undertaken on a cycle ergometer, with 272 the other conducted on a treadmill. Four tests were conducted in HH, with the remaining 2 within NH. Of the 3 self-selected cycle TT tests, 2 were assessed for time to complete 16.0 273 274 km and 16.1 km, whereas the other was assessed for the amount of work completed in 15min. 275

276

- 277
- 278
- 279

4.3 The effect of HA on physiological, perceptual and performance measures in hypoxia 280 Summary data for all available resting, submaximal and maximal outcome measures can be 281 found in Figure 2 (including: intensity, mean difference, weighted mean difference, SMD [CES 282 ± 95% lower, upper CIs]). All available resting, submaximal and maximal data for the 283 284 physiological, perceptual and performance outcome measures from each study's hypoxic tests pre-to-post HA are displayed within Tables 4, 5 and 6, respectively (including: conditions, 285

Add Table 1

Add Table 2

Add Table 3

- mean \pm SD, difference, SMD [ES \pm 95% lower, upper CIs], weighting, I² and p values). Where data are not provided for either resting, submaximal and/or maximal intensities, this reflects a lack of available data from a minimum of two studies. Publication bias assessments using Egger's test and I² criteria revealed all individually grouped resting, submaximal and maximal outcome measures to be <40% (*Might not be important*), aside from submaximal RER (43.3%)
- and SpO₂ (55.7%).

4.4 The effect of HA on cardiovascular measures in hypoxia:

- HA had a *moderate* effect on reducing submaximal HR (g = -0.65 [-1.11, -0.20], n = 6), however, only a *trivial* effect was found for resting HR (g = -0.12 [-0.58, 0.35], n = 3) and HR max in hypoxia (g = -0.10 [-0.56, 0.37], n = 4). HA had a *small* effect on improving submaximal \dot{Q} (g = -0.21 [-0.24, -0.19], n = 2) and SV in hypoxia (g = 0.21 [-0.93, 1.35], n = 2). HA had a *moderate effect* on improving resting SpO₂ (g = 0.60 [-0.07, 1.27], n = 2) and a *small* effect on submaximal SpO₂ in hypoxia (g = 0.29 [-0.22, 0.80], n = 5). No effect was found for SpO₂
- 299 during maximal exercise (g = 0.01 [-0.10, 0.12], n = 2).

4.5 The effect of HA on respiratory and metabolic measures in hypoxia:

- HA had a *trivial* effect on increasing resting \dot{V}_E (g = 0.14 [-0.32, 0.61], n = 3) and lowering submaximal \dot{V}_E in hypoxia (g = -0.08 [-0.57, 0.41], n = 4). A small effect was found for maximal \dot{V}_E (g = 0.24 [-0.40, 0.87], n = 2). HA also had a *trivial* effect on increasing resting (g = 0.17 [0.04, 0.29], n = 2) and maximal $\dot{V}O_2$ in hypoxia (g = 0.08 [-0.18, 0.35], n = 3), and lowering submaximal $\dot{V}O_2$ (g = -0.12 [-0.33, 0.10], n = 4). *Trivial* effects were observed for submaximal REP (g = -0.11 [-0.90, 0.68], n = 3)
- 306 RER (g = -0.11 [-0.90, 0.68], n = 3).

4.6 The effect of HA on thermoregulatory measures in hypoxia:

HA had a *small* effect on reducing T_{core} at rest (g = -0.40 [-3.39, 2.60], n = 2) and a *moderate* effect for reducing T_{core} during submaximal exercise in hypoxia (g = -0.68 [-0.85, -0.51], n = 4). A *moderate* effect was also observed for T_{skin} during submaximal exercise following HA (g = -0.72 [-4.47, 3.03], n = 2).

4.7 The effect of HA on perceptual measures in hypoxia:

- HA had a *small* effect on reducing submaximal RPE (g = -0.29 [-0.86, 0.28], n = 4), but no
- effect on maximal RPE in hypoxia (g = 0.00 [0.00, 0.00], n = 2).

4.8 The effect of HA on performance measures in hypoxia:

- HA had a *small* effect on PP (g = 0.32 [-0.98, 1.61], n = 2) and TT performance time in hypoxia
- 317 following HA (g = -0.43 [-2.27, 1.42], n = 2).

Add Figure 2. Exploratory meta-analysis data across rest, submaximal and maximal

outcome measures.

4

5

6

318	Add Table
319	Add Table
320	Add Table

- 321 322
- 323

324 5.0 Discussion

325 The primary aim of this systematic review and exploratory meta-analysis was to investigate the process of CA through the understanding of HA effectiveness on physiological, perceptual 326 327 and performance responses in hypoxia. This analysis also sought to improve the 328 understanding of resting and/or exercise applications in which CA between heat and hypoxia 329 may have the greatest efficacy. The systematic review identified nine eligible CA research 330 studies, including 79 male participants, and examined numerous dependent variables (cardiovascular, respiratory, thermoregulatory, perceptual and performance) across resting 331 332 conditions and, submaximal and maximal exercise intensities. We found a moderate, beneficial effect of HA increasing SpO₂ at rest and reducing HR, T_{core} and T_{skin} during 333 334 submaximal exercise in recreationally trained males in hypoxic conditions. However, during maximal exercise conditions only small and trivial effects were found in hypoxia following HA. 335 The absence of benefit in maximal exercise conditions opposes our initial hypothesis that heat 336 337 into hypoxic CA would enhance aerobic performance when the exercise is undertaken in acute hypoxia. Finally, whilst beneficial effects were found for a number of variables, it is important 338 to recognise the statistical significance (or lack of) of some of these outcome measures, 339 340 therefore some caution is advised when interpreting these data. Accordingly, p values and a statement as to whether data crossed the 'no effect' line has been added to our illustrations 341 342 (Figure 2 and 3).

343 5.1 Analysis of CA interventions

Participants within the CA research studies displayed comparable characteristics to those 344 found in a recent systematic review of direct HA literature (current data vs. Tyler et al. (60) for 345 aerobic capacity: 52 vs. 50 mL.kg⁻¹.min⁻¹ and age: 24 vs. 26 years). However, all participants 346 347 in the current review were male (100% vs. 93% in Tyler et al. (60)). The HA methods prescribed within these studies were also comparable to existing literature. For example, a 348 349 similar number of sessions (9 vs. 9), session duration (89 vs. 105-min) and ambient conditions (39 vs. 40°C, 32 vs. 40% RH) (60). The majority of protocols were 'medium-term' HA (MTHA: 350 8-14 days), with only one including 'short-term' HA (STHA: ≤7 days - Lee et al. (22)). The most 351 common method of HA was fixed-intensity, followed by isothermic. These data reaffirm fixed-352

353 intensity exercise as the most common method of HA (60) and MTHA as the preferred duration 354 of HA (9, 61, 62). However, no research has investigated emerging passive approaches for CA purposes (63), e.g., hot water immersion. Nonetheless, Table 2 displays distinct 355 differences in prescribed HA methods (e.g., number of sessions, dose and HA activity). It is 356 357 also prudent to highlight the disparities in hypoxic test protocols in Table 3 (e.g., duration, activity, intensity, altitude conditions [elevation and pressure]), where heat adaptations were 358 359 evaluated across resting conditions and, submaximal and maximal exercise intensities. 360 Therefore, caution is advised when interpreting the effectiveness of CA, as the magnitude of adaptations are likely influenced by methodological differences in both HA and hypoxic test 361 protocols. In light of this, recommendations for future research are considered after the review 362 of meta-analysis data and practical recommendations for CA application. 363

5.2 The effect of HA on physiological measures at rest and during submaximal exercise in hypoxia:

There were *moderate*, beneficial effects of HA increasing resting SpO₂ and reducing mean 366 HR, T_{core} and T_{skin} during submaximal exercise in hypoxia. These improvements are 367 comparable to literature which has demonstrated beneficial effects of HA on reducing 368 369 physiological strain during subsequent exercise in heat stress (60). The significant reduction in mean HR during submaximal exercise in hypoxia is likely attributed to PV expansion 370 following HA, which has been shown to increase by 4-15% (61). Within the studies included 371 in this review, PV expansion was identified following HA, with mean changes ranging from ~2-372 15% (+4.6% (22), +15% (31), +4% (24), +1.9% (28), +8.3% (30), +3.7% (25), +8.4% (29)). In 373 addition to a relationship with reduced HR (64), PV expansion also supports a multitude of 374 other physiological improvements via increased cardiovascular stability (e.g., SV, Q and SpO₂) 375 (65, 66). However, only small effect sizes were found for these outcome measures during 376 submaximal exercise following HA. Indeed, as hypoxia decreases PV (67), future work may 377 378 investigate how long HA-induced PV expansion is retained for during subsequent hypoxic exposure. Significant increases in SpO₂ have been reported during submaximal exercise in 379 the CA literature (+1.5% (32), +1.6-3.0% (31), +2.0% (24)) and have been proposed as a 380 381 response to a leftward shift in the oxyhaemoglobin dissociation curve due to beneficial T_{core} 382 reductions. Whilst T_{core} reductions may enhance the O₂ saturation of haemoglobin (for a given partial pressure of O₂), it's unlikely T_{skin} reductions would provide a physiological benefit aside 383 384 of a wider, or maintained core-to-skin temperature gradient. Despite the evidence of T_{core} and T_{skin} reductions during submaximal exercise, only *small* beneficial improvements (p>0.05) 385 were found in SpO₂ following HA, likely due to variable changes observed across studies 386 (Table 5), suggesting the change is more complex than a temperature-dependent response. 387 388 Indeed, at high-altitude environments, cold stress is likely to be present alongside hypoxia,

389 whereby, HA may improve cold tolerance (via increased vasodilatory responses (34)). 390 However, further research is required within cross-stress investigations. The benefits for SpO₂ 391 are more apparent at rest, where a *moderate* effect occurred, however, not every study observed an improvement (Table 4). This likely explains the positive and negative CIs for SpO₂ 392 393 in Figure 2. Together with T_{core}, there appears limited potential benefits in the resting domain. Nonetheless, it is evident that repeated exercise-heat stress (i.e., HA), decreases 394 physiological strain (comprising cardiovascular and thermoregulatory function improvements) 395 during acute submaximal exercise at altitude. 396

Only trivial effects of HA on VO₂ were found during submaximal exercise, indicating limited 397 changes to gross mechanical economy (GME) in hypoxia. The limited effects are likely 398 explained by minor changes in submaximal \dot{VO}_2 following isothermic (31) and fixed-intensity 399 HA (24) in normobaric hypoxia (FiO₂: 12%, ~4400 m and FiO₂: 14%, ~3000 m, respectively) 400 and following fixed-intensity HA in hypobaric conditions (1600 m and 4350 m (27)). In contrast, 401 402 significant reductions in submaximal exercise \dot{VO}_2 were reported following fixed-intensity HA, 403 at 2- and 24-hrs within a hypobaric hypoxia trial (-2.4% in VO₂ (29)), as well as following 404 isothermic HA within normobaric hypoxia (-3.9% in \dot{VO}_2 (25)). It should also be noted that a 405 reduction in submaximal exercise VO₂ following HA is not a universal finding and thus 406 ambiguity may persist [70]. Due to limited studies providing mechanistic interpretations, biological reasons for this disparity remain unclear. Non-significant, trivial-to-small effects of 407 HA were also found for V_E and RER across resting and exercise conditions. As such, based 408 upon available data it appears HA has little to no benefit on respiratory and metabolic 409 410 parameters during acute rest and exercise in hypoxia.

5.3 The effect of HA on performance measures and determinants of performance inhypoxia:

413 There were also limited improvements in maximal aerobic capacity, PP and TT performance when undertaken in hypoxia following HA (Figure 2). Whilst difficult to delineate why benefits 414 415 to performance were not observed, and aside of the notable limited studies on performance included (Table 3), the lack of improvements coincided with limited effects of HA on V_E, HR_{max} 416 and SpO₂ (i.e., factors that may improve $\dot{V}O_{2max}$) during maximal exercise (Figure 2). These 417 findings contrast emerging evidence where improvements in maximal performances are 418 observed in normoxic conditions following HA (15). Small beneficial effects in PP were found 419 following HA (Salgado et al. (27): +11 W [+3.2%, p = 0.04], Sotiridis et al. (25): +12 W [+4.9%, 420 p = 0.14]). However, it is unclear from our analysis which physiological mechanism(s) 421 contributed to these PP improvements and no comparisons can be made as control groups 422 423 were not included. Sotiridis et al. (25) have previously suggested that an increased GME may

424 mediate PP improvements. Nonetheless, despite suggestions that CA is beneficial for hypoxic 425 performance (6), experimental work across different environmental conditions indicates HA 426 may have greater benefits on PP in thermoneutral normoxia (+6 W [+8.2%]) and heat alone (+41 W [+13.4%]) rather than hypoxia. This observation aligns with a wider body of previous 427 428 literature (11, 68–70). Cycling TT performances were shown to significantly improve in 429 normobaric (24) but not hypotaric hypoxia (28) following HA (CES: g = -0.43). Lee et al. (24) report a +4.8% improvement during a 16.1 km TT in ~3000 m (p = 0.05), whereas, White et 430 431 al. (28) observed a non-significant improvement of 28-seconds during a 16.0 km TT in 4350 m (p = 0.07). Adaptations following HA including, glycogen sparing, and metabolic efficiency 432 were considered as contributing factors to explain the improved TT performance at 3000 m 433 (24), whilst in the absence of PV-mediated improvements to $\dot{V}O_{2max}$, White et al. (28) 434 435 speculated that reduced metabolic stress and/or cellular adaptations may improve TT performance at 4350 m. However, such outcome measures in these studies were not directly 436 assessed. Furthermore, whilst data were not included in our analysis due to the study being 437 the only one of its type, it should be noted Salgado et al. (29) also report no improvements in 438 439 the total work during a 15-min TT at 2-hrs (106.3 ± 23.8 vs. 101.4 ± 23.0 kJ) and 24-hrs (107.3 440 \pm 23.4 vs. 106.3 \pm 20.8 kJ) within hypobaric hypoxia (3500 m) following 8 days of HA, despite 441 an 8% PV expansion.

Given the current inconclusive data and *trivial*-to-*small* effects found for aerobic capacity, PP and TT time, it appears the ergogenic efficacy of HA to enhance maximal/performance intensity responses in hypoxia is minimal. Reflecting the lack of uniformity in CA methodologies, future research focus may consider the relevance of CA in this context or investigate other setting-specific performance measures.

447 **5.4** The effect of HA on perceptual measures in hypoxia:

448 There were *small* effects, albeit non-significant, of HA reducing RPE during submaximal exercise. This may be a result of a lower physiological strain (via reductions in HR and T_{core}). 449 Whilst LLQ data were excluded from analysis due to it being from only 1 experimental study, 450 Gibson et al. (31) found no significant improvements in the symptoms of acute mountain 451 sickness (AMS), suggesting perceptual improvements did not match the adapted physiological 452 responses, perhaps due to the short altitude exposure duration (31). Additional AMS data 453 were also not included within this review due to differences in questionnaire type (LLQ vs 454 Environmental Symptoms Questionnaire [ESQ]). Nonetheless, Salgado et al. (29) reported 455 23% of participants who presented AMS symptoms prior to HA, subsequently reduced their 456 incidence of AMS during a 30-hour exposure to hypobaric hypoxia following HA. As such, 457

further research is warranted to assess if and how, HA may reduce the incidence of AMSdeveloping in both acute and chronic durations of hypoxia.

460 **5.5 Limitations**:

We highlight key limitations within current CA research including: 1) the quality of included 461 studies; 2) reporting bias and 2), the relative infancy of CA. While every effort was taken to 462 ensure the included studies were of sufficient quality and RoB were minimised using COSMIN, 463 this does not remove it completely. Issues within the presented studies are linked to the stage 464 of CA research development and nature of this exploratory analysis, as demonstrated by a 465 lack of control groups, small sample size and disparity between methods. Consequently, the 466 467 limited number of studies and/or participants included within the analysis likely led to the CIs for the SMD within the forest plot crossing the no effect line (56). We highlight the uncommon, 468 469 and in some instances sub-optimal methods used during HA interventions, specifically a low 470 number of sessions undertaken, which likely reduced the magnitude of outcome 471 improvements in hypoxia (i.e., 3-days or 180-min of HA (22)). However, this study's inclusion 472 within the review and analysis was maintained to avoid bias. Furthermore, there remains a challenge to blind participants to heat and hypoxia. While significant under-representation of 473 474 females is commonplace within exercise science and sports medicine (71, 72), CA research is completely void of female participants, and lacks research that investigates well-trained 475 populations, and across the age span. 476

The authors acknowledge limitations within their own exploratory analyses of the relevant CA 477 literature. Such as separating data from a single trial into two data sets (Gibson et al. (31), for 478 40% and 65% intensities, Salgado et al. (29) for 2- and 24-hr time points), although to account 479 for this, these data were combined for statistical analysis (as per Cochrane Handbook for 480 481 Systematic Reviews of Interventions Section 7.7.3.8). We also acknowledge the differences 482 in prescription methods when assessing the effectiveness of HA within post-intervention normobaric and hypobaric hypoxia trials (Table 3), as well as differing methods and equipment 483 (e.g., inspired hypoxic gas vs. hypobaric chamber), which may affect results (73). Whilst 484 specific pressure differences are unclear, physiological responses (e.g., V_E) to hypobaria may 485 be affected by lessened O_2 diffusion (via increased hypoxic-pulmonary vasoconstriction) (73). 486 Therefore, some caution is advised if translating adaptations following HA in normobaric to 487 hypobaric hypoxia. We must also recognise discrepancies in the range of hypoxic conditions 488 assessed (e.g., elevation and duration) and therefore the breadth of practical application. 489 There are differences in participants' habitual acclimatisation between studies, as some 490 participants were sea-level residents less-familiar and less-exposed to altitude (24, 31), others 491 492 resided at low altitude (~1600 m) for 6 months prior to testing (27, 28). Though some studies

have quantified cellular (e.g., heat shock protein) responses to CA, the varied methods used to determine changes in this marker within heat-altitude research (e.g., intracellular *vs.* extracellular response, mRNA *vs.* protein) (22, 24, 31, 74–78), and varied timepoints makes comparison ineffective at the current time. Finally, whilst the field of CA is emerging and ~10 studies have been conducted, our review and analysis complement recent narrative literature (1, 6) and provide insights into relevant future research directions which is vital for the progression and development of CA research.

500 **5.6 Recommendations for future research:**

Whilst the authors provide an overview of CA research, we highlight the fact that there is little 501 consensus for optimal HA methods, nor hypoxic tolerance tests, making interpretation and 502 503 comparisons between studies problematic. Therefore, future studies assessing CA should consider a standardised tolerance, screening or sensitivity test that allows for the assessment 504 of physiological and perceptual measures at rest, and during submaximal and maximal 505 exercise intensities. A need for future work in hypobaric hypoxia is required for applying CA 506 into terrestrial altitude, as barometric pressure may have an independent effect and evoke a 507 greater physiological strain, increase health risk and performance impairment compared to 508 509 normobaric hypoxia (79). A consistent approach to exercise HA may also aid with determining 510 the efficacy of CA, however given the growing appreciation of HA using passive interventions 511 (e.g., post-exercise sauna or hot water immersion) (9), that offer useability benefits (e.g., 512 lessened training load, accessible facilities, and lower costs), this modality as a tool for CA 513 requires investigation. Work in this regard might also consider 'over-dressing' participants (59, 514 80) to induce heat adaptation. Controlling for routine training is also warranted during 515 experimental interventions, as White et al. (28) suggest a lack of PV expansion was due to 516 participants' continuing their habitual training. The effect of CA on females is unknown, since all participants within this review were male. Although more female-focussed HA 517 investigations are emerging, research must examine the effectiveness of HA on subsequent 518 hypoxic exposure in females, with consideration of recent guidance for research in females 519 520 (81). This is important given sex differences are apparent in the time-course of heat 521 adaptations (76, 82, 83) and females may experience an increased prevalence of AMS (84). There is also a lack of information with regards to athletic/well-trained and clinical populations, 522 as the current sample population appear to be recreationally trained (performance level 2 523 (85)), healthy males. Furthermore, there was a lack of research that assessed symptoms of 524 altitude illness, or AMS (whether via LLQ or ESQ). Therefore, future investigations should 525 526 utilise these perpetual measures to further our understanding on how adapting to heat stress, 527 may or may not support reductions in AMS prevalence, as shown following hypoxia 528 acclimation, which can provide protection from illnesses associated with rapid ascent to high

altitude (4). Finally, mechanisms supporting CA remain hypothetical, with work required to elucidate the role of body temperature, cardiovascular response, and other systemic adaptations. In summary, future studies must investigate the extent to which CA may enhance physical performance more comprehensively, and further our understanding of the mechanistic pathways across a range of population groups.

534

535 **5.7 Practical recommendations:**

536 CA demonstrates the potential to reduce physiological strain whilst exercising at a submaximal intensity in hypoxia with small to moderate effects observed within recreationally trained, 537 healthy males (Figure 3). However, it appears resting and maximal exercise intensity 538 improvements are currently limited following HA. Cross-adaptation may be a more cost 539 540 effective, geographically convenient and time efficient method, than hypoxic training (e.g., 3-541 12 days vs. >3 weeks, respectively), when the ability to acclimate to hypoxia is logistically and financially challenging. Implementation of CA, via exercise-heat stress, could therefore be 542 considered an accessible intervention to reduce submaximal physiological strain prior to rapid 543 deployment to altitude locations. 544

545

546Add Figure 3. A summary of the exploratory meta-analysis' cross-adaptation (CA)547responses from heat acclimation to hypoxic exposure.

548

549 6.0 Perspectives and Significance:

550 This is the first systematic review and exploratory meta-analysis to investigate the effects of 551 heat adaptation on physiological, perceptual and performance outcomes in hypoxia. Our findings suggest that HA may elicit a *moderate*, beneficial effect on reducing physiological 552 strain at rest (attenuated decreases in SpO₂) and during submaximal exercise in hypoxic 553 conditions (lower HR, T_{core}, T_{skin}) for recreationally trained males. However, generally small and 554 trivial effects were found during resting conditions and at maximal exercise intensities in 555 hypoxia following HA. Females and well-trained individuals are not present within current CA 556 literature and thus require future research. Consideration should also be given to assessing 557 alternate methods of repeated heat stress and standardising prescription protocols for both 558 HA and hypoxic tolerance tests. 559

560 7.0 Figure Captions

561 **Figure. 1.** A PRISMA flow diagram outlining the systematic review identification, screening,

inclusion and exclusion process (COSMIN: COnsensus-based Standards for the selection of
 health status Measurement INstruments, HA: heat acclimation).

- **Figure. 2.** *Exploratory meta-analysis data across rest, submaximal and maximal outcome measures.*
- **Figure. 3.** A summary of the exploratory meta-analysis' cross-adaptation (CA) responses 567 from heat acclimation to hypoxic exposure.

568 8.0 Table Titles

- **Table 1.** Participant characteristics from the included CA research studies.
- **Table 2.** Heat acclimation methods implemented in the included CA research studies.
- **Table 3.** Hypoxic test methods implemented in the included CA research studies.
- **Table 4.** Resting data observations from the included CA research studies.
- **Table 5.** Submaximal data observations from the included CA research studies.
- **Table 6.** Maximal data observations from the included CA research studies.

ournal Prerk

576 9.0 References

- 5771.Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross Adaptation Heat and578Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia.579Sports Med 47: 1751–1768, 2017. doi: 10.1007/s40279-017-0717-z.
- 5802.**Tipton M**. A case for combined environmental stressor studies. *Extrem Physiol*581*Med* 1: 7, 2012. doi: 10.1186/2046-7648-1-7.
- 5823.Lee BJ, Gibson OR, Thake CD, Tipton M, Hawley JA, Cotter J (Jim) D.583Editorial: Cross Adaptation and Cross Tolerance in Human Health and584Disease. Front Physiol 9: 1827, 2019. doi: 10.3389/FPHYS.2018.01827.
- 5854.Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross586tolerance to hypoxia: Bridging the gap between cellular and systemic587responses. Temperature 1: 107–114, 2014.
- 5885.White AC, Salgado RM, Schneider S, Loeppky JA, Astorino TA, Mermier589CM. Does Heat Acclimation Improve Exercise Capacity at Altitude? A Cross-590tolerance Model. Int J Sports Med 35: 975–81, 2014. doi: 10.1055/s-0034-5911368724.
- Sotiridis A, Debevec T, Geladas N, Mekjavic IB. Cross-adaptation between heat and hypoxia: mechanistic insights into aerobic exercise performance. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 323: R661–R669, 2022. doi: 10.1152/ajpregu.00339.2021.
- 5967.Horowitz M. Heat acclimation and cross-tolerance against novel stressors:597genomic-physiological linkage. Prog Brain Res 162: 373–92, 2007. doi:59810.1016/S0079-6123(06)62018-9.
- 5998.Pollak A, Merin G, Horowitz M, Shochina M, Gilon D, Hasin Y. Heat600Acclimatization Protects the Left Ventricle from Increased Diastolic Chamber601Stiffness Immediately after Coronary Artery Bypass Surgery: A Lesson from 30602Years of Studies on Heat Acclimation Mediated Cross Tolerance. Front Physiol6038: 1022, 2017. doi: 10.3389/fphys.2017.01022.
- 6049.Gibson OR, James CA, Mee JA, Willmott AGB, Turner G, Hayes M,605Maxwell NS. Heat alleviation strategies for athletic performance: A review and606practitioner guidelines. Temperature 7, 2020. doi:60710.1080/23328940.2019.1666624.
- 60810.Buchheit M, Racinais S, Bilsborough J, Hocking J, Mendez-Villanueva A,609Bourdon PC, Voss S, Livingston S, Christian R, Periard J, Cordy J, Coutts610AJ. Adding heat to the live-high train-low altitude model: a practical insight from611professional football. Br J Sports Med 47: i59–i69, 2013. doi: 10.1136/bjsports-6122013-092559.
- 61311.Rendell RA, Prout J, Costello J, Massey HC, Tipton MJ, Young JS, Corbett614J. The effects of 10 days of separate heat and hypoxic exposure on heat615acclimation and temperate exercise performance. American Journal of616Physiology-Regulatory, Integrative and Comparative Physiology 313: R191–617R201, 2017.
- 61812.McCleave EL, Slattery KM, Duffield R, Saunders PU, Sharma AP,619Crowcroft SJ, Coutts AJ. Temperate Performance Benefits after Heat, but

620 621		Not Combined Heat and Hypoxic Training. <i>Med Sci Sports Exerc</i> 49: 509–517, 2017. doi: 10.1249/MSS.000000000001138.
622 623 624 625	13.	McCleave EL, Slattery KM, Duffield R, Saunders PU, Sharma AP, Crowcroft S, Coutts AJ. Impaired Heat Adaptation From Combined Heat Training and Live High-Train Low Hypoxia. <i>Int J Sports Physiol Perform</i> 14: 1– 24, 2018. doi: 10.1123/ijspp.2018-0399.
626 627 628 629	14.	Sotiridis A, Miliotis P, Ciuha U, Koskolou M, Mekjavic IB. No ergogenic effects of a 10-day combined heat and hypoxic acclimation on aerobic performance in normoxic thermoneutral or hot conditions. <i>Eur J Appl Physiol</i> 119: 2513–2527, 2019. doi: 10.1007/s00421-019-04215-5.
630 631 632	15.	Corbett J , Neal RA , Lunt HC , Tipton MJ . Adaptation to Heat and Exercise Performance Under Cooler Conditions: A New Hot Topic. <i>Sports Med</i> 44: 1323–31, 2014. doi: 279-014-0212-8.
633 634 635	16.	Garrett AT, Goosens NG, Rehrer NJ, Rehrer NG, Patterson MJ, Cotter JD. Induction and decay of short-term heat acclimation. <i>Eur J Appl Physiol</i> 107: 659–70, 2009. doi: 10.1007/s00421-009-1182-7.
636 637 638	17.	Millet G, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. <i>Sports Med</i> 40: 1–25, 2010. doi: 10.2165/11317920-00000000-00000.
639 640 641 642 643 644	18.	Barrington JH, Chrismas BCR, Gibson OR, Tuttle J, Pegrum J, Govilkar S, Kabir C, Giannakakis N, Rayan F, Okasheh Z, Sanaullah A, Ng Man Sun S, Pearce O, Taylor L. Hypoxic air inhalation and ischemia interventions both elicit preconditioning which attenuate subsequent cellular stress in vivo following blood flow occlusion and reperfusion. <i>Front Physiol</i> 8, 2017. doi: 10.3389/fphys.2017.00560.
645 646 647	19.	Cohen O , Stern M , Horowitz M . Heat acclimation improves cardiac contractility and ischemic tolerance: Is heat acclimation memorized? <i>J Mol Cell Cardiol</i> 33: A22, 2001. doi: 10.1016/S0022-2828(01)90087-2.
648 649 650	20.	Levy E, Hasin Y, Navon G, Horowitz M. Chronic heat improves mechanical and metabolic response of trained rat heart on ischemia and reperfusion. <i>Am J Physiol</i> 272: H2085-94, 1997.
651 652 653 654	21.	Umschwief G, Shein NA, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. <i>J Cereb Blood Flow Metab</i> 30: 616–27, 2010. doi: 10.1038/jcbfm.2009.234.
655 656 657	22.	Lee BJ, Mackenzie RWA, Cox V, James RS, Thake CD. Human Monocyte Heat Shock Protein 72 Responses to Acute Hypoxic Exercise after 3 Days of Exercise Heat Acclimation. <i>Biomed Res Int</i> 72: 1–16, 2014.
658 659 660 661 662	23.	Lee BJ, Emery-Sinclair EL, Mackenzie RW, Hussain A, Taylor L, James RS, Thake CD. The impact of submaximal exercise during heat and/or hypoxia on the cardiovascular and monocyte HSP72 responses to subsequent (post 24 h) exercise in hypoxia. <i>Extrem Physiol Med</i> 3: 15, 2014. doi: 10.1186/2046-7648-3-15.

- Lee BJ, Miller A, James RS, Thake CD. Cross acclimation between heat and
 hypoxia: Heat acclimation improves cellular tolerance and exercise
 performance in acute normobaric hypoxia. *Front Physiol* 7:78, 2016. doi:
 10.3389/fphys.2016.00078.
- Sotiridis A, Debevec T, Ciuha U, Eiken O, Mekjavic IB. Heat acclimation
 does not affect maximal aerobic power in thermoneutral normoxic or hypoxic
 conditions. *Exp Physiol* 104: 345–358, 2018. doi: 10.1113/EP087268.
- Sotiridis A, Debevec T, Ciuha U, McDonnell AC, Mlinar T, Royal JT,
 Mekjavic IB. Aerobic but not thermoregulatory gains following a 10-day
 moderate-intensity training protocol are fitness level dependent: A crossadaptation perspective. *Physiol Rep* 8, 2020. doi: 10.14814/phy2.14355.
- Salgado RM, Sheard AC, Vaughan RA, Parker DL, Schneider SM, Kenefick
 RW, McCormick JJ, Gannon NP, Dusseldorp TA van, Kravitz LR, Mermier
 Mitochondrial efficiency and exercise economy following heat stress: a
 potential role of uncoupling protein 3. *Physiol Rep* 5: e13054, 2017. doi:
 10.14814/phy2.13054.
- White AC, Salgado RM, Astorino TA, Loeppky JA, Schneider SM,
 McCormick JJ, McLain TA, Kravitz L, Mermier CM. The effect of ten days of
 heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m). *Temperature* 3: 176–185, 2016. doi: 10.1080/23328940.2015.1072659.
- 68329.Salgado RM, Coffman KE, Bradbury KE, Mitchell KM, Yurkevicius BR,
Luippold AJ, Mayer TA, Charkoudian N, Alba BK, Fulco CS, Kenefick RW.684Effect of 8 days of exercise-heat acclimation on aerobic exercise performance
of men in hypobaric hypoxia. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology 319: R114–R122, 2020. doi:
10.1152/ajpregu.00048.2020.
- 68930.Lee BJ, Thake CD. Heat and Hypoxic Acclimation Increase Monocyte Heat690Shock Protein 72 but Do Not Attenuate Inflammation following Hypoxic691Exercise. Front Physiol 8: 1–12, 2017. doi: 10.3389/fphys.2017.00811.
- Gibson OR, Turner Gareth, Tuttle JAlexander, Taylor Lee, Watt PW,
 Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72,
 but not HSP90α, mRNA response to acute normobaric hypoxia. *J Appl Physiol*119: 889–99, 2015. doi: 10.1152/japplphysiol.00332.2015.
- 69632.Heled Y, Peled A, Yanovich R, Shargal E, Pilz-Burstein R, Epstein Y,697Moran DS. Heat Acclimation and Performance in Hypoxic Conditions. Aviat698Space Environ Med 83: 649–653, 2012. doi: 10.3357/ASEM.3241.2012.
- Sotiridis A, Debevec T, McDonnell AC, Ciuha U, Eiken O, Mekjavic IB.
 Exercise cardiorespiratory and thermoregulatory responses in normoxic,
 hypoxic and hot environment following 10-day continuous hypoxic exposure. J
 Appl Physiol 125: 1284–1295, 2018. doi: 10.1152/japplphysiol.01114.2017.
- 70334.Ciuha U, Sotiridis A, Mlinar T, Royal JT, Eiken O, Mekjavic IB. Heat704acclimation enhances the cold-induced vasodilation response. Eur J Appl705Physiol 121: 3005–3015, 2021. doi: 10.1007/s00421-021-04761-x.

NI I PI	D	nr		
Juli				

706 35. Lunt HC, Barwood MJ, Corbett J, Tipton MJ. Cross-adaptation: the effect cold habituation has on the physiological responses to acute hypoxia in 707 humans. J Physiol 588: 3605-13, 2010. doi: 10.1113/jphysiol.2010.193458. 708 709 36. Periard JD, Travers G, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Autonomic Neuroscience 196: 710 52-62, 2016. 711 Taylor NAS. Human Heat Adaptation. Compr Physiol 4: 325–365, 2014. 712 37. 38. Daanen HAM, van Marken Lichtenbelt WD. Human whole body cold 713 adaptation. Temperature 3: 104-118, 2016. doi: 714 10.1080/23328940.2015.1135688. 715 716 39. **Golden FS**, **Tipton MJ**. Human adaptation to repeated cold immersions. J Physiol 396: 349-63, 1988. 717 40. Castellani JW, Young AJ. Human physiological responses to cold exposure: 718 Acute responses and acclimatization to prolonged exposure. Auton Neurosci 719 196: 63–74, 2016. doi: 10.1016/j.autneu.2016.02.009. 720 41. Bailey DM, Davies B. Physiological implications of altitude training for 721 722 endurance performance at sea level: a review. Br J Sports Med 31: 183-190, 1997. doi: 10.1136/bjsm.31.3.183. 723 Friedmann-Bette B. Classical altitude training. Scand J Med Sci Sports 18 42. 724 Suppl 1: 11–20, 2008. doi: 10.1111/j.1600-0838.2008.00828.x. 725 Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci 726 43. Sports Exerc 39: 1610-24, 2007. doi: 10.1249/mss.0b013e3180de49e6. 727 44. Girard O, Brocherie F, Goods PSR, Millet GP. An Updated Panorama of 728 "Living Low-Training High" Altitude/Hypoxic Methods. Front Sports Act Living 2: 729 26, 2020. doi: 10.3389/fspor.2020.00026. 730 45. Fudge BW, Pringle JSM, Maxwell NS, Turner G, Ingham S a, Jones AM. 731 732 Altitude training for elite endurance performance: a 2012 update. Curr Sports Med Rep 11: 148–54, 2012. doi: 10.1249/JSR.0b013e31825640d5. 733 Baranauskas MN, Constantini K, Paris HL, Wiggins CC, Schlader ZJ, 46. 734 735 Chapman RF. Heat Versus Altitude Training for Endurance Performance at Sea Level. Exerc Sport Sci Rev 49: 50-58, 2021. doi: 736 10.1249/JES.00000000000238. 737 47. Salgado RM, White AC, Schneider SM, Mermier CM. A Novel Mechanism for 738 739 Cross-Adaptation between Heat and Altitude Acclimation: The Role of Heat Shock Protein 90. *Physiol J* 2014: 1–12, 2014. doi: 10.1155/2014/121402. 740 Horowitz M. Lessons from gold mines. *Temperature* 4: 107–108, 2017. doi: 741 48. 10.1080/23328940.2017.1290571. 742 **Horowitz M**. Epigenetics and cytoprotection with heat acclimation. *J Appl* 743 49. Physiol (1985) 120: 702–10, 2016. doi: 10.1152/japplphysiol.00552.2015. 744 50. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, 745 Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, 746 Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, 747

748 749 750		McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. <i>BMJ</i> 372: n71, 2021. doi: 10.1136/bmj.n71.
751 752 753 754	51.	Methley AM , Campbell S , Chew-Graham C , McNally R , Cheraghi-Sohi S . PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. <i>BMC Health Serv Res</i> 14: 579, 2014. doi: 10.1186/s12913-014-0579-0.
755 756 757 758 759	52.	Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, Bouter LM, de Vet HCW. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. <i>Qual Life Res</i> 19: 539–549, 2010. doi: 10.1007/s11136-010-9606-8.
760 761 762 763	53.	Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. <i>Syst Rev</i> 4: 1, 2015. doi: 10.1186/2046-4053-4-1.
764 765	54.	Hopkins WG . Spreadsheets for analysis of validity and reliability. <i>Sportscience</i> : 21, 2017.
766 767 768	55.	Suurmond R , van Rhee H , Hak T . Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. <i>Res Synth Methods</i> 8: 537–553, 2017. doi: https://doi.org/10.1002/jrsm.1260.
769 770 771	56.	Dettori JR , Norvell DC , Chapman JR . Seeing the Forest by Looking at the Trees: How to Interpret a Meta-Analysis Forest Plot. <i>Global Spine J</i> 11: 614–616, 2021. doi: 10.1177/21925682211003889.
772 773 774	57.	Lakens D . Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. <i>Front Psychol</i> 4: 863, 2013. doi: 10.3389/fpsyg.2013.00863.
775 776 777	58.	Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. 6.3. Cochrane, 2022.
778 779 780 781	59.	Carrillo S , Pina E , Buchanan CA , Dalleck LC . Quantifying Heat Stress of Sauna Suits during Physical Activity and Examining the Effects of Heat Acclimation on Physiological Responses in Hypoxic Conditions. <i>International Journal of Research in Exercise Physiology</i> 15: 35–53, 2022.
782 783 784	60.	Tyler CJ , Reeve T , Hodges GJ , Cheung SS . The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. <i>Sports Med</i> 46: 1699–1724, 2016. doi: 10.1007/s40279-016-0538-5.
785 786 787	61.	Périard JD , Racinais S , Sawka MN . Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. <i>Scand J Med Sci Sports</i> 25: 20–38, 2015. doi: 10.1111/sms.12408.
788 789 790	62.	Daanen HAM, Racinais S, Périard JD. Heat Acclimation Decay and Re- Induction: A Systematic Review and Meta-Analysis. <i>Sports Medicine</i> 48: 409– 430, 2017. doi: 10.1007/s40279-017-0808-x.

- Heathcote SL, Hassmén P, Zhou S, Stevens CJ. Passive Heating: Reviewing
 Practical Heat Acclimation Strategies for Endurance Athletes. *Front Physiol* 9:
 1851, 2018. doi: 10.3389/fphys.2018.01851.
- 64. Convertino VA. Blood volume: its adaptation to endurance training. *Med Sci Sports Exerc* 23: 1338–48, 1991.
- 79665.Convertino VA. Blood volume response to physical activity and inactivity. Am J797Med Sci 334: 72–9, 2007. doi: 10.1097/MAJ.0b013e318063c6e4.
- 79866.Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise799factors in the mechanism of hypervolemia [Online]. J Appl Physiol 48: 657–664,8001980. http://jap.physiology.org/content/48/4/657.short [26 Apr. 2016].
- 801 67. Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. *J Appl Physiol* 123: 957–966, 2017. doi: 10.1152/japplphysiol.00118.2017.
- 804 68. Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B.
 805 Human circulatory and thermoregulatory adaptations with heat acclimation and 806 exercise in a hot, dry environment [Online]. *J Physiol* 460: 467–485, 1993.
 807 http://www.ncbi.nlm.nih.gov/pubmed/8487204 [22 Nov. 2013].
- 80869.Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves809exercise performance. J Appl Physiol (1985) 109: 1140–7, 2010. doi:81010.1152/japplphysiol.00495.2010.
- 811 70. Willmott AGB, Hayes M, James CA, Dekerle J, Gibson OR, Maxwell NS.
 812 Once- and twice-daily heat acclimation confer similar heat adaptations,
 813 inflammatory responses and exercise tolerance improvements. *Physiol Rep* 6:
 814 e13936, 2018. doi: 10.14814/phy2.13936.
- 81571.Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in816Sports and Exercise Medicine research? Eur J Sport Sci 14: 847–851, 2014.817doi: 10.1080/17461391.2014.911354.
- 818 72. Smith ES, McKay AKA, Ackerman KE, Harris R, Elliott-Sale KJ,
 819 Stellingwerff T, Burke LM. Methodology Review: A Protocol to Audit the
 820 Representation of Female Athletes in Sports Science and Sports Medicine
 821 Research. Int J Sport Nutr Exerc Metab 32: 114–127, 2022. doi:
 822 10.1123/ijsnem.2021-0257.
- 73. Loeppky JA, Icenogle M, Scotto P, Robergs R, Hinghofer-Szalkay H,
 Roach RC. Ventilation during simulated altitude, normobaric hypoxia and
 normoxic hypobaria. *Respir Physiol* 107: 231–239, 1997. doi: 10.1016/s00345687(97)02523-1.
- 827 74. Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α
 828 mRNA transcription is characterised by large, sustained changes in core
 829 temperature during heat acclimation. *Cell Stress Chaperones* 21: 1021–1035,
 830 2016. doi: 10.1007/s12192-016-0726-0.
- 831 75. Gibson OR, Mee JA, Taylor L, Tuttle JA, Watt PW, Maxwell NS. Isothermic
 832 and fixed-intensity heat acclimation methods elicit equal increases in Hsp72
 833 mRNA. Scand J Med Sci Sports 25: 259–268, 2015. doi: 10.1111/sms.12430.

- 834 76. Mee JA, Gibson OR, Tuttle JA, Taylor L, Watt PW, Doust J, Maxwell NS.
 835 Leukocyte Hsp72 mRNA transcription does not differ between males and
 836 females during heat acclimation. *Temperature* 3: 549–556, 2016.
- 837 77. Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS.
 838 Extracellular Hsp72 concentration relates to a minimum endogenous criteria 839 during acute exercise-heat exposure. *Cell Stress Chaperones* 19: 389–400, 840 2014. doi: 10.1007/s12192-013-0468-1.
- 78. Taylor L, Lee BJ, Gibson OR, Midgley AW, Watt P, Mauger A, Castle P.
 842 Effective microorganism X attenuates circulating superoxide dismutase
 843 following an acute bout of intermittent running in hot, humid conditions. .
- 84479.Millet GP, Debevec T. CrossTalk proposal: Barometric pressure, independent845of , is the forgotten parameter in altitude physiology and mountain medicine. J846Physiol 598: 893–896, 2020. doi: https://doi.org/10.1113/JP278673.
- 847 80. Willmott AGB, Gibson OR, James CA, Hayes M, Maxwell NS. Physiological
 848 and perceptual responses to exercising in restrictive heat loss attire with use of
 849 an upper-body sauna suit in temperate and hot conditions. *Temperature* 5:
 850 162–174, 2018. doi: 10.1080/23328940.2018.1426949.
- 85181.Smith ES, McKay AKA, Ackerman KE, Harris R, Elliott-Sale KJ,852Stellingwerff T, Burke LM. Methodology Review: A Protocol to Audit the853Representation of Female Athletes in Sports Science and Sports Medicine854Research. .
- 855 82. Mee JA, Gibson OR, Doust JH, Maxwell NS. A comparison of males and
 856 females' temporal patterning to short- and long-term heat acclimation. Scand J
 857 Med Sci Sports 25: 250–258, 2015. doi: 10.1111/sms.12417.
- 858
 83. Kirby N v., Lucas SJE, Lucas RAI. Nine-, but Not Four-Days Heat Acclimation Improves Self-Paced Endurance Performance in Females. *Front Physiol* 10: 539, 2019. doi: 10.3389/fphys.2019.00539.
- 861 84. Hou Y-P, Wu J-L, Tan C, Chen Y, Guo R, Luo Y-J. Sex-based differences in the prevalence of acute mountain sickness: a meta-analysis. *Mil Med Res* 6: 38, 2019. doi: 10.1186/s40779-019-0228-3.
- 864 85. De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R.
 865 Guidelines to classify subject groups in sport-science research. [Online]. Int J
 866 Sports Physiol Perform 8: 111–22, 2013.
 867 http://www.ncbi.nlm.nih.gov/pubmed/23428482 [12 Mar. 2016].

Table 1. Participant characteristics from the included CA research studies.

			HA gr	oup			Control group							
Study	n	Sex	Aerobic capacity (mL.kg ^{-1.} min ⁻¹ or L.min ⁻¹)	Age (years)	Height (m)	Body mass (kg)	n	Sex	Aerobic capacity (mL.kg ^{-1.} min ⁻¹ or L.min ⁻¹)	Age (years)	Height (m)	Body mass (kg)		
Heled et al. [32]	8	Male	57.0 ± 3.7*	23 ± 3	-	-	-	-	-	-	-	-		
Lee et al. [22]	8	Male	$46.2 \pm 10.0^{\#}$ $(3.50 \pm 0.08)^{\pm}$	21 ± 3	1.80 ± 0.10	75.7 ± 8.2	8	Male	$46.3 \pm 8.0^{\#}$ $(3.47 \pm 0.08)^{\pm}$	20 ± 1	1.80 ± 0.10	76.0 ± 10.0		
Gibson et al. [31]	8	Male	4.32 ± 0.68 [#] 58.5 ± 12.5 [#]	23 ± 4	1.82 ± 0.06	74.6 ± 7.9	8	Male	4.22 ± 0.62 [#] 56.6 ± 6.9 [#]	26 ± 5	1.79 ± 0.07	74.6 ± 4.8		
Lee et al. [24]	7	Male	$50.7 \pm 4.7^{\#}$ (3.64 ± 0.04) [¥]	25 ± 6	1.78 ± 0.08	71.7 ± 9.2	7	Male	51.4 ± 10.0 [#] (3.73 ± 0.11) [¥]	22 ± 3	1.74 ± 0.08	72.5 ± 11.4		
White et al. [28]	8	Male	$4.20 \pm 0.54^{*}$ $(\sim 55 \pm 7)^{*}$	28 ± 6	1.78 ± 0.08	75.7 ± 8.4	-	-	-	-	-	-		
Lee and Thake [30]	7	Male	$50.7 \pm 4.7^{\#}$ $(3.64 \pm 0.04)^{\pm}$	25 ± 6	1.78 ± 0.08	71.7 ± 9.2	7	Male	51.4 ± 10.0 [#] (3.73 ± 0.11) [¥]	22 ± 3	1.74 ± 0.08	72.5 ± 11.4		
Salgado et al. [27]	8	Male	$4.19 \pm 0.54^{\#}$ $(\sim 55 \pm 7)^{\pm}$	28 ± 6	1.78 ± 0.08	75.7 ± 8.4	-	-	-	-	-	-		
Sotiridis et al. [25]	12	Male	4.12 ± 0.41 54.7 ± 5.7 [#]	22 ± 3	<u> </u>	-	-	-	-	-	-	-		
Salgado et al. [29]	13	Male	$\overline{3.19 \pm 0.43^{\#}}$ $(\sim 43 \pm 6)^{*}$	21 ± 3	1.73 ± 0.08	75.1 ± 12.2	13	Male	$\overline{3.19 \pm 0.43^{\#}}$ $(\sim 43 \pm 6)^{*}$	21 ± 3	1.73 ± 0.08	75.1 ± 12.2		
Weighted mean ± SD	9 ± 2	-	51.9 ± 5.2	24 ± 3	1.78 ± 0.03	74.5 ± 1.6	8 ± 2	-	48.9 ± 5.0	22 ± 2	176 ± 0.03	74.3 ± 1.3		

Note: reported * $\dot{V}O_{2max}$ or $^{\#}\dot{V}O_{2peak}$ within the study and * calculated data from reported body mass is shown within brackets (either ml.kg⁻¹.min⁻¹ or L.min⁻¹), SD: standard deviation.

Study	Method	Sessions (n)	Session duration (min)	Tamb (°C)	RH (%)	Modality	HA activity
Heled et al. [32]	Fixed-intensity	12	120	40	40	Treadmill walking	5 km.hr ⁻¹ , 2% incline (~30% ['] VO _{2max})
Lee et al. [22]	Fixed-intensity	3	60	40	20	Cycling	50% VO _{2peak}
Gibson et al. [31]	Isothermic	10	90	40	41	Cycling	65% $\dot{V}O_{2peak}$ until target T_{core} of 38.5°C
Lee et al. [24]	Fixed-intensity	10	60	40	25	Cycling	50% VO _{2peak}
White et al. [28]	Fixed-intensity	10	110 (50, 10 rest, 50)	40	20	Cycling	75 W below VT (~55% VO _{2max})
Lee and Thake [30]	Fixed-intensity	10	60	40	25	Cycling	50% VO _{2peak} (136 ± 16 W)
Salgado et al. [27]	Fixed-intensity	10	110 (50, 10 rest, 50)	40	20	Cycling	75 W below VT (~55% VO _{2max} [171 ± 44 W])
Sotiridis et al. [25]	Isothermic	10	90	35	56	Cycling	50% PP until target T _{core} of 38.5°C
Salgado et al. [29]	Fixed-intensity	8	120	40	40	Treadmill walking	5 km.hr ⁻¹ , 2% incline

Table 2. Heat acclimation methods implemented in the included CA research studies.

Note: VT = ventilatory threshold, PP = peak power, T_{amb} = ambient temperature, RH = relative humidity.

Table 3. Hypoxic test methods implemented in the included CA research studies.

Study	Approx. Elevation (m)	NH / HH (pressure [mmHg])	FiO ₂	PiO₂ (mmHg)	Duration	Intensity	Modality	Protocol	T _{amb} (°C)	RH (%)
Heled et al. [32]	~2400	NH	0.16	~114	To volitional exhaustion	5 km.hr ⁻¹ (3-min), then 7 km.hr ⁻¹ , then 1 km.hr ⁻¹ every 3-min	Walking Running	OBLA to VO _{2max}	-	-
Lee et al. [22]	~3000	NH inspired gas	0.14	~100	75-min	75-min Rest (15-min) then 50% VO _{2peak} (60-min)		Stress Test: Rest and Submaximal	-	-
Gibson et al. [31]	~4390	NH	0.12	~86	30-min	Rest (10-min), then 40% (10- min) and 65% (10-min) of normoxic VO _{2peak}	Rest and Cycling	Rest and Submaximal	18	40
Lee et al. [24]	~3000	NH inspired gas	0.14	~100	55-min	Rest (15-min) then 50% normoxic VO _{2peak} (40-min)	Rest and Cycling	Stress Test: Rest and Submaximal	-	-
	~3000	NH inspired gas	0.14	~100	16.1 km	Self-selected	Cycling	TT (time)	-	-
	1600	HH (633)	-	~123	To volitional exhaustion	70 W (1-min), then 35 W.min ⁻	Cycling	VO₂max	-	-
White et al. [28]	4350	HH (455)	-	~86	To volitional exhaustion	70 W (1-min), then 35 W.min ⁻	Cycling	[.] VO _{2max}	-	-
	4350	HH (455)	-	~86	16.0 km	Sell-selected	Cycling	TT (time)		
	1600	HH (633)	-	~123	45-min	55% VO _{2max}	Cycling	Stress Test: Submaximal	40	20
Lee and Thake [30]	~3000	NH inspired gas	0.14	~100	55-min	Rest (15-min) then 50% normoxic VO _{2peak} (40-min: 136 ± 16 W)	Rest	Stress Test: Rest and Submaximal	-	-
	1600	HH (633)	-	~123	To volitional exhaustion	70 W (1-min), then 35 W.min ⁻	Cycling	VO₂peak	-	-
	4350	HH (455)	-	~86	To volitional exhaustion	70 W (1-min), then 35 W.min ⁻	Cycling	VO₂peak	-	-
Salgado et al. [27]	1600	HH (633)	-	~123	30-min	Self-selected (10-min), then ~70% power @ VT-75 W (10- min: 120 ± 30 W), then ~80% power @ VT-75 W (10-min: 137 ± 35 W). Power @ VT-75 W = 171 ± 44 W	Cycling	Stress Test: Submaximal	21	-
	4350	HH (455)	-	~86	30-min	Self-selected (10-min), then ~70% power @ VT-75 W, (10-min: 95 ± 23 W), then ~80% power @ VT-75 W (10- min: 108 ± 26 W).	Cycling	Stress Test: Submaximal	21	-

					Journal Pre-proof					
						Power @ VT-75W = 133 ± 32 W				
Sotiridis et al. [25]	~3600	NH inspired gas	0.13	~93	30-min	Rest (2-min), warm up at 90 W (2-min) then 40% of normoxic PP (30-min)	Cycling	Stress Test: Rest and Submaximal	23	50.5
	~3600	NH inspired gas	0.13	~93	To volitional exhaustion	100 W (2-min), then 20 W.min ⁻¹	Cycling	VO₂реак	23	50.5
	3500	HH (495)	-	~94	30-min	~50% normoxic ՝VO _{2peak} (30- min)	Cycling	Stress Test: Submaximal	20	20
Salgado et al. [29]	3500	HH (495)	-	~94	15-min	Self-selected	Cycling	TT (work completed)	20	20
	3500	HH (495)	-	~94	30-hrs	Long-term exposure	Rest and Cycling	Long-term exposure: rest and Submaximal	20	20

Note: OBLA = onset of blood lactate accumulation, VT = ventilatory threshold, VT-75 W = ventilatory threshold subtracted by 75 watts, PP = peak power, TT = time trial, NH = normobaric hypoxia, HH = hypobaric hypoxia, FiO₂ = fraction of inspired of oxygen, PiO₂ = partial pressure of inspired oxygen (equation: FiO₂ x [barometric pressure – saturated vapour pressure of H₂O]), T_{amb} = ambient temperature, RH = relative humidity.

				Pre-	HA	Post	-HA		SMD	95%	Cls	Weight
Measure	Study	n	Conditions	Mean	SD	Mean	SD	Difference	(Hedges' g)	Lower	Upper	(%)
	*Salgado et al. [29]	13	3500 m [23-hrs]	87	13	89	11	+2	0.15	-0.41	0.72	-
		13	3500 m [1-hr]	72	10	70	9	-2	-0.20	-0.76	0.37	-
HR (b.min⁻¹)									0.00	-0.39	0.39	58.9
(1 - 0.070, 1 - 0.20)	Lee et al. [24]	7	3000 m	82	16	79	11	-3	-0.18	-0.97	0.60	20.6
	Gibson et al. [31]	8	4390 m	65	8	61	10	-4	-0.38	-1.14	0.38	20.5
	Lee et al. [24]	7	3000 m	89.0	3.0	91.0	2.0	+2.0	0.66	-0.23	1.55	46.2
SpO ₂ (%)	Gibson et al. [31]	8	4390 m	79.8	3.6	82.0	3.3	+2.2	0.55	-0.24	1.35	53.9
$(l^2 = 0.0\%, P < 0.001)$	#Salgado et al. [29]	13	3500 m [23-hrs]	88.0	4.0	89.0	3.0	+1.0	0.26	-0.31	0.84	-
		13	3500 m [1-hr]	87.0	7.0	87.0	4.0	0.0	0.00	-0.56	0.56	-
	*Salgado et al. [29]	13	3500 m [1-hr]	12.2	2.1	12.9	2.4	+0.7	0.29	-0.29	0.86	-
		13	3500 m [23-hrs]	13.4	2.3	13.9	2.2	+0.5	0.21	-0.36	0.78	-
$\dot{\mathbf{V}}_{\mathbf{E}}$ (L.min ⁻¹)									0.25	-0.15	0.64	57.1
(1 = 0.070, 1 = 0.13)	Lee et al. [24]	7	3000 m	16.0	2.5	16.5	2.7	+0.5	0.16	-0.62	0.95	20.7
	Gibson et al. [31]	8	4390 m	10.5	2.3	10.2	1.4	-0.3	-0.14	-0.87	0.59	22.3
ŻO₂ (L.min⁻¹)	Lee et al. [24]	7	3000 m	0.36	0.06	0.38	0.12	+0.02	0.18	-0.61	0.96	48.2
$(l^2 = 0.0\%, P < 0.001)$	Gibson et al. [31]	8	4390 m	0.34	0.06	0.35	0.05	+0.01	0.16	-0.57	0.89	51.8
T _{core} (°C)	Lee et al. [24]	7	3000 m	37.11	0.20	37.08	0.15	-0.03	-0.14	-0.93	0.64	46.5
$(l^2 = 15.3\%, P = 0.09)$	Sotiridis et al. [25]	12	3600 m	37.40	0.30	37.20	0.30	-0.20	-0.62	-1.26	0.03	53.5

Table 4. Resting data observations from the included CA research studies.

Note: * represents combined group data for further statistical analyses. # represents data that was combined but removed from further statistical analysis due to Egger regression asymmetry (p<0.05).

					цл	Post			SMD	95%	Cls	Weight
Measure	Study	n	Conditions / Intensity	Mean	SD	Mean	SD	Difference	(Hedges' g)	Lower	Upper	(%)
	*Salgado et al. [29]	13	3500 m 50% [.] VO _{2peak} [24-hrs] ^a	160	13	158	9	-2	-0.17	-0.73	0.40	-
		13	3500 m 50% ['] VO _{2peak} [2-hrs] ^a	151	13	148	10	-3	-0.24	-0.81	0.33	-
	*Lee et al. [22]	8	3000 m 50% VO _{2peak} a	159	20	150	14	-9	-0.45	-1.23	0.32	-
		8	3000 m 50% VO _{2peak} ^b	165	20	156	12	-9	-0.47	-1.25	0.30	-
									-0.50	-1.04	0.03	26.6
HR (b.min⁻¹) $(l^2 = 27.1\% \text{ P} < 0.001)$	*Gibson et al. [31]	8	4390 m 65%	168	14	158	13	-10	-0.64	-1.46	0.18	-
(1 - 27.170, 1 < 0.001)		8	4390 m 40% VO _{2peak} ^a	132	13	122	12	-10	-0.69	-1.53	0.14	-
									-0.33	-0.84	0.19	27.9
	Lee et al. [24] 7		3000 m 50% VO _{2peak} ^a	140	14	131	9	-9	-0.64	-1.53	0.24	15.9
	White et al. [28]	8	1600 m 55% VO _{2peak} c	166	16	148	19	-18	-0.89	-1.79	0.01	14.7
	Sotiridis et al. [25]	12	3600 m 40% PP ^a	153	8	143	6	-10	-1.30	-2.13	-0.48	14.9
	Lee et al. [24]	7	3000 m 50%	13.8	1.3	13.5	1.1	-0.3	-0.21	-1.00	0.58	41.2%
(l ² = 0.0%, P < 0.001)	Sotiridis et al. [25]	12	3600 m 40% PPª	17.9	3.4	17.2	2.6	-0.7	-0.21	-0.81	0.38	58.8%
SV (mL)	Lee et al. [24]	7	3000 m 50%	99	10	103	11	+4	0.32	-0.49	1.13	39.8%
(l ² = 0.0%, P = 0.02)	Sotiridis et al. [25]	12	3600 m 40% PP ^a	117	23	120	17	+3	0.14	-0.45	0.73	60.2%
	*Gibson et al. [31]	8	4390 m 65% VO _{2peak} a	73.4	3.0	76.4	3.1	+3.0	0.85	-0.03	1.74	-
		8	4390 m 40%	74.3	4.9	75.9	3.3	+1.6	0.33	-0.42	1.09	-
									0.61	0.05	1.16	21.4
	Lee et al. [24]	7	3000 m 50%	83.0	3.0	85.0	2.0	+2.0	0.66	-0.23	1.55	15.2
SpO₂ (%) (I ² = 55.7%, P = 0.11)	Heled et al. [32]	8	2400 m 7 km.hr ^{-1a}	86.5	2.0	88.0	2.0	+1.5	0.65	-0.17	1.47	16.0
(, ,	*Salgado et al. [29]	13	3500 m 50% ['] VO _{2peak} [2-hrs] ^a	84.0	3.0	84.0	3.0	0.0	0.00	-0.56	0.56	-
		13	3500 m 50%	84.0	3.0	84.0	3.0	0.0	0.00	-0.56	0.56	-
									0.00	-0.39	0.39	26.6
	Sotiridis et al. [25]	12	3600 m 40% PPª	78.4	4.2	77.4	4.9	-1.0	-0.20	-0.80	0.39	20.7
Ż _E (L.min⁻¹)	*Salgado et al. [29]	13	3500 m 50%	53.7	5.6	55.9	5.9	+2.2	0.36	-0.23	0.94	-

Table 5. Submaximal data observations from the included CA research studies.

	13	3500 m 50%	56.1	5.0	56.9	5.7	+0.8	0.14	-0.43	0.70	-
							+1.5	0.26	-0.14	0.66	33.8
*Gibson et al. [31]	8	4390 m 40% VO _{2peak}	54.0	12.5	50.7	10.5	-3.3	-0.25	-0.99	0.49	-
	8	4390 m 65% VO _{2peak} ^a	116.1	27.4	108.7	17.6	-7.4	-0.28	-1.02	0.47	-
							-5.3	-0.11	-0.61	0.40	27.0
Sotiridis et al. [25]	12	3600 m 40% PPª	66.9	10.5	63.2	10.1	-3.7	-0.33	-0.94	0.27	22.4
Lee et al. [24]	7	3000 m 50% VO _{2peak} a	60.8	5.0	58.8	3.2	-2.0	-0.40	-1.22	0.42	33.8
*Gibson et al. [31]	8	4390 m 65% VO _{2peak} a	2.85	0.45	2.85	0.28	0.00	0.00	-0.73	0.73	-
	8	4390 m 40%	1.82	0.32	1.78	0.25	-0.04	-0.12	-0.85	0.61	-
							-0.02	-0.02	-0.53	0.48	26.1
Lee et al. [24]	7	3000 m 50% VO _{2peak} a	1.60	0.10	1.60	0.14	0.00	0.00	-0.78	0.78	14.5
*Salgado et al. [29]	13	3500 m 50% VO _{2peak} [24-hrs] ^a	1.63	0.23	1.60	0.26	-0.03	-0.11	-0.68	0.45	-
	13	3500 m 50% VO _{2peak} [2-hrs]ª	1.63	0.24	1.59	0.26	-0.04	-0.15	-0.71	0.42	-
							-0.03	-0.12	-0.51	0.27	40.2
Sotiridis et al. [25]	12	3600 m 40% PPª	2.31	0.27	2.22	0.25	-0.10	-0.34	-0.94	0.27	19.3
*Salgado et al. [29]	13	3500 m 50%	0.94	0.10	0.96	0.10	0.0	0.19	-0.38	0.75	-
	13	3500 m 50%	0.91	0.11	0.93	0.10	0.0	0.18	-0.39	0.74	-
								0.18	-0.21	0.58	43.1
*Gibson et al. [31]	8	4390 m 40%	0.94	0.07	0.92	0.08	0.0	-0.23	-0.97	0.51	-
	8	4390 m 65% VO _{2peak} a	1.06	0.08	1.01	0.08	-0.1	-0.54	-1.34	0.25	-
								-0.27	-0.78	0.24	34.4
Lee et al. [24]	7	3000 m 50% VO _{2peak} a	0.98	0.06	0.95	0.06	0.0	-0.42	-1.25	0.40	22.5
Gibson et al. [31]	8	4390 m 40% VO _{2peak} a	25	4	25	2	0	-	-	-	-
	8	4390 m 65% VO _{2peak} a	40	5	39	4	-1	-	-	-	-
*Lee et al. [24]	8	3000 m 50% VO _{2peak} a	37.80	0.40	37.60	0.30	-0.20	-0.49	-1.27	0.29	-
	8	3000 m 50%	38.10	0.40	37.80	0.30	-0.30	-0.74	-1.58	0.11	-
								-0.61	-1.17	-0.06	36.6
Sotiridis et al. [25]	12	3600 m 40% PP ^a	37.40	0.30	37.20	0.30	-0.20	-0.62	-1.26	0.03	28.5
Lee et al. [24]	7	3000 m 50% VO _{2peak} a	37.55	0.18	37.40	0.14	-0.15	-0.78	-1.71	0.15	17.1
White et al. [28]	8	1600 m 55% VO _{2peak} c	38.80	0.50	38.40	0.30	-0.40	-0.84	-1.72	0.04	17.8
^Lee et al. [22]	8	3000 m 50% VO _{2peak} *	32.40	0.50	33.30	1.10	+0.9	0.91	0.01	1.82	-
	*Gibson et al. [31] Sotiridis et al. [25] Lee et al. [24] *Gibson et al. [31] Lee et al. [24] *Salgado et al. [29] Sotiridis et al. [25] *Salgado et al. [29] *Gibson et al. [21] Lee et al. [24] Gibson et al. [31] *Lee et al. [24] Sotiridis et al. [25] Lee et al. [24] White et al. [28] *Lee et al. [22]	*Gibson et al. [31] 8 Sotiridis et al. [25] 12 Lee et al. [24] 7 *Gibson et al. [31] 8 Lee et al. [24] 7 *Salgado et al. [29] 13 13 13 Sotiridis et al. [25] 12 *Salgado et al. [29] 13 13 13 *Gibson et al. [29] 13 13 13 *Gibson et al. [31] 8 *Gibson et al. [31] 8 8 8 Lee et al. [24] 7 Gibson et al. [31] 8 8 8 *Lee et al. [24] 7 White et al. [24] 7 White et al. [28] 8 *Lee et al. [24] 7	13 3500 m 50% VO2peak [24-hrs] ^a *Gibson et al. [31] 8 4390 m 40% VO2peak 8 4390 m 65% VO2peak a Sotiridis et al. [25] 12 3600 m 40% PP ^a Lee et al. [24] 7 3000 m 50% VO2peak ^a *Gibson et al. [31] 8 4390 m 65% VO2peak ^a *Gibson et al. [24] 7 3000 m 50% VO2peak ^a *Salgado et al. [29] 7 3000 m 50% VO2peak [24-hrs] ^a 3500 m 50% VO2peak [24-hrs] ^a 3500 m 50% VO2peak [24-hrs] ^a Sotiridis et al. [25] 12 3600 m 40% PP ^a *Salgado et al. [29] 13 3500 m 50% VO2peak [24-hrs] ^a 3500 m 50% VO2peak [24-hrs] ^a 3500 m 50% VO2peak [24-hrs] ^a *Salgado et al. [29] 13 3500 m 50% VO2peak [24-hrs] ^a *Sotiridis et al. [29] 13 3500 m 50% VO2peak *Gibson et al. [31] 8 4390 m 65% VO2peak ^a *Gibson et al. [31] 8 4390 m 65% VO2peak ^a *Gibson et al. [24] 7 3000 m 50% VO2peak ^a *Gibson et al. [24] 8 3000 m 50% VO2peak ^a *Gibson et al. [24] 8 3000 m 50% VO2peak ^a	13 3500 m 50% VO2peak [24-hrs]a 56.1 *Gibson et al. [31] 8 4390 m 40% VO2peak 54.0 8 4390 m 65% VO2peak 116.1 Sotiridis et al. [25] 12 3600 m 40% PPa 66.9 Lee et al. [24] 7 3000 m 50% VO2peak ^a 60.8 *Gibson et al. [31] 8 4390 m 65% VO2peak ^a 2.85 8 4390 m 40% VO2peak ^a 1.82 Lee et al. [24] 7 3000 m 50% VO2peak ^a 1.60 *Salgado et al. [29] 13 3500 m 50% VO2peak [24-hrs] ^a 1.63 Sotiridis et al. [25] 12 3600 m 40% PPa 2.31 *Salgado et al. [29] 13 3500 m 50% VO2peak [24-hrs] ^a 0.94 13 3500 m 50% VO2peak [24-hrs] ^a 0.94 0.91 *Salgado et al. [29] 13 3500 m 50% VO2peak ^a 0.94 13 3500 m 50% VO2peak ^a 0.94 0.94 *Gibson et al. [31] 8 4390 m 65% VO2peak ^a 0.94 *Gibson et al. [31] 8 4390 m 65% VO2peak ^a 25 8 3000 m 50% VO2peak ^a 37.8	13 3500 m 50% VO _{2peak} [24-hrs] ^a 56.1 5.0 *Gibson et al. [31] 8 4390 m 40% VO _{2peak} a 54.0 12.5 Sotiridis et al. [25] 12 3600 m 40% PP ^a 66.9 10.5 Lee et al. [24] 7 3000 m 50% VO _{2peak} a 60.8 5.0 *Gibson et al. [31] 8 4390 m 65% VO _{2peak} a 60.8 5.0 *Gibson et al. [24] 7 3000 m 50% VO _{2peak} a 1.82 0.32 Lee et al. [24] 7 3000 m 50% VO _{2peak} a 1.60 0.10 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [24-hrs] ^a 1.63 0.23 Sotiridis et al. [25] 12 3600 m 40% PP ^a 2.31 0.27 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.10 13 3500 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.10 13 3500 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.07 *Gibson et al. [31] 8 4390 m 65% VO _{2peak} a 0.94 0.07 *Gibson et al. [31] 8 4390 m 65% VO _{2peak} a 0.94 0.40 <	13 3500 m 50% VO _{2peak} [24-hrs] ^a 56.1 5.0 56.9 *Gibson et al. [31] 8 4390 m 40% VO _{2peak} 54.0 12.5 50.7 Sotiridis et al. [25] 12 3600 m 40% PP ^a 66.9 10.5 63.2 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 60.8 5.0 58.8 *Gibson et al. [31] 8 4390 m 65% VO _{2peak} ^a 2.85 0.45 2.85 *Gibson et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.60 0.10 1.60 *Salgado et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.63 0.23 1.60 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [24-hrs] ^a 1.63 0.27 2.22 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.10 0.96 13 3500 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.10 0.92 *Gibson et al. [29] 13 3500 m 50% VO _{2peak} 0.94 0.07 0.92 *Gibson et al. [31] 8 4390 m 40% VO _{2peak} ^a 0.94 0.06 0.95 Gibson et al. [31]<	13 3500 m 50% VO2peak [24-hrs] ^a 56.1 5.0 5.7 *Gibson et al. [31] 8 4390 m 40% VO2peak 4390 m 65% VO2peak ^a 54.0 12.5 50.7 10.5 Sotiridis et al. [25] 12 3600 m 40% PP ^a 66.9 10.5 63.2 10.1 Lee et al. [24] 7 3000 m 50% VO2peak ^a 60.8 5.0 58.8 3.2 *Gibson et al. [31] 8 4390 m 65% VO2peak ^a 6.8 0.45 2.85 0.45 2.85 0.28 *Gibson et al. [24] 7 3000 m 50% VO2peak ^a 1.60 0.10 1.60 0.14 *Salgado et al. [29] 13 3500 m 50% VO2peak [2-hrs] ^a 1.63 0.23 1.60 0.26 Sotiridis et al. [25] 12 3600 m 40% PP ^a 2.31 0.27 2.22 0.25 *Salgado et al. [29] 13 3500 m 50% VO2peak [2-hrs] ^a 1.63 0.24 1.59 0.26 Sotiridis et al. [25] 12 3600 m 40% VO2peak [2-hrs] ^a 0.94 0.10 0.96 0.10 13 3500 m 50% VO2peak ^a 0.94 0.07 0.92 <th>*Gibson et al. [31] 3500 m 50% VO_{2peak} 56.1 5.0 5.7 +0.8 *Gibson et al. [31] 8 4390 m 40% VO_{2peak} 54.0 12.5 50.7 10.5 -3.3 Sotiridis et al. [25] 12 3600 m 40% PPa 66.9 10.5 63.2 10.1 -3.7 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 60.8 5.0 58.8 3.2 -2.0 *Gibson et al. [21] 8 4390 m 65% VO_{2peak}^a 2.85 0.45 2.85 0.02 0.04 *Gibson et al. [24] 7 3000 m 50% VO_{2peak}^a 1.82 0.32 1.78 0.25 -0.04 *Salgado et al. [29] 13 3500 m 50% VO_{2peak} [24-hrs]^a 1.63 0.24 1.59 0.26 -0.03 *Salgado et al. [25] 12 3600 m 40% PP^a 2.31 0.27 2.22 0.25 -0.04 *Salgado et al. [25] 12 3600 m 50% VO_{2peak} [2-hrs]^a 0.94 0.10 0.96 0.00 *Salgado et al. [21] 13 3500 m 50% VO_{2peak}^a 0.94 0.10 0.96 0.00</th> <th>13 3500 m 50% VO_{2peak} [24-hrs]^a 56.1 5.0 56.9 5.7 +0.8 0.14 "Gibson et al. [31] 8 4390 m 40% VO_{2peak}^a 54.0 12.5 50.7 10.5 -3.3 -0.25 Sotiridis et al. [25] 12 3600 m 40% PP^a 66.9 10.5 63.2 10.1 -5.3 -0.11 Sotiridis et al. [24] 7 3000 m 50% VO_{2peak}^a 60.8 5.0 58.8 3.2 -2.0 -0.40 "Gibson et al. [21] 8 4390 m 40% VO_{2peak}^a 2.85 0.45 2.85 0.28 0.00 0.00 *Gibson et al. [24] 7 3000 m 50% VO_{2peak}^a 1.82 0.32 1.78 0.25 -0.04 -0.12 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 1.60 0.40 0.00 -0.00 *Salgado et al. [29] 13 3500 m 50% VO_{2peak} [24-hrs]^a 1.63 0.24 1.59 0.26 -0.04 -0.12 Sotiridis et al. [25] 12 3600 m 40% PP^a 0.31 0.27 2.22 0.10 -0.03 -0.12 Sot</th> <th>13 3500 m 50% VO_{2peak} [24-hrs]^a 5.1 5.0 5.7 +0.8 0.14 -0.43 "Gibson et al. [31] 8 4390 m 40% VO_{2peak}^a 116.1 27.4 108.7 7.6 -7.4 -0.28 -1.02 Sotiridis et al. [25] 12 3600 m 40% PPa 66.9 10.5 63.2 10.1 -3.7 -0.33 -0.94 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 60.8 5.0 58.8 3.2 -0.0 -0.04 -1.22 "Gibson et al. [31] 8 4390 m 65% VO_{2peak}^a 2.85 0.45 2.85 0.28 0.00 0.00 -0.73 *Gibson et al. [21] 7 3000 m 50% VO_{2peak}^a 1.82 0.32 1.78 0.25 -0.04 -0.12 -0.85 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 1.63 0.24 1.59 0.26 -0.04 -0.12 -0.51 Sotiridis et al. [25] 12 3600 m 40% PPa 2.31 0.27 2.22 0.25 -0.10 -0.34 -0.94 *Salgado et al. [29] 13 3500 m 50% VO</th> <th>*Gibson et al. [31] 3500 m 50% VO_{2peak} [24-hrs]^a 56.1 5.0 5.7 +0.8 0.14 -0.43 0.70 *Gibson et al. [31] 8 4390 m 40% VO_{2peak} 54.0 12.5 5.7 10.5 -3.3 -0.25 -0.99 0.49 Sotiridis et al. [25] 12 3600 m 40% PP^a 66.9 10.5 58.8 3.2 -7.0 -0.33 -0.94 0.27 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 6.8 5.0 58.8 3.2 -2.0 -0.40 -1.22 0.42 *Gibson et al. [31] 8 4390 m 60% VO_{2peak}^a 2.85 0.45 2.85 0.28 0.00 0.00 -0.73 0.73 Lee et al. [24] 7 3000 m 50% VO_{2peak}^a 1.60 0.45 1.60 0.28 0.00 0.00 -0.78 0.48 *Salgado et al. [29] 13 3500 m 50% VO_{2peak}[2-hrs]^a 1.60 0.26 -0.03 -0.11 -0.61 0.47 *Salgado et al. [29] 13 3500 m 50% VO_{2peak}[2-hrs]^a 1.63 0.27 0.25 -0.10 -0.15</th>	*Gibson et al. [31] 3500 m 50% VO _{2peak} 56.1 5.0 5.7 +0.8 *Gibson et al. [31] 8 4390 m 40% VO _{2peak} 54.0 12.5 50.7 10.5 -3.3 Sotiridis et al. [25] 12 3600 m 40% PPa 66.9 10.5 63.2 10.1 -3.7 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 60.8 5.0 58.8 3.2 -2.0 *Gibson et al. [21] 8 4390 m 65% VO _{2peak} ^a 2.85 0.45 2.85 0.02 0.04 *Gibson et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.82 0.32 1.78 0.25 -0.04 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [24-hrs] ^a 1.63 0.24 1.59 0.26 -0.03 *Salgado et al. [25] 12 3600 m 40% PP ^a 2.31 0.27 2.22 0.25 -0.04 *Salgado et al. [25] 12 3600 m 50% VO _{2peak} [2-hrs] ^a 0.94 0.10 0.96 0.00 *Salgado et al. [21] 13 3500 m 50% VO _{2peak} ^a 0.94 0.10 0.96 0.00	13 3500 m 50% VO _{2peak} [24-hrs] ^a 56.1 5.0 56.9 5.7 +0.8 0.14 "Gibson et al. [31] 8 4390 m 40% VO _{2peak} ^a 54.0 12.5 50.7 10.5 -3.3 -0.25 Sotiridis et al. [25] 12 3600 m 40% PP ^a 66.9 10.5 63.2 10.1 -5.3 -0.11 Sotiridis et al. [24] 7 3000 m 50% VO _{2peak} ^a 60.8 5.0 58.8 3.2 -2.0 -0.40 "Gibson et al. [21] 8 4390 m 40% VO _{2peak} ^a 2.85 0.45 2.85 0.28 0.00 0.00 *Gibson et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.82 0.32 1.78 0.25 -0.04 -0.12 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.60 0.40 0.00 -0.00 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [24-hrs] ^a 1.63 0.24 1.59 0.26 -0.04 -0.12 Sotiridis et al. [25] 12 3600 m 40% PP ^a 0.31 0.27 2.22 0.10 -0.03 -0.12 Sot	13 3500 m 50% VO _{2peak} [24-hrs] ^a 5.1 5.0 5.7 +0.8 0.14 -0.43 "Gibson et al. [31] 8 4390 m 40% VO _{2peak} ^a 116.1 27.4 108.7 7.6 -7.4 -0.28 -1.02 Sotiridis et al. [25] 12 3600 m 40% PPa 66.9 10.5 63.2 10.1 -3.7 -0.33 -0.94 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 60.8 5.0 58.8 3.2 -0.0 -0.04 -1.22 "Gibson et al. [31] 8 4390 m 65% VO _{2peak} ^a 2.85 0.45 2.85 0.28 0.00 0.00 -0.73 *Gibson et al. [21] 7 3000 m 50% VO _{2peak} ^a 1.82 0.32 1.78 0.25 -0.04 -0.12 -0.85 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.63 0.24 1.59 0.26 -0.04 -0.12 -0.51 Sotiridis et al. [25] 12 3600 m 40% PPa 2.31 0.27 2.22 0.25 -0.10 -0.34 -0.94 *Salgado et al. [29] 13 3500 m 50% VO	*Gibson et al. [31] 3500 m 50% VO _{2peak} [24-hrs] ^a 56.1 5.0 5.7 +0.8 0.14 -0.43 0.70 *Gibson et al. [31] 8 4390 m 40% VO _{2peak} 54.0 12.5 5.7 10.5 -3.3 -0.25 -0.99 0.49 Sotiridis et al. [25] 12 3600 m 40% PP ^a 66.9 10.5 58.8 3.2 -7.0 -0.33 -0.94 0.27 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 6.8 5.0 58.8 3.2 -2.0 -0.40 -1.22 0.42 *Gibson et al. [31] 8 4390 m 60% VO _{2peak} ^a 2.85 0.45 2.85 0.28 0.00 0.00 -0.73 0.73 Lee et al. [24] 7 3000 m 50% VO _{2peak} ^a 1.60 0.45 1.60 0.28 0.00 0.00 -0.78 0.48 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [2-hrs] ^a 1.60 0.26 -0.03 -0.11 -0.61 0.47 *Salgado et al. [29] 13 3500 m 50% VO _{2peak} [2-hrs] ^a 1.63 0.27 0.25 -0.10 -0.15

				C (III 1	
			2.4.3		

(l ² = 32.1%, P = 0.01)	-	8	3000 m 50%	33.10	0.80	33.70	1.30	+0.6	0.48	-0.30	1.26	-
	Sotiridis et al. [25]	12	3600 m 40% PP ^a	34.20	0.80	33.80	0.70	-0.4	-0.49	-1.12	0.14	62.0
	White et al. [28]	8	1600 m 55%	37.70	0.30	37.10	0.60	-0.6	-1.10	-2.07	-0.12	38.0
110	Gibson et al. [31]	8	4390 m 40%	0.1	0.4	0.1	0.4	0.0	-	-	-	-
		8	4390 m 65%	0.8	1.2	0.1	0.4	-0.7	-	-	-	-
	*Gibson et al. [31]	8	4390 m 40%	9.4	1.9	10.1	1.6	+0.7	0.35	-0.41	1.10	-
		8	4390 m 65%	16.4	2.2	15.8	1.3	-0.6	-0.29	-1.03	0.46	-
									0.02	-0.48	0.52	29.6
RPE	*Salgado et al. [29]	13	3500 m 50% [.] VO _{2peak} [2-hrs] ^a	14.0	3.0	14.0	3.0	0.0	0.00	-0.56	0.56	-
(l ² = 37.6%, P = 0.10)		13	3500 m 50% [.] VO _{2peak} [24-hrs] ^a	15.0	2.0	14.0	3.0	-1.0	-0.36	-0.95	0.22	-
									-0.18	-0.57	0.22	36.6
	Lee et al. [24]	7	3000 m 50%	12.0	2.0	11.0	1.0	-1.0	-0.53	-1.38	0.32	17.9
	White et al. [28]	8	1600 m 55%	15.0	2.0	13.0	2.0	-2.0	-0.87	-1.76	0.02	15.9

Note: LLQ and BR data from multiple trials were excluded from statistical analysis as data is from only 1 study, ^a represents mean data, ^b represents peak data, ^c represents end data, * represents combined group data for further statistical analyses, # represents data that was combined but removed from further statistical analysis due to Egger regression asymmetry (p<0.05) and ^ represents data that was combined but removed from further statistical analysis due to high I² (Considerable heterogeneity [75-100%]).

	Study				Pre-HA Post-HA				SMD	95% Cls		Weight
Measure		n	Conditions / Intensity	Mean	SD	Mean	SD	Difference	(Hedges' g)	Lower	Upper	(%)
	*White et al. [28]	8	1600 m [.] VO _{2max}	173	13	177	6	4	0.34	-0.41	1.10	-
		8	4350 m VO _{2max}	170	12	170	9	0	0.00	-0.73	0.73	-
		8	1600 m 16.0 km TT	172	8	172	5	0	0.00	-0.73	0.73	-
									0.10	-0.31	0.51	32.0
HR (b.min ⁻¹)	Lee et al. [24]	7	3000 m 16.1 km TT	164	11	166	13	2	0.14	-0.64	0.92	16.0
(1 - 20.070, 1 - 0.01)	*Salgado et al. [29]	13	3500 m 15-min TT [24-hrs]	165	12	164	12	-1	-0.08	-0.64	0.49	-
		13	3500 m 15-min TT [2-hrs]	154	14	152	12	-2	-0.14	-0.71	0.42	-
									-0.13	-0.52	0.26	33.4
	Sotiridis et al. [25]	12	3600 m VO _{2peak}	187	8	182	8	-5	-0.58	-1.22	0.06	18.6
	*White et al. [28]	8	4350 m VO _{2max}	75.6	3.8	75.9	3.7	0.3	0.07	-0.66	0.80	-
		8	1600 m VO _{2max}	90.4	2.4	90.6	4.4	0.2	0.05	-0.68	0.78	-
SpO ₂ (%)		8	1600 m 16.0 km TT	76.4	3.3	76.5	2.6	0.1	0.03	-0.70	0.76	-
$(I^2 = 0.0\%, P = 0.34)$									0.02	-0.39	0.43	48.1
	*Salgado et al. [29]	13	3500 m 15-min TT [2-hrs]	83.0	4.0	83.0	3.0	0.0	0.00	-0.56	0.56	-
		13	3500 m 15-min TT [24-hrs]	84.0	3.0	84.0	3.0	0.0	0.00	-0.56	0.56	-
									0.00	-0.39	0.39	51.9
	Sotiridis et al. [25]	12	3600 m VO _{2peak}	169	28	177	22	8	0.29	-0.31	0.89	43.3
$V_{\rm E}$ (L.min ⁻¹)	*White et al. [28]	8	1600 m VO _{2max}	171	30	176	25	5	0.16	-0.57	0.89	-
(1 = 0.070, 1 < 0.001)		8	4350 m [.] VO _{2max}	175	33	181	32	6	0.16	-0.57	0.89	-
									0.19	-0.32	0.70	56.7
DED	White et al. [28]	8	4350 m [.] VO _{2max}	1.22	0.06	1.23	0.04	0.01	-	-	-	-
KEK		8	1600 m	1.23	0.06	1.21	0.04	-0.02	-	-	-	-
PD (brootho min-1)	White et al. [28]	8	4350 m [.] VO _{2max}	55.2	12.1	56.7	10.9	1.5	-	-	-	-
BR (breaths.min ⁻)		8	1600 m VO _{2max}	54.1	12.3	54.6	8.3	0.5	-	-	-	-

Table 6. Maximal and performance data observations from the included CA research studies.

	*White et al. [28]	8	1600 m VO _{2max}	17.5	1.7	18.4	1.2	0.9	0.53	-0.26	1.32	-
RPE		8	1600 m 16.0 km TT	18.8	1.3	18.4	1.3	-0.4	-0.27	-1.01	0.48	-
		8	4350 m VO _{2max}	18.5	1.1	17.9	1.1	-0.6	-0.47	-1.25	0.30	-
$(I^2 = 0.00\%, P = n/a)$									0.00	-0.41	0.41	48.2
	*Salgado et al. [29]	13	3500 m 15-min TT [2-hrs]	17.0	2.0	17.0	2.0	0.0	0.00	-0.56	0.56	-
		13	3500 m 15-min TT [24-hrs]	17.0	2.0	17.0	2.0	0.0	0.00	-0.56	0.56	-
						6			0.00	-0.39	0.39	51.8
	Sotiridis et al. [25]	12	3600 m VO _{2peak}	44.0	4.3	44.9	3.6	0.9	0.21	-0.38	0.80	32.5
	*White et al. [28]	8	4350 m VO _{2max}	46.1	4.7	47.1	5.6	1.0	0.18	-0.55	0.92	-
VO_2 (IIIL.Kg .IIIII) ($I^2 = 0.0\%$, P = 0.17)		8	1600 m VO _{2max}	55.4	7.2	54.8	5.9	-0.7	-0.09	-0.82	0.64	-
									0.02	-0.48	0.52	42.4
	Heled et al. [32]	8	2400 m VO _{2peak}	57.0	3.7	57.1	2.9	0.1	0.03	-0.70	0.76	25.1
PP (W)	Sotiridis et al. [25]	12	3600 m VO _{2peak}	282	28	294	26	12	0.41	-0.20	1.02	55.4
$(I^2 = 0.0\%, P = 0.002)$	Salgado et al. [27]	8	1600-4350 m VO _{2peak}	342	50	353	43	11	0.20	-0.53	0.94	44.6
TT (min)	White et al. [28]	8	4350 m 16.0 km TT	29.2	1.4	28.7	1.2	-0.5	-0.30	-1.04	0.45	55.8
$(I^2 = 0.0\%, P = 0.003)$	Lee et al. [24]	7	3000 m 16.1 km TT	42.7	2.9	40.7	2.8	-2.0	-0.59	-1.46	0.28	44.2
Note: RER and BR data from multiple trials were excluded from statistical analysis as data is from only 1 study, * represents combined group data for further statistical										statistical		
analyses.			$\sqrt{0}$									

		Mean	Weighted Mean	SMD	95%	- .						
Measure	Intensity	Difference	Difference	(CES Hedges' g)	Lower Upper		P-value					
	Rest	-2	-1	-0.12	-0.58	0.35	0.28					
HR (b.min ⁻¹)	Submaximal	-10	-11	-0.65	-1.11	-0.20	<0.001*					
	Maximal	-1	-1	-0.10	-0.56	0.37	0.51					
	Rest	+2.0	+2.0	0.60	-0.07	1.27	<0.001					
SpO ₂ (%)	Submaximal	+1	+1	0.29	-0.22	0.80	0.11					
	Maximal	+0.1	+0.1	0.01	-0.10	0.12	0.34					
	Rest	+0.3	+0.4	0.14	-0.32	0.61	0.19					
V _E (L.min ⁻¹)	Submaximal	-2.4	-1.7	-0.08	-0.57	0.41	0.59					
	Maximal	+7.0	+6.9	0.24	-0.40	0.87	<0.001					
$\dot{V}O$ (1 min ⁻¹)	Rest	+0.02	+0.01	0.17	0.04	0.29	<0.001*					
VO ₂ (L.mn)	Submaximal	-0.04	-0.04	-0.12	-0.33	0.10	0.08					
VO ₂ (mL.kg ⁻¹ .min ⁻¹)	Maximal	+0.4	+0.4	0.08	-0.18	0.35	0.17					
T (°C)	Rest	-0.11	-0.14	-0.40	-3.39	2.60	0.09					
Core (C)	Submaximal	-0.25	-0.25	-0.68	-0.86	-0.51	<0.001*					
T _{skin} (°C)	Submaximal	-0.50	-0.48	-0.72	-4.47	3.03	0.01					
Q (L.min ⁻¹)	Submaximal	-0.5	-0.6	-0.21	-0.24	-0.19	<0.001*					
SV (mL)	Submaximal	+4	+3	0.21	-0.93	1.35	0.02					
RER (A.U.)	Submaximal	-0.01	0.00	-0.11	-0.90	0.68	0.56					
	Submaximal	-0.9	-0.6	-0.29	-0.86	0.28	0.10					
KFE (A.O.)	Maximal	0.0	0.0	0.00	0.00	0.00	-					
PP (W)	Maximal	+12	+12	0.32	-0.98	1.61	0.00					
TT (min)	Maximal	-1.2	-1.2	-0.43	-2.27	1.42	0.00					
Note: CI data removed for	Note: CI data removed for rest T _{core} and submaximal T _{skin} for figure clarity. * represents data that doesn not cross the 'no effect' line.											

<u>-</u>	Heat Acclimat (3-12 days in 40°C	io , 40	n (HA))% RH))			
Hypoxi (NH/HH a	Ļ			Ĵ	Ż	50		
0 4-1			Re	est	Submaximal		Maximal	
Cross-Adaptation	Cross-Adaptations (CA)		Sig.	CES	Sig.	CES	Sig.	CES
	Heart rate		X	×	V	- 11	×	×
	Cardiac output		1	?		×	1	?
	Stroke volume		?		n/a	×	1	?
Respiratory 98	Oxygen saturation		n/a	~ ~	×	×	×	×
Respiratory 64	Ventilation		×	×	×	×	n/a	~
ALA.	Oxygen uptake			×	×	×	×	×
Metabolic	RER		?		×		?	
The sum of the second s	Core temperature		×	×		~ ~ ~	1	?
	Skin temperature		?		n/a	~~	?	
	RPE		?		? 🗵 🗸		?	
Perceptual	LLQ score		?		?		?	
	Peak power		1	? ?		?	n/a	 Image: A second s
	Time trial duration		. 1			?	n/a	1

Combined effect size ([CES] Hedges' g): × = <0.19 (*Trivial*), ✓ = 0.20-0.49 (*Small*), ✓ = 0.50-0.79 (*Moderate*) and ✓ ✓ = ≥0.80 (*Large*). Significance (Sig.): ☑ = significant (p<0.05), 🗵 = non-significant (p>0.05), n/a = non-significant (confidence intervals cross line of no effect), ? = insufficient data. Note: RH = relative humidity, NH = normobaric hypoxia, HH = hypobaric hypoxia, RER = respiratory exchange ratio, RPE = rating of perceived exertion, LLQ = Lake Louise Questionnaire.

Journal

Highlights:

- Cross-adaptation refers to the process where individuals adapt to one environmental • stressor, such as heat stress, but then demonstrate improved response to another environmental stressor, such as altitude exposure.
- Following repeated exercise sessions in heat stress, termed heat acclimation, humans • demonstrate physiological adaptations, such as improved oxygen saturation at rest and reduced heart rate and core temperature during submaximal exercise in hypoxic/altitude conditions.
- Cross-adaptation offers individuals, such as occupational and military workers, a time • efficient alternative to traditional hypoxic training interventions, to adapt for submaximal activity at altitude.

, ia. .erventio.

Funding Sources: none

Journal Pression

Declarations of interest: none

punalproproof