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ABSTRACT 

Symmetry plays key roles in modern physics especially in the study of integrable 

systems because of the existence of infinitely many local and nonlocal generalized 

symmetries. In addition to the fundamental role to find exact group invariant solutions 

via Lie point symmetries, some important new developments on symmetries and 

conservation laws are reviewed. The recursion operator method is important to find 

infinitely many local and nonlocal symmetries of (1+1)-dimensional integrable 

systems. In this paper, it is pointed out that a recursion operator may be obtained from 

one key symmetry, say, a residual symmetry. For (2+1)-dimensional integrable 

systems, the master-symmetry approach and the formal series symmetry method are 

reviewed. For the discrete systems, the symmetry related discrete KP hierarchy and 

the BKP hierarchy are also discussed. One believes that all the solutions of integrable 

models may be obtained by means of symmetry approach because the Darboux 

transformations and algebro-geometric solutions can be obtained from the localization 

of nonlocal symmetries and the symmetry constraint approach. The conservation laws 

are used to find higher dimensional integrable system from lower dimensional ones 

via a deformation algorithm. The ren variable, an extension of the Grassmann 

variable, are introduced to find novel aspect on integrable theory. The super-integrable 

theory and super-symmetric integrable theory are extended to ren integrable and ren-

symmetric integrable theories.  

 

Keywords: Symmetries; Integrable systems; Recursion operators; Formal series 

symmetries; Nonlocal symmetries; Darboux and Bäcklund transformation; Exact 

solutions 

1 Introduction 

Symmetry plays a key role in almost all the fields of physics especially in 

integrable systems because of the existence of infinitely many local and nonlocal 

generalized symmetries [1-6]. Symmetries are usually used to find symmetry 

invariant solutions, similarity reductions and even all solutions of nonlinear systems 

[7]. Noether’s theorem points out that every continuous symmetry is closely related to 

                  



a conservation law. In this short review paper, we point out some other aspects on the 

symmetries of integrable systems.  

In Sec. 2, we review the fundamental role of the Lie point symmetries of a 

nonlinear system to find its group invariant solutions. To find generalized symmetries 

of (1+1)-dimensional integrable systems, the most powerful method is to find the so-

called recursion operators. Sec. 3 includes a simple method to find recursion operators 

and then the generalized local and nonlocal symmetries of (1+1)-dimensional 

integrable systems. Using the localization of nonlocal symmetries for integrable 

systems, one can obtain Darboux transformations and many interaction solutions 

among solitons and some other types of nonlinear waves such as the Painlevé waves 

and cnoidal periodic waves. Applying the symmetry constraint method, the algebro-

geometric solutions of integrable systems can be obtained by solving finite 

dimensional integrable systems. In Sec. 4, the master-symmetry approach and the 

formal series symmetry method are applied to find general symmetries for (2+1)-

dimensional integrable systems. Sec. 5 is devoted to discuss the symmetries of 

discrete integrable systems. In Sec. 6, the conservation laws are used to find higher 

dimensional integrable systems thanks to a deformation algorithm. Using the 

deformation algorithm to any (1+1)-dimensional integrable systems, one can obtain 

some higher dimensional integrable models because of the existence of infinitely 

many symmetries and then conservation laws. In Sec. 7, the nonlocal symmetries 

related to the spectral functions of the Lax integrable systems are used to find new 

integrable systems related to the different nonlinear fields. The spectral functions 

usually are considered as bosonic. In this case, the integrable interacting models are 

called the integrable systems with consistent sources [8-10]. For the KdV equation, 

the integrable model with sources can be considered as the interacting model among 

long wave and short waves. In fact, the spectral functions may be fermionic and even 

any other non-commute fields, say, the ren fields which will be introduced in this 

paper. Whence the fermionic spectral functions are considered, the integrable model 

with sources are just the super- or Kuper-integrable systems [11]. If the spectral 

functions are taken as ren functions, then the integrable model with self-consistent 

sources will be defined as ren-integrable models which are the generalization of the 

super-integrable models. In Sec. 8, it is pointed out that the significant 

supersymmetric integrable systems can be extended to the so-called ren-symmetric 

integrable systems. The last section of the paper includes a short summary and some 

discussions.  

2 Lie point symmetries of nonlinear partial differential equations 

To find some explicit exact solutions of nonlinear partial differential equations 

(PDEs), the classical and nonclassical symmetry approach is one of the most popular 

and universal method no matter the PDEs are integrable or not. If fact, one can use 

some existing software to find exact solutions related to Lie point symmetries [12]. 

Here, we just take a simple example, the Korteweg-de Vries (KdV) equation, to 

                  



explain the fundamental procedure to find Lie point symmetries and the related finite 

transformations, group invariant solutions and symmetry reductions of nonlinear 

systems without using any packages.  

For the KdV equation: 

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = 0                                                                                                            

(1) 

a symmetry, 𝜎, is defined as a solution of its linearized equation: 

𝜎𝑡 + 𝜎𝑥𝑥𝑥 − 6𝜎𝑢𝑥 − 6𝑢𝜎𝑥 = 0                                                                                               

(2) 

that means Eq. 1 is form invariant under the transformation 𝑢 → 𝑢 + 𝜀𝜎 with 

infinitesimal 𝜀. A Lie point symmetry is defined as if a symmetry possesses the form:  

𝜎 = 𝑈(𝑥, 𝑡, 𝑢) − 𝑋(𝑥, 𝑡, 𝑢)𝑢𝑥 − 𝑇(𝑥, 𝑡, 𝑢)𝑢𝑡                                   (3) 

After substituting Eq. 3 into Eq. 2 and cancelling 𝑢𝑡  by means of Eq. 1, it is not 

difficult to find the final Lie point symmetry of the KdV equation has the form: 

𝜎 = 2𝑐𝑢 + 𝑔 + (𝑐𝑥 + 6𝑔𝑡 + 𝑥0)𝑢𝑥 + (3𝑐𝑡 + 𝑡0)𝑢𝑡               

= 𝑐(2𝑢 + 𝑥𝑢𝑥 + 3𝑡𝑢𝑡) + 𝑔(1 + 6𝑡𝑢𝑥) + 𝑥0𝑢𝑥 + 𝑡0𝑢𝑡 

                               = 𝑐𝜏1 + 𝑔𝜏0 + 𝑥0𝐾0 + 𝑡0𝐾1                                                    (4) 

with arbitrary constants 𝑐, 𝑔, 𝑥0 and 𝑡0, which are related to the scaling invariance， 

the Gallian invariance, the space translation invariance and the time translation 

invariance, respectively.  

The finite transformation of Eq. 4 can be simply obtained by solving the initial 

valued problem:  

𝑑𝑥1
𝑑𝜀

= 𝑐𝑥1 + 6𝑔𝑡1 + 𝑥0,
𝑑𝑡1
𝑑𝜀

= 3𝑐𝑡1 + 𝑡0,
𝑑𝑢1
𝑑𝜀

= −2𝑐𝑢1 − 𝑔   

                        𝑢1(0) = 𝑢, 𝑥1(0) = 𝑥, 𝑡1(0) = 𝑡                                                                      

(5) 

The general solution of Eq. 5 read: 

𝑢1 = e−2𝑐𝜀𝑢 + 𝑔0, 𝑥1 = e𝑐𝜀𝑥 − 6e3𝑐𝜀𝑔0𝑡 + 𝑋0, 𝑡1 = e3𝑐𝜀𝑡 + 𝑇0                (6) 

In Eq. 6, the constants *𝑔0, 𝑋0, 𝑇0+ are given by:  

              𝑇0 =
𝑎3−1

3𝑐
𝑡0, 𝑋0 =

𝑎−1

𝑐
𝑥0 +

𝑎3−3𝑎+2

𝑐2
𝑔𝑡0, 𝑔0 =

1−𝑎2

2𝑐𝑎2
𝑔, 𝑎 = e𝑐𝜀                    (7) 

The equivalent expression of Eq. 6 is that if 𝑢 = 𝑢(𝑥, 𝑡) is a solution of the KdV Eq. 

1, then: 

𝑢1 = e−2𝑐𝜀𝑢(e−𝑐𝜀(𝑥 + 6𝑔0𝑡 − 𝑋0 − 6𝑔0𝑇0),  e
−3𝑐𝜀(𝑡 − 𝑇0)) + 𝑔0                  

(8) 

is also a solution. 

   The invariant solution of the KdV Eq. 1 related to the symmetry Eq. 4 can be 

obtained by solving Eq. 4 with 𝜎 = 0. The result can be separated to two cases.  

Case 1. 𝑐 ≠ 0. In this case, the solution of 𝜎 = 0 reads: 

         𝑢 = −
𝑔

2𝑐
+

𝑈(𝑋)

(3𝑐𝑡+𝑡0)
2
3

, 𝑋 =
𝑐2𝑥+𝑐𝑥0−2𝑔𝑡0

𝑐2(3𝑐𝑡+𝑡0)
1
3

−
𝑔

𝑐2
(3𝑐𝑡 + 𝑡0)

2

3                                    (9) 

where U(X) satisfies the following third order ordinary differential equation:  

                  



        𝑈𝑋𝑋𝑋 = 6𝑈𝑈𝑋 + 𝑐𝑋𝑈𝑋 + 2𝑐𝑈                                                                                               

(10) 

which is equivalent to the Painlevé II equation [13,14].  

Case 2. 𝑐 = 0. In this case, we have: 

𝑢 = 𝑈(𝑌) −
𝑔𝑡

𝑡0
−

𝑥0

6𝑡0
, 𝑌 = 𝑥 −

3𝑔𝑡2

𝑡0
−

𝑥0𝑡

𝑡0
                                                                            

(11) 

where U satisfies:  

𝑈𝑌𝑌 = 3𝑈2 +
𝑔𝑌

𝑡0
+ 𝑐0                                                                                                            

(12) 

which is equivalent to the Painlevé I equation for 𝑔 ≠ 0. When 𝑔 = 0, Eq. 12 can be 

solved by means of the Weierstrass elliptic functions.  

3 Recursion operators and generalized local and nonlocal 

symmetries 

In addition to the Lie point symmetries, there are infinitely many generalized 

symmetries for integrable systems. In (1+1)-dimensional cases, to find infinitely 

many generalized symmetries, one can apply strong symmetries and/or recursion 

operators.  

Definition 1. For a known symmetry 𝜎0  of a PDE 𝑢𝑡 = 𝐹(𝑢) , if Φ𝜎0  is also a 

symmetry, then the operator Φ is defined as a strong symmetry of the PDE.  

Definition 2. If the operator Φ is not only a strong symmetry of 𝑢𝑡 = 𝐹(𝑢), but also a 

strong symmetry of the PDE 𝑢𝑡 = Φ𝐹(𝑢), then we call Φ is a hereditary operator or a 

recursion operator [1,15].  

It is not difficult to verify that the operator: 

        Φ = 𝜕𝑥
2 − 4𝑢 − 2𝑢𝑥𝜕𝑥

−1                                                                                                           

(13) 

is just the recursion operator of the KdV Eq. 1 and:  

        𝐾𝑛 = Φ𝑛𝐾0,   𝜏𝑛 = Φ𝑛𝜏0, 𝑛 = 0, 1, 2, … ,∞                                                                        

(14) 

where 𝐾0, 𝐾1, 𝜏0, 𝜏1 are just the known Lie point symmetries defined in Eq. 4. 

𝐾𝑛 and 𝜏𝑛 for 𝑛 ≥ 2 are local generalized symmetries, say, for 𝑛 = 2: 

         𝐾2 = (10𝑢𝑢𝑥𝑥 + 5𝑢𝑥
2 − 10𝑢3 − 𝑢𝑥𝑥𝑥𝑥)𝑥                                                                           

(15) 

The generalized symmetries may be local and nonlocal. To find generalized 

nonlocal symmetries, there are various methods including the factorization of inverse 

recursion operators [16], the infinitesimal Darboux transformations [17], the 

infinitesimal Bäcklund transformations [18] and the residual symmetries [19]. Here, 

we apply the truncated Painlevé analysis [20] to derive the residual symmetry for the 

KdV Eq. 1.  

                  



After finishing some standard calculations for the Painlevé analysis of the KdV 

equation, we have the auto-Bäcklund transformation: 

   𝑢 =
2𝑓𝑥

2

𝑓2
−

2𝑓𝑥𝑥

𝑓
+ 𝑢2                                                                                                               

(16) 

where 𝑢  and 𝑢2  are all the solutions of the KdV Eq. 1 while the function 𝑓  is a 

solution of the singular manifold equation, i.e., the Schwarz KdV equation: 

   𝑓𝑡 = −𝑓𝑥𝑥𝑥 + λ𝑓𝑥 +
3𝑓𝑥𝑥

2

2𝑓𝑥
                                                                                                        

(17) 

and 𝑢2 is related 𝑓 by: 

   𝑢2 = −
𝑓𝑥𝑥
2

4𝑓𝑥
2 +

𝑓𝑥𝑥𝑥

𝑓𝑥
+

λ

6
                                                                                                            

(18) 

It is clear that Eq. 18 is a nonauto-Bäcklund transformation between the KdV Eq. 1 

and the Schwarz KdV Eq. 17. It is also interesting that the residual, −2𝑓𝑥𝑥, given in 

Eq. 16 with respect to the singular manifold f is just a nonlocal symmetry of the KdV 

Eq. 1 with 𝑢 = 𝑢2 ,19,20-. Thus, applying the inverse of the recursion operator Eq. 

13: 

   Φ−1 = 𝜕𝑥𝑓𝑥𝜕𝑥
−1𝑓𝑥

−1𝜕𝑥
−1𝑓𝑥

−1𝜕𝑥
−1𝑓𝑥                                                                                         

(19) 

on the residual symmetry, one can find a set of nonlocal symmetries: 

   𝐾−𝑛−1
(0)

= Φ𝑥
−𝑛𝐾−1

(0)
,  𝐾−1

(0)
= 𝑓𝑥𝑥, 𝑛 = 0, 1, 2, … ,∞                                             (20) 

In fact, the residual symmetry is a kernel of the recursion operator Φ. From the 

expression Eq. 19, we know that there are three kernels of Φ. One can check that the 

other two kernels:  

        𝐾−1
(1) = 𝜕𝑥𝑓𝑥𝜕𝑥

−1𝑓𝑥
−1 = 𝑓𝑥𝑥𝜕𝑥

−1𝑓𝑥
−1 + 1                                                                                 

(21) 

and  

        𝐾−1
(2) = 𝜕𝑥𝑓𝑥𝜕𝑥

−1𝑓𝑥
−1𝜕𝑥

−1𝑓𝑥
−1 =

1

2
𝑓𝑥𝑥(𝜕𝑥

−1𝑓𝑥
−1)2 + 𝜕𝑥

−1𝑓𝑥
−1                                (22) 

are all the nonlocal symmetries of the KdV Eq. 1. Therefore, we have three sets of 

infinitely many nonlocal symmetries:  

        𝐾−𝑛−1
(𝑖)

= Φ𝑥
−𝑛𝐾−1

(𝑖)
, 𝑛 = 0, 1, 2, … ,∞, 𝑖 = 0, 1, 2                                                (23) 

which are equivalent to those given in Ref. [16].  

The nonlocal symmetries, 𝑓𝑖𝑥𝑥, 𝑖 = 1, 2, … , 𝑛, can be localized with help of the 

localization approach of nonlocal symmetries by extending the KdV solution space 

{x, t, u} Eq. 1 to the enlarged space {x, t, u, 𝑓𝑖, 𝑔𝑖, 𝑖}, where, 𝑓𝑖 , 𝑖 = 1, 2, … , 𝑛, are 

related to u by:  

                  



𝑢 = −
𝑓𝑖𝑥𝑥
2

4𝑓𝑖𝑥
2 +

𝑓𝑖𝑥𝑥𝑥

𝑓𝑖𝑥
+

𝜆𝑖

6
, 𝑔𝑖 = 𝑓𝑖𝑥, 𝑖 = 𝑔𝑖𝑥                                                                           

(24) 

Using the n copies of the nonlocal symmetries 𝑓𝑖𝑥𝑥 in its vector form: 

        𝑉 = 2∑ 𝑐𝑖𝑓𝑖𝑥𝑥𝜕𝑢
𝑛
𝑖=1                                                                                                        

(25) 

one can derive the n-fold Darboux and/or Bäcklund transformations by using 

nonlocalization approach [19,20]. The localized form of (25) reads [20]:  

        𝑉 = 2∑ 𝑐𝑖𝑖𝜕𝑢 − ∑ [𝑐𝑖𝑓𝑖
2 + ∑

𝑐𝑗

4

(𝑔𝑖𝑗−𝑖𝑔𝑗)
2

𝑔𝑖𝑔𝑗(𝜆𝑖−𝜆𝑗)
2

𝑛
𝑗≠𝑖 ] 𝜕𝑓𝑖

𝑛
𝑖=1

𝑛
𝑖=1  

−∑ [2𝑐𝑖𝑔𝑖𝑓𝑖 + ∑ 𝑐𝑗
𝑔𝑖𝑗−𝑖𝑔𝑗

𝜆𝑖−𝜆𝑗

𝑛
𝑗≠𝑖 ] 𝜕𝑔𝑖

𝑛
𝑖=1   

−∑ {2𝑐𝑖(𝑖𝑓𝑖 + 𝑔𝑖
2) + ∑

𝑐𝑗

2
[4𝑔𝑖𝑔𝑗 +

𝑔𝑖
2𝑗

2−𝑖
2𝑔𝑗

2

(𝜆𝑖−𝜆𝑗)𝑔𝑖𝑔𝑗
]𝑛

𝑗≠𝑖 } 𝜕𝑖
𝑛
𝑖=1                      (26) 

Starting from the vector form of the localized symmetry Eq. 26 of the nonlocal 

symmetry Eq. 25, we can find its finite form, i.e., the Darboux and/or Bäcklund 

transformation of the KdV Eq. 1. 

Darboux transformation theorem. If  *𝑢, 𝑓𝑖, 𝑔𝑖 , 𝑖+ is a solution of the prolonged 

KdV system (1), (24) and   

       𝑓𝑖𝑡 = −𝑓𝑖𝑥𝑥𝑥 + λi𝑓𝑖𝑥 +
3𝑓𝑖𝑥𝑥

2

2𝑓𝑖𝑥
                                                                                (27) 

so is 2�̅� = 𝑢 + 2(ln Δ)𝑥𝑥, 𝑓�̅� = −
Δ𝑖

Δ
, �̅�𝑖 = 𝑓�̅�𝑥, �̅�𝑖 = �̅�𝑖𝑥3  with Δ = det(𝑀) ,𝑀𝑗𝑖 =

𝜖𝑐𝑖𝑤𝑗𝑖 = 𝜖𝑐𝑖
𝑔𝑖𝑗−𝑔𝑗𝑖

2√𝑔𝑖𝑔𝑗(𝜆𝑗−𝜆𝑖)
, 𝑗 ≠ 𝑖,𝑀𝑖𝑖 = 𝜖𝑐𝑖𝑓𝑖 − 1  and Δk = det(𝑀𝑘) ,𝑀𝑘,𝑗𝑖 =

𝜖𝑐𝑖𝑤𝑗𝑖, 𝑖 ≠ 𝑗, 𝑘,𝑀𝑘,𝑗𝑘 = 𝑤𝑗𝑘, 𝑗 ≠ 𝑘,𝑀𝑘,𝑖𝑖 = 𝜖𝑐𝑖𝑓𝑖 − 1, 𝑖 ≠ 𝑘,𝑀𝑘,𝑘𝑘 = 𝑓𝑘 . ◼ 

For integrable systems, various mathematicians believe that all the solutions can 

be obtained by means of Darboux transformations. Now, we have obtained the 

Darboux transformation of the KdV equation by means of nonlocal symmetries. That 

means we may obtain all solutions of the KdV equation from nonlocal symmetries. It 

is also known that the local and nonlocal symmetries are dual [21], which implies that 

all solutions of the KdV equation may also be obtained by means of its local 

symmetries.   In some times, to find exact solution it is convenience to combine local 

and nonlocal symmetries. For instance, if we combine the local 

symmetries,  𝐾0, 𝐾1, 𝜏0, 𝜏1  and nonlocal symmetries Eq. 25, one can obtain various 

interaction solutions between the solitons and other KdV waves such as the cnoidal 

periodic wave and Painlevé I and II waves [17].  

To find some more concrete solutions of the KdV equations, one may directly 

use the so-called symmetry constraint method. For instance, if we use the symmetry 

constraint condition 𝐾0 = 2∑ 𝑓𝑖𝑥𝑥
𝑛
𝑖=1 , i.e.: 

𝑢 = 2∑ 𝑓𝑖𝑥
𝑛
𝑖=1                                                                                                             (28) 

then one can find the algebro-geometric solutions of the KdV Eq. 1 by solving the 

                  



following finite dimensional integrable systems: 

𝑓𝑖𝑥 = 𝑔𝑖 , 𝑔𝑖𝑥 = 𝑖 , 𝑖𝑥 =
1

4
𝑖
2𝑔𝑖

−1 − 2𝑔𝑖  ∑ 𝑔𝑘
𝑛
𝑘=1 −

1

6
𝑔𝑖𝜆𝑖                                       (29) 

and  

𝑓𝑖𝑡 = −2𝑔𝑖 ∑ 𝑔𝑘
𝑛
𝑘=1 +

7

12
λi𝑔𝑖 +

5

8
𝑖
2𝑔𝑖

−1                                                                  (30) 

𝑔𝑖𝑡 = −
1

2
∑ (9𝑖𝑔𝑘 + 4𝑔𝑖𝑘)
𝑛
𝑘=1 +

3

8
λi𝑖 −

5

16
𝑖
3𝑔𝑖

−2  

𝑖𝑡 = 13𝑔𝑖(∑ 𝑔𝑘
𝑛
𝑘=1 )2 + ∑ .

3

4

𝑔𝑘𝑖
2

𝑔𝑖
−

𝑘
2

2𝑔𝑘
+

𝜆𝑘𝑔𝑘

3
−

13𝑖𝑘

2
/𝑛

𝑘=1 −
λi
2𝑔𝑖

16
+

𝜆𝑖𝑖
2

4𝑔𝑖
+

25𝑖
4

64𝑔𝑖
3  

The finite dimensional integrable systems Eqs. 29 and 30 are equivalent to those 

obtained from the nonlinearization approach [22-24]. Thus, the algebro-geometric 

solution Eq. 28 with Eqs. 29-30 are same as known ones as explicitly shown in 

[22,23] for the KP equation by eliminating the y variable. Because of the duality of 

the generalized local and nonlocal symmetries [21], the algebro-geometric solutions 

(28) are also same as those obtained by the local symmetry constraint, 𝐾𝑛 = Φ𝑛𝐾0 =

0, where 𝐾𝑛 is defined in Eq. 14.  

To end this section, we derive the recursion operator Eq. 13 from the single 

nonlocal symmetry 𝑓𝑖𝑥𝑥 given by Eq. 24.  

Substituting 𝑓𝑖𝑥𝑥 = 𝜎𝑖 into Eq. 24, we have:  

𝑢𝜎𝑖 =
1

6
 𝜎𝑖𝜆𝑖 −

1

4

𝜎𝑖
3

𝑓𝑖𝑥
2 +

1

2

𝜎𝑖𝜎𝑖𝑥

𝑓𝑖𝑥
                                                                                               

(31) 

In order to cancelling the nonlinear terms of 𝜎𝑖 in Eq. 31, multiplying Eq. 24 by 𝑓𝑖𝑥 

and differentiating the result with respect to x yields:  

         𝑢𝜎𝑖 + 𝑢𝑥𝜕𝑥
−1𝜎𝑖 =

1

6
 𝜎𝑖𝜆𝑖 +

1

4

𝜎𝑖
3

𝑓𝑖𝑥
2 −

1

2

𝜎𝑖𝜎𝑖𝑥

𝑓𝑖𝑥
+

1

2
𝜎𝑖𝑥𝑥                                              

(32) 

It is clear that Eq. 31+Eq. 32 becomes (𝜆1𝑖 ≡ −
2

3
𝜆𝑖): 

        (𝜕𝑥
2 − 4𝑢 − 2𝑢𝑥𝜕𝑥

−1)𝜎𝑖 ≡ Φ𝜎𝑖 = 𝜆1𝑖𝜎𝑖                                                                                

(33) 

One can directly verify that the symmetry Eq. 2 with 𝜎 = 𝜎𝑖  and the eigenvalue 

problem of Φ, Eq. 33 is just a Lax pair of the KdV Eq. 1. Thus, Φ derived from the 

residual symmetry is just the recursion operator of the KdV equation. It is interesting 

that one can derive recursion operator from one key nonlocal symmetry such as the 

residual symmetry, square-eigenfunction symmetry etc. for many (1+1)-dimensional 

integrable systems.   

4 Master-symmetries and formal series symmetries  

Expect for the breaking soliton systems, linearizable C integrable systems and higher 

dimensional dispersionless equations such as the heavenly equations [21,25], there is 

                  



no recursion operators for higher dimensional integrable systems. To find symmetries 

of higher dimensional integrable systems, some other types effective methods 

including the master symmetry method [21] and the formal series symmetry approach 

[27-29] have been developed.  

4.1 Master symmetry method  

For simplicity to illustrate the master symmetry method, we take the Kadomtsev-

Petviashvili (KP) equation: 

 (𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥)𝑥 + 3𝛾2𝑢𝑦𝑦 = 0                                                                                    

(34) 

i.e.: 

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 − 3𝛾2𝜕𝑥
−1𝑢𝑦𝑦 ≡ 𝐾(𝑢)                                                       

(35)  

as a simple example. A symmetry of the KP equation, 𝜎, is a solution of its linearized 

equation:  

        (𝜎𝑡 + 𝜎𝑥𝑥𝑥 − 6𝑢𝜎𝑥 − 6𝜎𝑢𝑥)𝑥 + 3𝛾2𝜎𝑦𝑦 = 0                                                      

(36) 

If Z is not a symmetry of the nonlinear system 𝑢𝑡 = 𝐾(𝑢), however, its commutator 

𝜎 = ,𝐾, 𝑍- defined by:  

     𝐾,,-𝑍 ≡ ,𝐾, 𝑍- ≡ 𝐾′𝑍 − 𝑍′𝐾 ≡ lim𝜖→0
𝑑

𝑑𝜖
,𝐾(𝑢 + 𝜖𝑍) − 𝑍(𝑢 + 𝜖𝐾)-                          

(37) 

is a symmetry of 𝑢𝑡 = 𝐾(𝑢), then we call Z a first order master symmetry. If the k 

times commutator of Z with respect to K, 𝐾,,-
𝑘𝑍, is a symmetry, then Z is the kth order 

master symmetry of the nonlinear system 𝑢𝑡 = 𝐾(𝑢). 

For the KP equation (34), one can find that  𝑍 = 𝑦𝑛−1 is just nth order master 

symmetry. The first few symmetries obtained from the master symmetries read:  

𝜎1 = 0𝐾,
𝑦0

2⋅3
1 = 𝑢𝑥                                                                                                                  

(38) 

𝜎2 = [𝐾, 0𝐾,
𝑦1

22⋅32⋅𝛾2
1] = 𝐾,,-

2 𝑦

22⋅32⋅𝛾2
= 𝑢𝑦                                                                  

(39) 

𝜎3 = 𝐾,,-
3 𝑦2

22⋅33⋅𝛾2
= 𝑢𝑡                                                                                                            

(40) 

𝜎4 = 𝐾,,-
4 𝑦3

24⋅35⋅𝛾2
= 4𝑢𝑢𝑦 + 2𝑢𝑥𝑣𝑥 − 𝑢𝑥𝑥𝑦 − 𝛾2𝑣𝑦𝑦, 𝑢𝑦 = 𝑣𝑥𝑥                           

(41) 

                  



4.2 Formal series symmetry approach  

To find more generalized symmetries for (2+1)-dimensional integrable systems, 

a formal series symmetry approach is proposed in Refs. [27-29] for the nonlinear 

systems in the form: 

𝑢𝑥𝑡 = 𝐾𝑥(𝑢)                                                                                                                           

(42) 

A symmetry of (42), 𝜎, is determined by its linearized equation: 

𝜎𝑥𝑡 = 𝜕𝑥𝐾
′𝜎                                                                                                                          

(43)  

A formal series symmetry of Eq. 42, i.e., a formal solution of Eq. 43 can be 

written as [27-29]: 

𝜎(𝑓) = ∑ 𝑓(−𝑘)𝐾,,-
𝑘𝑔(𝑦)∞

𝑘=0                                                                                                    

(44) 

where 𝑓 ≡ 𝑓(𝑡)  and 𝑔 ≡ 𝑔(𝑦)  are arbitrary functions of t and y respectively, and 

𝑓(𝑖) ≡ 𝜕𝑡
𝑖𝑓. It is interesting that for many integrable systems such as the KP equation 

[28], the Toda system [27], the B-type KP equation [29] etc., the series symmetries 

expressed by Eq. 44 will be truncated if the function g is fixed as a polynomial 

function of y. For the KP Eq. 34 or Eq. 35, the formal series symmetry Eq. 44 

becomes [27,28]: 

𝜎𝑛+1(𝑓) = ∑ 𝑓(𝑛+1−𝑘)𝐾,,-
𝑘𝑦𝑛 𝑛+1

𝑘=0                                                                                            

(45) 

The first four of them read:  

𝜎1() = 𝑢𝑥 +
1

6
�̇�                                                                                                                   

(46) 

𝜎2(𝑔) = 𝑔𝑢𝑦 −
1

6𝛾2
�̇�𝑦𝑢𝑥 −

1

36𝛾2
�̈�𝑦                                                                                       

(47) 

𝜎3(𝑓) = 𝑓𝑢𝑡 +
1

3𝛾2
𝑓̇(𝑥𝑢𝑥 + 2𝑦𝑢𝑦 + 2𝑢) +

1

18𝛾2
�̈�(𝑥 − 𝑦2𝑢𝑥) −

1

108𝛾2
𝑓𝑦2     

(48) 

 𝜎4(𝑚) = 𝑚(4𝑢𝑢𝑦 − 𝑢𝑥𝑥𝑦 + 2𝑢𝑥𝑣𝑥 − 𝛾2𝑣𝑦𝑦) +
𝑦�̇�

12𝛾2
(2𝛾2𝑥𝑢𝑦 + 4𝛾2𝜕𝑥

−1𝑢𝑦 

                −𝑦𝑢𝑡) −
𝑦�̈�

36𝛾2
(𝑥𝑢𝑥 + 𝑦𝑢𝑦 + 2𝑢) +

𝑦�⃛�

648𝛾4
(𝑦2𝑢𝑥 − 3𝑥𝛾2) +

𝑚(4)𝑦3

3888𝛾4
    (49) 

where , 𝑔, 𝑓 and 𝑚 are arbitrary functions of t, the dots above the functions are the 

derivatives of the functions with respect to t. It is clear that the symmetries Eqs. 38-41 

are just the special cases of Eqs. 46-49 for  = 𝑔 = 𝑓 = 𝑚 = 1.   

                  



5 Symmetries of integrable discrete systems 

The discrete Kadomtsev-Petviashvili equation (dKP) equation was proposed 

independently by Hirota [30] and Miwa [31] in early 1980s so it is also called Hirota-

Miwa (HM) equation. It is the most fundamental equation for discrete integrable 

system. We can use dKP equation as an example to explain the symmetry of discrete 

integrable systems. The dKP equation is a three-dimensional discrete integrable system 

with complex-valued τ -function defined on a three-dimensional lattice (k1, k2, k3) 

with lattice constants a1, a2, a3 such that τ (k1, k2, k3) = τ (k1a1, k2a2, k3a3). The dKP 

equation is one of the most fundamental equations in integrable system, which is 

usually expressed as a bilinear form: 

a1(a2 − a3)τ (k1 + 1, k2,k3)τ (k1, k2 + 1, k3 + 1) 

+a2(a3 − a1)τ (k1, k2 + 1, k3)τ (k1 + 1, k2, k3 + 1) 

+a3(a1−a2)τ(k1,k2,k3+1)τ(k1+1,k2+1,k3)=0                                      (50) 

Here each subscript i denotes a forward shift in the corresponding discrete variable 

ni, for example, τi = τ (ki + 1, kj, km). Its geometric interpretation is given in [32]. 

      If we use the following abbreviations: 

τ (k1 + 1, k2,k3) = τ1, τ (k1, k2 + 1, k3 + 1) = τ23 

then the dKP equation takes a short form: 

          𝑎1(𝑎2 − 𝑎3)𝜏1𝜏23 + 𝑎2(𝑎3 − 𝑎1)𝜏2𝜏31+𝑎3(𝑎1 − 𝑎2)𝜏3𝜏12 = 0                    (51) 

Discrete KP hierarchy is an infinite number of bilinear equations with (ki, kj, km) 

taken from (k1, k2, k3, …): 

(𝑎𝑗
−1 − 𝑎𝑚

−1)𝜏𝑖𝜏𝑗𝑚 + (𝑎𝑚
−1 − 𝑎𝑖

−1)𝜏𝑗𝜏𝑚𝑖 + (𝑎𝑖
−1 − 𝑎𝑗

−1)𝜏𝑚𝜏𝑖𝑗 = 0               (52) 

This hierarchy reflects the nature of symmetry of discrete integrable systems, which 

is called four-dimensional (4D) consistency or multi-dimensional consistency. From 

this symmetry, we can construct Darboux transformation, as well as conservation 

laws, of discrete integrable systems. 

If we use the gauge transformation, the dKP equation takes a simpler form: 

           𝜏1𝜏23 − 𝜏2𝜏31 + 𝜏3𝜏12 = 0                                                                             (53) 

The Lax pair of the dKP equation was firstly proposed by Nimmo [33]. It can be 

derived from the dKP hierarchy: 

            𝜏𝑚𝜏𝑖𝑗 − 𝜏𝑗𝜏𝑖𝑚 + 𝜏𝑖𝜏𝑗𝑚 = 0                                                                              (54) 

Define:  

           𝜙 =
𝜏𝑚
𝜏
, 𝑢𝑖𝑗 = sgn(𝑗 − 𝑖)

𝜏𝑖𝑗𝜏

𝜏𝑖𝜏𝑗
 

then it follows: 

𝜙𝑖 − 𝜙𝑗 = 𝑢𝑖𝑗𝜙 

                  



which is the Lax pair of the dKP hierarchy. By taking 1 ≤ 𝑖, 𝑗 ≤ 3, we can have the 

following lattice:  

𝑢12 − 𝑢13 + 𝑢23 = 0 

From the compatibility condition, which is nothing but the dKP Eq. 53.   

If we restore lattice constants, then we have the following linear problem: 

𝜙𝑖 − 𝜙𝑗 = (𝑎𝑖
−1 − 𝑎𝑗

−1)𝑢𝑖𝑗𝜙 

The bilinear equation of the discrete BKP was proposed by Miwa [31-33]: 

    (𝑎2 − 𝑎3)(𝑎1 + 𝑎2)(𝑎1 + 𝑎3)𝜏1𝜏23 + (𝑎3 − 𝑎1)(𝑎1 + 𝑎2)(𝑎2 + 𝑎3)𝜏2𝜏31 +

    (𝑎1 − 𝑎2)(𝑎3 + 𝑎2)(𝑎1 + 𝑎3)𝜏3𝜏12 + (𝑎2 − 𝑎3)(𝑎1 + 𝑎2)(𝑎1 + 𝑎3)𝜏𝜏123 = 0  (55) 

which can be normalized into:  

𝜏1𝜏23 + 𝜏2𝜏31 + 𝜏3𝜏12 + 𝜏𝜏123 = 0                                                                      (56) 

Here we present the Lax pair of discrete BKP equation: 

     Φ12 −Φ = 𝜌12(Φ1 −Φ2)                                                                                      

(57) 

     Φ23 −Φ = 𝜌23(Φ2 −Φ3)                                                                                       

(58) 

     Φ31 −Φ = 𝜌31(Φ3 −Φ1)                                                                                     

(59) 

where 𝜌31 = 𝜏𝑖𝜏𝑗/(𝜏𝑖𝑗𝜏). Shifting one more step in each equation, we have: 

     Φ123 −Φ3 = 𝜌123(Φ13 −Φ23)  

Φ123 −Φ1 = 𝜌231(Φ12 −Φ13)  

Φ123 −Φ2 = 𝜌312(Φ23 −Φ12)  

Elimination of Φ123, we obtain: 

  (1 +  123 31 +  231 31 +  123 23)(Φ1 −Φ3)=0 

which is actually the discrete BKP equation. 

6 Conservation laws and deformations  

It is known that a symmetry usually related to a conservation law. For instance, the 

space translation invariance is related to the moment conservation and the time 

translation is corresponding to the energy conservation. There are several traditional 

methods to find conservation laws from symmetries and the conservation laws can be 

applied to solve nonlinear physical problems. In this section, we apply the 

conservation laws to find higher dimensional integrable systems by using a 

deformation algorithm [34-36].  

Deformation algorithm. For a general (1+1)-dimensional integrable local evolution 

system: 

         𝑢𝑡 = 𝐹(𝑢, 𝑢𝑥, … , 𝑢𝑥𝑛), 𝑢𝑥𝑛 = 𝜕𝑥
𝑛𝑢, 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑚)                                    

(60) 

if there exist some conservation laws: 

𝜌𝑖𝑡 = 𝐽𝑖𝑥, 𝑖 = 1, 2, … , 𝐷 − 1, 𝜌𝑖 = 𝜌𝑖(𝑢), 𝐽𝑖 = 𝐽𝑖(𝑢, 𝑢𝑥 , … , 𝑢𝑥𝑁)                       (61) 

                  



where the conserved densities 𝜌𝑖 are dependent only on the field 𝑢 while the flows 𝐽𝑖 

can be field derivative dependent, then the deformed (D+1)-dimensional system: 

�̂�𝑢 = 𝐹(𝑢, �̂�𝑢, … , �̂�𝑛𝑢)                                                                                     (62) 

is integrable with the deformation operators: 

�̂� ≡ 𝜕𝑥 + ∑ 𝜌𝑖𝜕𝑥𝑖 ,   
𝐷−1
𝑖=1 �̂� ≡ 𝜕𝑡 + ∑ 𝐽�̅�𝜕𝑥𝑖       

𝐷−1
𝑖=1                                                (63) 

and the deformed flows: 

𝐽�̅� ≡ 𝐽𝑖|𝑢
𝑥𝑗
→�̂�𝑗𝑢,𝑗=1,2,…,𝑁                                                                                       

(64) 

Applying the algorithm to known integrable systems such as the KdV equation [34], 

the nonlinear Schrödinger (NLS) equation [35] and the Camassa-Holm (CH) equation 

[36] etc., various higher dimensional integrable systems have been obtained.   

   For the KdV Eq. 1 with the conserved density u, we have the following (2+1)-

dimensional integrable KdV-Harry-Dym (KdV-HD) equation [34]:  

𝑢𝑡 + .𝑢𝑥𝑥 − 3𝑢2 + 3𝑢𝑢𝑥𝑦 +
3

2
𝑢2𝑢𝑦𝑦/

𝑥
+ .𝑢3𝑢𝑦𝑦 − 𝑢3 +

3

2
𝑢2𝑢𝑥𝑦/

𝑦
= 0      

(65) 

owing to the deformation algorithm. For the real shallow water waves, they are 

usually not center symmetric. The solitary waves of the (2+1)-dimensional model 

possesses asymmetric and the folded solitary wave structure because of the inclusion 

of nonlinear dispersion effects expressed by 𝑢3𝑢𝑦𝑦𝑦  which is more reasonable to 

describe the real water waves.  

7 Ren symmetries and ren integrable systems 

For a Lax integrable system, there are one or more Lax pairs. For instance, for 

the KdV Eq. 1, the related Lax pair possesses the form:  

𝐿𝑥𝜓 ≡ (𝜕𝑥
2 − 𝑢 + 𝜆)𝜓 = 0                                                                                

(66) 

𝐿𝑡𝜓 ≡ (𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜓 = 0                                                             

(67) 

where 𝜆 is an arbitrary spectral parameter and 𝜓 is a spectral function related to 𝜆. 

The KdV Eq. 1 is equivalent to the compatibility condition of Eq. 66 and Eq. 67: 

,𝐿𝑥, 𝐿𝑡- ≡ 𝐿𝑥𝐿𝑡 − 𝐿𝑡𝐿𝑥 = 0 

If 𝜓 is a bosonic function, then one can check that the square eigenfunction (𝜓2)𝑥 is a 

nonlocal symmetry of the KdV Eq. 1. Thus, one can construct some new integrable 

systems with help of the square eigenfunction symmetries, say, the second type of 

integrable KdV equation with self-consistent source:  

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = (𝜓2)𝑥                                                                               

(68) 

(𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜓 = 0                                                                       (69) 

If 𝜓 = 𝜉  of Eq. 66 and Eq. 67 is fermionic, then one can check that 𝜉𝜉𝑥𝑥  is a 

                  



symmetry of the KdV equation. Therefore, the corresponding source equation is just 

the so-called super-integrable equation proposed by Kupershmidt [11]: 

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = 𝜉𝜉𝑥𝑥                                                                                   

(70) 

(𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜉 = 0                                                                         

(71) 

Furthermore, the spectral function, 𝜓 = 𝜁, of the Lax pair Eq. 66 and Eq. 67 may be a 

ren-number with the property:  

𝜁𝛼 = 0, 𝜁𝑗 ≠ 0, 𝑗 < 𝛼                                                                                         (72) 

where 𝛼 is an arbitrary integer. “Ren” means arbitrary in Chinese.  

When 𝛼 = 2, the ren-number defined by Eq. 72 is just the usual Grassmann number to 

describe fermions. The commutator between two ren-numbers 𝜃 and 𝜁 possesses the 

form:  

𝜁𝜃 = 𝑞𝛽𝜃𝜁, 𝑞 = exp .
2𝜋i

𝛼
/ , i ≡ √−1, 𝛽 = 1, 2, … , 𝛼 − 1                                  (73) 

𝛽 is called the degree of the ren-number of 𝜁, where we always fix the degree of 𝜃 as 

one later.  

If 𝜓 = 𝜁1 and 𝜓 = 𝜁2 of the Lax pair Eq. 66 and Eq. 67 with the same spectral 

parameter 𝜆, and the orders 𝛽 and 𝛼 − 𝛽, then one can check that 𝜁1𝜁2𝑥𝑥 − 𝜁1𝑥𝑥𝜁2 is a 

symmetry of the KdV equation. Thus, we call the system of the following second 

types of source equation system:  

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 + 12𝜁1𝜁2𝑥𝑥 − 12𝜁1𝑥𝑥𝜁2 = 0                                               (74) 

(𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜁1 = 0                                                                      (75) 

(𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜁2 = 0                                                                      (76) 

as the ren-integrable system. The Lax pair of (74)-(76) can be written as:  

(𝜕𝑥
2 − 𝑢 + 𝜆)𝜓 − 𝜁1𝜕𝑥

−1(𝜁2𝜓) + (𝜕𝑥
−1𝜁1𝜓) 𝜁2  = 0                                          (77) 

(𝜕𝑡 + 4𝜕𝑥
3 − 6𝑢𝜕𝑥 − 3𝑢𝑥)𝜓 = 0                                                                        

(78) 

To prove the Lax integrability of Eqs. 74-76, there is no any additional conditions 

except for the bosonic conditions of every term of Eq. 74 which requires the order of 

the 𝜁1  and 𝜁2  should be 𝛽  and 𝛼 − 𝛽  respectively. When 𝛼 = 2, the ren-integrable 

system Eqs. 74-76 becomes a super-integrable system. From the commutation relation 

Eq. 73, we know that the ren integrable system can be used to describe the 

interactions among bosonic field u and the anyonic fields 𝜁1 and 𝜁2.  

8 Supersymmetric and ren-symmetric integrable systems 

In addition to the super-integrable systems, there are some types of super-symmetric 

integrable systems with the super-symmetric fields and supersymmetric derivative:  

𝔇 = 𝜕𝜃 + 𝜃𝜕𝑥, 𝔇
2 = 𝜕𝑥                                                                                     

(79) 

The supersymmetric derivative operator 𝔇  is invariant under the supersymmetric 

transformation: 

                  



𝜃 → 𝜃 + 𝜂, 𝑥 → 𝑥 − 𝜃𝜂                                                                                    (80) 

After introducing the super-space variable 𝜃  and the supersymmetric derivative 𝔇, 

various usual bosonic integrable systems have been extended to the supersymmetric 

integrable systems. For instance, one of the supersymmetric 𝑁 = 1 KdV equation 

possesses the form (Φ ≡ Φ(𝑥, 𝑡, 𝜃)): 

Φ𝑡 +Φ𝑥𝑥𝑥 + 𝑎(𝔇Φ𝑥)Φ + (6 − 𝑎)(𝔇Φ)Φ𝑥 = 0                                                 

(81) 

Mathieu [30] had proven that the supersymmetric KdV equation is integrable only for 

𝑎 = 0 and 3.  

Similarly, for the ren functions, we may introduce ren-symmetric derivative: 

ℜ = 𝜕𝜃 +
𝜃𝛼−1

,(𝛼−1)!-𝑞
𝜕𝑥, ℜ

𝛼 = 𝜕𝑥                                                                                     

(82) 

where ,𝑛!-𝑞 is defined as:  

,𝑛!-𝑞 = ∏
1−𝑞𝑖

1−𝑞
= ∏ 𝑖𝑞 = 1𝑞2𝑞 ⋯𝑛𝑞 ,

𝑛
𝑖=1

𝑛
𝑖=1  𝑖𝑞 = 1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑖−1        

(83) 

 It is not difficult to verify that the ren-symmetric derivative ℜ defined in Eq. 76 is 

invariant under the following ren-symmetric transformation: 

𝜃 → 𝜃 + 𝜂, 𝑥 → 𝑥 − 𝑓(𝜃, 𝜂), 𝑓 = 𝑓(𝜃, 𝜂) = ∑
𝜃𝑘𝜂𝛼−𝑘

,𝑘!-𝑞,(𝛼−𝑘)!-𝑞

𝛼−1
𝑘=1                       

(84) 

When 𝛼 = 2,  the ren-symmetric derivative Eq. 82 and the ren-symmetric 

transformation Eq. 84 are reduced to the usual supersymmetric derivative Eq. 79 and 

the supersymmetric transformation Eq. 81, respectively.  

      Applying the ren-symmetric derivative Eq. 82 to the integrable systems, one can 

find various ren-symmetric integrable systems. For the KdV equation, the most 

general 𝛽𝑡 order ren-symmetric KdV equation may have the form, Φ = Φ(x, t, θ): 

Φ𝑡 +Φ𝑥𝑥𝑥 + ∑ 𝑎𝑖
0
𝛽+𝛼

2
1

𝑖=0
(ℜ𝑖Φ)(ℜ𝛽+𝛼−𝑖Φ) = 0, 𝛽 = 0, 1, 2, … , 𝛼 − 1                

(85) 

where 𝑎𝑖, 𝑖 = 0, 1, 2, … , 0
𝛽+𝛼

2
1, are bosonic constants, Φ is a 𝛽𝑡 order ren-field (ren-

field with degree 𝛽)  and 0
𝛽+𝛼

2
1 is the integer part of  

𝛽+𝛼

2
. 

As in the super-symmetric (𝛼 = 2) case, one may find some possible integrable 

cases by fixing the constants 𝑎𝑖  of the ren-symmetric KdV equation Eq. 85.  For 

instance, for 𝛼 = 3, there are at least two ren-symmetric integrable KdV equation: 

Φ1𝑡 = −Φ1𝑥𝑥𝑥 + (ℜ2Φ1)
2 + (ℜΦ1)Φ1𝑥                                                                           

(86) 

Φ2𝑡 = −Φ2𝑥𝑥𝑥 + 3Φ2𝑥ℜ
2Φ2                                                                                     

(87) 

                  



where Φ1 ≡ Φ1(𝑥, 𝑡, 𝜃) and Φ2 ≡ Φ2(𝑥, 𝑡, 𝜃) are the first and second order ren fields 

for 𝛼 = 3 with the properties: 𝜃3 = Φ1
3 = Φ2

3 = 0,Φ1𝜃 = 𝑞𝜃Φ1, Φ2𝜃 = 𝑞2𝜃Φ2, 𝑞 =

exp .
2𝜋i

3
/ , ℜ = 𝜕𝜃 − 𝑞𝜃2𝜕𝑥, and ℜ

3 = 𝜕𝑥. 

      

9 Summary and discussions 

In summary, symmetries are very important in natural science especially in integrable 

systems because of the existence of infinitely many symmetries.  Usually, to find 

exact solutions related to symmetries, the symmetries are restricted to the Lie point 

symmetries. Applying Lie point symmetries to nonlinear systems, one may find more 

general solutions from a special one. One can also find group invariant solutions with 

related symmetry reductions. In addition to the Lie point symmetries, there are many 

generalized local and nonlocal symmetries which can be used to find algebro-

geometric solutions. The symmetries are related to conservation laws because of the 

Noether’s theorem. Symmetries can also be used to find new integrable systems by 

means of the nonlinearization approach, introducing self-consistent sources, 

symmetry constraints and reductions. To find infinitely many symmetries there are 

some different approaches including the recursion operators, the master-symmetry 

approach, the series symmetry method, the residual symmetry method, the duality 

method [21] and so on.  For the discrete integrable systems, we discuss the symmetry 

in an alternative way by considering the hierarchy in bilinear forms because the 

hierarchy reflects the nature of symmetry of discrete integrable systems.  

Conservation laws can also be used to study nonlinear physics in some different 

ways.  In this paper, a novel idea on the conservation laws is proposed to find higher 

dimensional integrable systems from lower dimensional ones by means of a 

deformation algorithm [34-36].  

After introducing anti-commuted Grassmann variables, the usual bosonic 

systems may have additional symmetries related to the Grassmannian spectral 

functions, which lead to the appearance of the super-integrable systems. Additionally, 

one can introduce the symmetry between bosons and fermions, which yields the 

various supersymmetric integrable systems [37-41]. Furthermore, by introducing non-

commute ren variables [42], we have found some ren integrable and ren-symmetric 

integrable models which may be used to describe anyon physics and provide some 

more candidates on dark matters.   

The ren-variables or anyonic variables introduced in this paper and Ref. [42] are 

subject to braid statistics of fractional charges and hence are of the general type 

encountered in some aspects of anionic physics. A similar algebra named braided 

algebra or anionic algebra has been introduced in Ref. [43] as a braided-Hopf algebra 

[44]. In order to study the integrable systems related to the anyon physics, we should 

point out that our ren-algebra is different from that of [43] because of the introduction 

of degrees of the anionic variables. Our commutation relation (72) is degree-

                  



dependent while the commutation relations of Ref. [43] is only same as ours for 

degree 1. Furthermore, we have introduced the ren-symmetric derivative ℜ  (see Eqs. 

(82)-(84)) such that the supersymmetric integrable systems can be extended to ren-

symmetric integrable systems. Though we have successfully introduced some ren-

integrable systems and ren-symmetric integrable systems, it is still open to derive 

these types of integrable models from real physical systems even if for special 

fermionic case because the Grassmann number and the ren-numbers are only the 

classical aspect while the fermions and the anyons are essential valid only in quantum 

physics.   
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