
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

School of Mathematical and Statistical 
Sciences Faculty Publications and 
Presentations 

College of Sciences 

2024 

Order-2 Delaunay Triangulations Optimize Angles Order-2 Delaunay Triangulations Optimize Angles 

Herbert Edelsbrunner 

Alexey Garber 

Morteza Saghafian 

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac 

 Part of the Mathematics Commons 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/mss_fac?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages


ORDER-2 DELAUNAY TRIANGULATIONS OPTIMIZE

ANGLES

HERBERT EDELSBRUNNER, ALEXEY GARBER, AND MORTEZA SAGHAFIAN

Abstract. The local angle property of the (order-1) Delaunay triangu-
lations of a generic set in R2 asserts that the sum of two angles opposite
a common edge is less than π. This paper extends this property to
higher order and uses it to generalize two classic properties from order-
1 to order-2: (1) among the complete level-2 hypertriangulations of a
generic point set in R2, the order-2 Delaunay triangulation lexicograph-
ically maximizes the sorted angle vector; (2) among the maximal level-2
hypertriangulations of a generic point set in R2, the order-2 Delaunay
triangulation is the only one that has the local angle property. We also
use our method of establishing (2) to give a new short proof of the angle
vector optimality for the (order-1) Delaunay triangulation. For order-1,
both properties have been instrumental in numerous applications of De-
launay triangulations, and we expect that their generalization will make
order-2 Delaunay triangulations more attractive to applications as well.

1. Introduction

This paper is motivated by the desire to generalize optimal properties from
order-1 to higher-order Delaunay triangulations. The classic (order-1) De-
launay triangulation (also called Delaunay mosaic) of a finite point set was
introduced in 1934 by Boris Delaunay (also Delone). It is the edge-to-edge
tiling whose polygons satisfy the empty circle criterion [4]: each polygon is
inscribed in a circle and all other points lie strictly outside this circle. In
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2 ORDER-2 DELAUNAY TRIANGULATIONS OPTIMIZE ANGLES

the henceforth considered generic case, all tiles are triangles. The criterion
implies that for an edge shared by two triangles, the sum of the two angles
opposite to the edge is less than π. If a triangulation satisfies this criterion
for every edge shared by two triangles, then we say the triangulation has the
local angle property. Recognizing the potential of this type of triangulation
for applications, Lawson in 1977 turned the empty circle criterion into an
iterative algorithm that converts any triangulation of a given set of n points
in R2 into the Delaunay triangulation using at most O(n2) edge-flips [12].
The correctness of this algorithm implies that the Delaunay triangulation
is the only triangulation of the given set that has the local angle property.
Using Lawson’s algorithm as a proof technique, Sibson proved in 1978 that
among all triangulations of a finite generic point set in R2, the Delaunay
triangulation lexicographically maximizes the vector whose components are
the angles inside the triangles sorted in non-decreasing order [20]. We call
this the sorted angle vector of the triangulation.

The dual approach to the same topic predates the invention of the De-
launay triangulation. In 1908, Georgy Voronoi published seminal papers on
what today is called the Voronoi tessellation [21]. Given a finite set in R2,
this tessellation contains a (convex) region for each point in the set, such
that the points in the region are at least as close to the generating point as
to any other point in the set. The Delaunay triangulation and the Voronoi
tessellation of the same points are dual to each other: there is an incidence-
preserving dimension-reversing bijection between the regions, edges, vertices
of the tessellation and the vertices, edges, polygons of the triangulation.

In the mid 1970s, Shamos and Hoey [19] and Fejes Tóth [8] independently
generalized this concept to the order-k Voronoi tessellation, which contains
a (possibly empty) region for each subset of size k, such that the points in
the region are at least as close to each one of the k defining points as to any
of the n − k other points. In 1982, Lee [13] gave an incremental algorithm
for computing these tessellations, and in 1990, Aurenhammer [1] showed
that there is a natural dual, which we refer to as the order-k Delaunay
triangulation: each vertex is the average of a collection of k points with
non-empty region, and the triangles are formed by connecting two vertices
with a straight edge if the corresponding two regions share an edge in the
order-k Voronoi tessellation. The special case in which k = n− 1 is closely
related to the farthest-point Delaunay triangulation: its vertices are the
extreme points of the set (the convex hull vertices), and two vertices are
connected by a straight edge if the regions in the order-(n − 1) Voronoi
tessellation that correspond to the complementary n − 1 points of the two
vertices share a common edge. In 1992, Eppstein [7] proved an extension
of Sibson’s result: among all triangulations of the convex hull vertices, the
farthest-point Delaunay triangulation lexicographically minimizes the sorted
angle vector.
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With the exception of Eppstein’s result—which is specific to the farthest-
point Delaunay triangulation—there is a paucity of optimality properties
known for higher-order Delaunay trinagulations, which we end with three
inter-related contributions:

I: we extend the local angle property from order-1 to order-k, for 1 ≤
k ≤ n − 1, and show that the order-k Delaunay triangulation has
this property;

II: we prove that among all complete level-2 hypertriangulations of a
finite generic set in R2, the order-2 Delaunay triangulation lexico-
graphically maximizes the sorted angle vector;

III: we show that among all maximal level-2 hypertriangulations of a
finite generic set in R2, the order-2 Delaunay triangulation is the
only one that has the local angle property.

For ordinary triangulations, the proofs of the properties analogous to II and
III follow from the existence of a sequence of edge-flips that connects any
initial (complete) triangulation to the (order-1) Delaunay triangulation, such
that every flip lexicographically increases the sorted angle vector. While the
level-2 hypertriangulations are connected by flips introduced in [6], there are
cases in which every connecting sequence contains flips that lexicographically
decrease the sorted angle vector; see Section 6. Without this tool at hand,
the relation between the local angle property and the sorted angle vectors
is unclear, and the proofs of Properties II and III fall back to an exhaustive
analysis of elementary geometric cases.

This paper is organized as follows. Section 2 provides information on
the main background, including level-k hypertriangulations (maximal, com-
plete, and otherwise) and the aging function. Section 3 introduces our ex-
tension of the local angle property to order k and, in Theorem 3.3, shows
that the order-k Delaunay triangulation has this property. Section 4 proves
Property II in Theorem 4.5 and, in Theorem 4.4, gives a new short proof
of Sibson’s theorem on angle vector optimality for the order-1 Delaunay
triangulation [20]. It also discusses possible extensions to the class of max-
imal level-2 hypertriangulations and to levels beyond 2. Section 5 proves
Property III in Theorem 5.4, which it extends it to order-3 for points in
convex position in Theorem 5.5. Finally, Section 6 concludes the paper with
discussions of open questions and conjectures related to the geometry and
combinatorics of Delaunay and more general hypertriangulations.

2. Background

We follow the standard approach to points in general position used in the
literature: a finite set, A ⊆ R2, is generic if no three points are colinear and
no four points are cocircular.

2.1. Triangulations and Hypertriangulations. We first define the fam-
ilies of all triangulations and hypertriangulations of A, which include the
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order-1 and order-k Delaunay triangulations discussed in Section 3. We
write convA for the convex hull of the set A.

Definition 2.1 (Triangulations). A triangulation, P , of a finite A ⊆ R2

is an edge-to-edge subdivision of convA into triangles whose vertices are
points in A. It is usually identified with the set of its triangles, so we write
P = {T1, T2, . . . , Tm}. The triangulation is complete if every point of A is
a vertex of at least one triangle, partial if it is not complete, and maximal
if there is no other triangulation of the same points that subdivides it.

It is easy to see that a triangulation is maximal iff it is complete. We
nevertheless introduce both concepts because they generalize to different
notions for hypertriangulations, which we introduce next. For a set of k
points, I, we write [I] = 1

k

∑
x∈I x for the average of the points and, assuming

a ̸∈ I and J ∩ I = ∅, we write [Ia] and [IJ ] for the averages of I ∪ {a} and
I ∪ J , respectively. While [I] is a point, we sometimes think of it as the set
I, in which case we call it a label.

Definition 2.2 (Hypertriangulations [6]). Let A ⊆ R2 be generic, n = #A,

k an integer between 1 and n− 1, and A(k) = {[I] | I ⊆ A,#I = k} the set
of k-fold averages of the points in A. A level-k hypertriangulation of A is a
possibly partial triangulation of A(k) such that every edge with endpoints [I]
and [J ] satisfies #(I ∩ J) = k − 1.

Observe that every triangulation of A is a level-1 hypertriangulation of
A, and vice versa, but for k > 1, only a subset of the triangulations of A(k)

are level-k hypertriangulations of A. Note also that it is possible that a
point can be written as the average of more than one subset of k points
in A: for example, the center of a square is the 2-fold average of two pairs
of diagonally opposite vertices. If a level-k hypertriangulation uses such a
point as a vertex, then it can use only one of the possible labels.

An alternative approach to these concepts is via induced subdivisions; see
[22, Chapter 9] for details, including the definitions of induced subdivisions
and tight subdivisions. According to this approach, a triangulation of A =
{a1, a2, . . . , an} is a tight subdivision of convA induced by the projection
π : ∆n → R2, in which ∆n = conv {e1, e2, . . . , en} ⊆ Rn is the standard
(n − 1)-simplex, and π(ei) = ai, for i = 1, 2, . . . , n. To generalize, Olarte

and Santos [15] use the level-k hypersimplex, ∆
(k)
n , which is the convex hull of

the k-fold averages of the ei in Rn, and define a level-k hypertriangulation of
A as a tight subdivision of A(k) induced by the same projection π restricted

to ∆
(k)
n . In this setting, the constraint to use only one label for each vertex

is implicit.

2.2. The Aging Function. A triangle in a level-k hypertriangulation can
be classified into two types. Letting [I], [J ], [K] be its vertices, each the
average of k points, we say the triangle is

• black, if #(I ∩ J ∩K) = k − 2;
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• white, if #(I ∩ J ∩K) = k − 1.

In other words, vertices of black triangles are labeled [Xab], [Xac], [Xbc], for
someX of size k−2, and vertices of white triangles are labeled [Ya], [Yb], [Yc],
for some Y of size k−1. Our next definition allows for transformations from
white to black triangles.

Definition 2.3 (Aging Function). Letting T be a white triangle with vertices
[Ya], [Yb], [Yc], the aging function maps T to the black triangle, F (T ), with
vertices [Yab], [Yac], [Ybc].

The aging function increases the level of the triangle by one, hence the
name. Correspondingly, the inverse aging function maps a black triangle to
a white triangle one level lower.

To extend this definition to hypertriangulations, we say a level-k hyper-
triangulation, Pk, ages to a level-(k + 1) hypertriangulation, Pk+1, denoted
Pk+1 = F (Pk). if the aging function defines a bijection between the white
triangles in Pk and the black triangles in Pk+1. Note however that the aging
of Pk is not unique as it says nothing about the white triangles of Pk+1.
This notion is useful to obtain structural results for the family of all level-k
hypertriangulations. For example, [6] has shown that every level-2 hyper-
triangulation is an aging of a level-1 hypertriangulation. For the special
case in which the points are in convex position, [9] has extended this re-
sult to all levels, k. However, for points in possibly non-convex position,
there are obstacles to applying the aging function. An example of a level-2
hypertriangulation, P2, for which F (P2) does not exist is given in [6, 15].

For later reference, we compile several results about the relation between
level-1 and level-2 hypertriangulations obtained in [6]. Given a vertex, x,
in a triangulation, P , we define the star of x as the union of triangles that
share x, denoted st(P, x), and shrinking the star by a factor two toward x,
we get [st(P, x), x] = 1

2(st(P, x) + x), which is the set of midpoints between
x and any point y ∈ st(P, x). Observe that the shrunken star is contained

in convA(2) iff x is an interior vertex of P . Indeed, x necessarily belongs
to the shrunken star, but if x is a convex hull vertex, then x lies outside
convA(2).

Lemma 2.4 (Aging Function for Triangulations). Let A ⊆ R2 be finite and
generic, and recall that every level-1 hypertriangulation is just a triangula-
tion.

• For every level-1 hypertriangulation, P , of A, there exists a level-2
hypertriangulation, P2, such that P2 = F (P ).

• For every level-2 hypertriangulation, P2, of A, there exists unique
level-1 hypertriangulation, P , such that P2 = F (P ).

• If P2 = F (P ) and x ∈ A is a vertex of P , then the union of white
triangles in P2 that have x in all their vertex labels is [st(P, x), x] ∩
convA(2).
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Since [st(P, x), x] ∩ convA(2) ̸= [st(P, x), x] iff x is a convex hull vertex,
the third claim implies that for each interior vertex, x, scaled versions of the
mentioned white triangles in P2 tile the star of x in P .

2.3. Maximal and Complete Hypertriangulations. The Delaunay tri-
angulation of a finite set is optimal among all complete triangulations, but
not necessarily among the larger family of possibly partial triangulations of
the set. In this section, we introduce two families of level-2 hypertriangula-
tions to which we compare the order-2 Delaunay triangulation.

Definition 2.5 (Complete and Maximal Level-2 Hypertriangulations). Let
A ⊆ R2 be finite and generic. A level-2 hypertriangulation of A is complete
if its black triangles are the images under the aging function of the trian-
gles in a complete triangulation of A, and it is maximal if no other level-2
hypertriangulation subdivides it.

The notion of maximality extends to level-k hypertriangulations, while
completeness does not since there are counterexamples to the existence of
the aging function from level 2 to level 3; see Figure 8 in [6], which is based
on Example 5.1 in [15].

For k = 1, a triangulation of a finite and generic set is complete iff it is
maximal. An easy way to see this is by counting the triangles in a possibly
partial triangulation of A ⊆ R2. Write H ⊆ A for the vertices of the
convex hull of A, and set n = #A and h = #H. The vertex set of a partial
triangulation can be any subset of A that contains all points in H. Let m be
the number of extra points, so the triangulation has m+h vertices. We can
add h−3 (curved) edges to turn the triangulation into a maximally connected
planar graph, which has 3(m+h)−6 edges and 2(m+h)−4 faces, including
the outside. Hence, the triangulation has 3(m+h)−6−(h−3) = 3m+2h−3
edges and 2(m + h) − 4 − (h − 2) = 2m + h − 2 triangles. For a complete
triangulation, we have m = n − h and therefore 2n − h − 2 triangles. If a
triangulation has fewer than this number, then its vertex set misses at least
one point, which we can add by subdivision. Hence, the triangulation is
complete iff it is maximal. The situation is slightly more complicated for
level-2 hypertriangulations.

Lemma 2.6 (Complete Implies Maximal). Let A ⊆ R2 be finite and generic.
Then any two maximal level-2 hypertriangulations have the same number of
triangles, and every complete level-2 hypertriangulation is maximal.

Proof. To prove the first claim, let n = #A, h = #H, and consider a level-2
hypertriangulation, P2, aged from a possibly partial triangulation, P , with
m + h ≤ n vertices. Note that P has 2m + h − 2 triangles, so P2 has the
same number of black triangles.

To count the white triangles in P2, we recall that each white region corre-
sponds to the star of a vertex of P . If a is a vertex in the interior of convA,
then the white region is the shrunken star, [st(P, a), a]. We modify P2 so
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this is also true for each vertex, b, of convA. To this end, we consider all
boundary edges of P2 that connect vertices a′ = [ba] and c′ = [bc], and add
the triangle a′bc′ to P2. The number of thus added triangles depends on
the convex hull of the midpoints of pairs but not on how this convex hull is
decomposed into triangles. The benefit of this modification is that we now
have exactly m+h white regions, each a star-convex polygon, and each edge
of P contributes a vertex to exactly two of the white regions. Not forget-
ting the h vertices added during the modification, this implies that the total
number of edges of them+h white regions is 2(3m+2h−3)+h = 6m+5h−6.
Every triangulation of a j-gon has j − 2 triangles, so the total number of
triangles in the white regions is (6m+ 5h− 6)− 2(m+ h) = 4m+ 3h− 6.

We now turn our attention to the n − h − m points of A that are not
vertices of P . Let x be such a point and abc the triangle in P that contains
x in its interior. Hence, [xa] lies in the interior of [st(P, a), a], and similarly
for b and c. To maximally subdivide P2, we thus add 3(n − h −m) points
in the interiors of the white regions, which increases the number of white
triangles to (4m+ 3h− 6) + 6(n− h−m) = 6n− 2m− 3h− 6. Adding to
this the 2m+ h− 2 black triangles, we get a total of 6n− 2h− 8 triangles.
To get the number of triangles in this maximal triangulation, we still need
to correct for the triangles added during the initial modification of P2. But
their number does not depend on m, so neither does the final triangle count.
Hence, all maximal level-2 hypertriangulations of A have the same number
of triangles.

To get the second claim, observe that we have m = 0 whenever P2 is
complete. Hence, we get the same number of triangles as just calculated,
but without subdivision. It follows that P2 is maximal. □

3. The Local Angle Property

In this section, we define order-k Delaunay triangulations as special level-k
hypertriangulations, introduce the local angle property for level-k hypertri-
angulations, and show that the order-k Delaunay triangulations have the
local angle property. This property specializes to the standard local an-
gle property that characterizes (order-1) Delaunay triangulations as well as
their constrained versions.

3.1. Higher Order Delaunay Triangulations. We introduce the order-k
Delaunay triangulation of a finite set as a special level-k hypertriangulation
of this set; but see [1] for a more geometric definition.

Definition 3.1 (Order-k Delaunay Triangulation). Let A ⊆ R2 be finite and
generic, and k an integer between 1 and #A− 1. We construct a particular
level-k hypertriangulation of A:

• a black triangle with vertices [Xab], [Xac], [Xbc] belongs to this hy-
pertriangulation if X ⊆ A is the set of points inside the circumcircle
of abc, and #X = k − 2;
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• a white triangle with vertices [Y a], [Y b], [Y c] belongs to this hyper-
triangulation if Y ⊆ A is the set of points inside the circumcircle of
abc, and #Y = k − 1.

This hypertriangulation is called the order-k Delaunay triangulation of A
and denoted Delk(A).

While it may not be obvious that the above triangles form a triangula-
tion of A(k), it can be seen, for example, by lifting the points of A onto
a paraboloid in R3, and then considering the lower surface of the convex
hull of the k-fold averages, which project to the points in A(k). Another
way to construct Delk(A) is from the dual order-k Voronoi tessellation, as
illustrated for k = 2 in Figure 1.

f g

h

a

b

c d

e

Figure 1: The (blue) order-2 Delaunay triangulation drawn on top of the (black)
order-2 Voronoi tessellation. Not all parts of the order-2 Voronoi tessellation are
visible in the rectangular window.

Note that for k = 1, we get precisely the Delaunay triangulation of A,
as all triangles are white and satisfy the empty circle criterion. For k =
#A−1, we get the (scaled and centrally inverted copy of) the farthest-point
Delaunay triangulation [7]. Each of its triangles is black, and every point
of A is either a vertex or inside the circumcircle of the triangle. Moreover,
the aging function applies, and we have Delk+1(A) = F (Delk(A)) for every
1 ≤ k < #A− 1.

3.2. Angles of Black and White Triangles. We now generalize the local
angle property from order-1 to order-k. For 2 ≤ k ≤ #A− 2, we have black
as well as white triangles. Hence, there are three types of interior edges:
those shared by two white triangles, two black triangles, and a white and a
black triangle. We have a different condition for each type.

Definition 3.2 (Local Angle Property). Let A ⊆ R2 be finite and generic.
A level-k hypertriangulation of A has the local angle property if
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• (ww) for every edge shared by two white triangles, the sum of the
two angles opposite the edge is at most π;

• (bb) for every edge shared by two black triangles, the sum of the two
angles opposite the edge is at least π;

• (bw) for every edge shared by a black triangle and a white triangle,
the angle opposite the edge in the black triangle is bigger than the
angle opposite the edge in the white triangle.

For k = 1, there are no black triangles, so (bb) and (bw) are void.
Delaunay [4] proved that the local angle property characterizes the (closest-
point) Delaunay triangulation among all (complete) triangulations of a finite
point set, and this was used by Lawson [12] to construct the triangulation
by repeated edge flipping. Symmetrically, for k = #A − 1, there are no
white triangles, so (ww) and (bw) are void. Eppstein [7] proved the lo-
cal angle property for the (farthest-point) Delaunay triangulation, and the
convergence of the flip-algorithm implies that it is the only (not necessarily
complete) triangulation of the points that has this property. The goal of
this section is to extend these result to level-k hypertriangulations.

3.3. All Delaunay Triangulations Have the Local Angle Property.
We prove that the Delaunay triangulations of any order have the local angle
property. This extends the results from k = 1,#A− 1 to any order between
these limits.

Theorem 3.3 (Order-k Delaunay Triangulations have Local Angle Prop-
erty). Let A ⊆ R2 be finite and generic. Then for every integer 1 ≤ k ≤
#A−1, the order-k Delaunay triangulation of A has the local angle property.

Proof. Recall that white triangles of the order-k Delaunay triangulation of
A have vertices [Ya], [Yb], [Yc], in which Y ⊆ A with #Y = k − 1, such
that all points of Y are inside and all other points of A are outside the
circumcircle of abc. Similarly, its black triangles have vertices labeled [Xab],
[Xac], [Xbc], in which X ⊆ A with #X = k−2, such that all points of X are
inside and all other points of A are outside this circumcircle. We establish
each of the three conditions separately.

(ww): Let [Ya], [Yb], [Yc] and [Yb], [Yc], [Yd] be the vertices of two adjacent
white triangles in the order-k Delaunay triangulation of A, and note that
the points of Y lie inside and d lies outside the circumcircle of abc; see the
left panel of Figure 2. The triangles abc and bcd are homothetic copies of
these two white triangles, which implies that a and d lie on opposite sides
of bc. Hence, ∡bac+∡bdc < π, because d is outside the circumcircle. (ww)
follows.

(bb): Let [Zabc], [Zabd], [Zacd] and [Zabd], [Zacd], [Zbcd] be the vertices
of adjacent black triangles in the order-k Delaunay triangulation of A, and
note that the points of Z and d lie inside the circumcircle of abc; see the
middle panel of Figure 2. The triangles bcd and abc are homothetic copies of
these two black triangles, which implies that a and d are on opposite sides
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c

[Ya]

[Yb] [Yc]

[Yd]

[Zabc]

[Zabd] [Zacd]

[Zbcd]

[Xad]

[Xab] [Xac]

[Xbc]

a

d

b c

d

a

b c

a d

b

Figure 2: From left to right: an edge shared by two white triangles, two black
triangles, a black triangle and a white triangle. Top row: the adjacent triangles in
the order-k Delaunay triangulation. The vertex labels encode the locations of the
vertices as averages of the listed points. Bottom row: the corresponding triangles
spanned by the original points.

of bc. Hence, ∡bac + ∡bdc > π, because d is inside the circumcircle. (bb)
follows.

(bw): Let [Xab], [Xac], [Xbc] and [Xab], [Xac], [Xad] be the vertices of
a black triangle and an adjacent white triangle in the order-k Delaunay
triangulation of A, and note that the points ofX lie inside while d lies outside
the circumcircle of abc; see the right panel of Figure 2. The triangles abc
and bcd are homothetic copies of the black and white triangles, with negative
and positive homothety coefficients, respectively, which implies that a and
d lie on the same side of bc. Thus, ∡bac > ∡bdc, because d is outside the
circumcircle. (bw) follows. □

We conjecture that the order-k Delaunay triangulation is the only level-k
hypertriangulation with maximally many triangles that has the local angle
property. For later reference, we refer to this as the Local Angle Conjecture
for hypertriangulations.

3.4. Constrained Delaunay Triangulations. Given a bounded polygo-
nal region, R, it is always possible to find a triangulation, P , of its vertices
(the endpoints of its edges) that contains all edges of the region. Hence,
every triangle of P lies either completely inside or completely outside the
region. The restriction of P to R consists of the triangles inside R, and we
call this restriction a triangulation of R. For some choices of P , the restric-
tion to R looks locally like the Delaunay triangulation, namely when every
edge that passes through the interior of R satisfies (ww). It is not difficult
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to see that such choices of triangulations exist and that their restriction to
R is generically unique: run Lawson’s algorithm on an initial triangulation
of R, flipping an interior edge whenever the sum of the two opposite angles
exceeds π. This is the constrained Delaunay triangulation of R, as intro-
duced in 1989 by Paul Chew [2], but see also [11]. A triangle uvw belongs
to this specific triangulation iff it is contained in R and its circumcircle does
not enclose any vertex that is visible from points inside the triangle. We
state a weaker necessary condition for later reference.

Lemma 3.4 (Triangles and Edges in Constrained Delaunay Triangulation).
Let R be a bounded polygonal region in R2, assume its vertex set is generic,
and let u, v, w be vertices of R. If the triangle uvw is contained in R, and
its circumcircle does not enclose any vertex of R, then uvw is a triangle
in the constrained Delaunay triangulation of R. Similarly, if the edge uv is
contained in R but is not an edge of R, and it has a circumcircle that does
not enclose any vertex of R, then uv is an edge of the constrained Delaunay
triangulation of R.

We use constrained Delaunay triangulations to decompose white regions
in aged hypertriangulations. To explain, let P be a complete triangulation of
a finite and generic set, A ⊆ R2, let x ∈ A be a vertex of this triangulation,
call wh(P, x) = st(P, x) ∩ conv (A \ {x}) the white region of x in P , and let
P (x) be a triangulation of wh(P, x). Note that wh(P, x) = st(P, x) if x is
an interior vertex, and wh(P, x) ⊊ st(P, x) if x is a convex hull vertex. In
the special case in which P is the order-1 Delaunay triangulation and P (x)
is the constrained Delaunay triangulation of wh(P, x) for each x ∈ A, these
sets contains all white triangles in the order-2 Delaunay triangulation, albeit
the latter are only half the size.

More generally, we use the constrained Delaunay triangulations of the
white regions to disambiguate the aging function. This is done extensively
in the proofs of our main results in Sections 4 and 5.

4. Optimality of the Sorted Angle Vector

In this section, we prove the first main result of this paper in an exhaustive
case analysis. With the exception of Section 4.4, we work only with complete
level-2 hypertriangulations. To aid the discussion, we begin by introducing
convenient terminology and stating a few elementary lemmas.

4.1. Triangulations and Angle Vectors. Let A ⊆ R2 be a finite set
of points, and let P be a complete triangulation of A, and write P2 =
F (P ) for the (complete) level-2 hypertriangulation whose white regions are
decomposed by constrained Delaunay triangulations. We prefer to work
with the original points of A, rather than the midpoints of its pairs. We
therefore write Φ2 = f(P ) for the collection of triangles in P , together with
the triangles in the constrained Delaunay triangulations of the wh(P, x),
with x ∈ A. Consistent with the earlier convention, we call the triangles of
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Φ2 in P black and the other triangles of Φ2 white. Accordingly, we write
Black(Φ2) for the black triangles in Φ2, and White(Φ2, x) for the white
triangles in Φ2 that triangulate wh(P, x). There is a bijection between Φ2

and P2 such that the corresponding triangles are similar (scaled by a factor 1
2

and possibly inverted), so the triangles in Φ2 and P2 define the same angles.
Letting m be the number of triangles, we write Vector(P2) = Vector(Φ2) =
(φ1, φ2, . . . , φ3m) for the vector of angles, which we order such that φi ≤ φi+1

for 1 ≤ i ≤ 3m− 1.

Repeating the construction with another (maximal) triangulation Q of
A, we get another (complete) level-2 hypertriangulation of m black and
white triangles, Q2, and another increasing angle vector, Vector(Q2) =
Vector(Ψ2) = (ψ1, ψ2, . . . , ψ3m), in which Ψ2 = f(Q). It is lexicograph-
ically larger than the vector of Φ2, denoted Vector(Φ2) ≺ Vector(Ψ2), if
there exists an index 1 ≤ p ≤ m such that φi = ψi, for 1 ≤ i ≤ p − 1, and
φp < ψp. We write Vector(Φ2) ⪯ Vector(Ψ2) to allow for the possibility of
equal angle vectors. This notation is useful because it is possible that two
different triangulations, P ̸= Q, have the same angle vector. For example, if
A has only 4 points and they are in convex position, then there are only two
different triangulations of A, and the black triangles in the level-2 hypertri-
angulation of one are the white triangles in the level-2 hypertriangulations
of the other, and vice versa.

4.2. Elementary Lemmas. If uvw is a triangle in White(Φ2, x), then it
is not possible that u lies inside xvw. This is true independent of how we
triangulate wh(P, x):

Lemma 4.1 (Star-convex Triangulation). Let uvw be a triangle in
White(Φ2, x). Then either x is inside uvw or x, u, v, w are the vertices
of a convex quadrangle.

Proof. Assume first that x is an interior vertex, so conv (A \ {x}) = convA.
Since wh(P, x) is star-convex, with x in its kernel, every half-line emanating
from x intersects the boundary of wh(P, x) in exactly one point. Now sup-
pose u lies inside the triangle xvw, and consider the half-line emanating from
x that passes through u. Since x lies in the interior of wh(P, x), the half-line
goes from inside to outside the region as it passes through u. But it also
enters the triangle uvw, which lies inside wh(P, x). This is a contradiction
because entering and leaving st(P, x) at the same time is impossible.

Assume second that x is a vertex of convA, so conv (A \ {x}) ̸= convA.
Since uvw is a triangle in wh(P, x), it is also a triangle in st(P, x). Fur-
thermore, u, v, w are points on the boundary of st(P, x), and every half-line
emanating from x that has a non-empty intersection with the interior of
convA intersects this boundary in exactly one point. Assuming u lies inside
xvw, we can now repeat the argument of the first case and get a contradic-
tion because the half-line passing through u both enters and leaves st(P, x)
when it passes through u. □
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Every point x ∈ A belongs to at least two edges in P . However, if x
belongs to only two edges, then every line that crosses both edges necessarily
separates x from all points in A \ {x}. We state and prove a generalization
of this observation.

Lemma 4.2 (Splitting a Triangulation). Let P be a triangulation of a finite
set A ⊆ R2, let L be a line, and let Q be the vertices and edges of P that are
disjoint of L. Then Q consists of at most two connected components, one
on each side of L.

Proof. Assume without loss of generality that L is horizontal, and let A′ ⊆ A
contain all points strictly above L. The boundary of convA is a closed
convex curve, γ, and we write γ′ ⊆ γ for the vertices and edges strictly
above L. Every point a ∈ A′ is either a vertex of γ′, or there is an edge
ab in P , with b above L and further from L than a. Hence, ab ∈ Q. We
can therefore trace a path from a that eventually reaches a vertex of γ′ in
Q, which implies that the part of Q strictly above L is either empty or
connected. Symmetrically, the part of Q strictly below L is either empty or
connected, which implies the claim. □

By construction, the interior points of a black triangle, abc ∈ P , belong to
st(P, a), st(P, b), st(P, c) but not to the stars of any other vertices. Hence,
only the white triangles used in the triangulation of these three stars can
possibly share interior points with abc. If a white triangle shares one or
two of the vertices with abc, then this further restricts the stars this white
triangle may help triangulate.

Lemma 4.3 (Shared Interior Points). Let P be a triangulation of a finite set
A ⊆ R2, let abc be a black triangle and uvw a white triangle in Φ2 = f(P ),
and suppose that abc and uvw share interior points.

(1) If u = a and v = b, then uvw ∈ White(Φ2, c).
(2) If v = b is the only shared vertex between abc and uvw, then uw

cannot cross ab and bc.
(3) If v = b and uw crosses bc, then uvw ∈ White(Φ2, c).
(4) uvw ∈ White(Φ2, x) for only one point x ∈ A.

Proof. (1) is immediate because c is the only vertex of abc that is not also
a vertex of uvw.

To see (2), assume that uw crosses ab and also bc. Then uvw shares
interior points with three black triangles in Φ2, namely abc and the neigh-
boring triangles that share ab and bc with abc. The only common vertex of
the three black triangles is b, so uvw ∈ White(Φ2, b), but this is impossible
because b = v.

To see (3), note that uvw shares interior points with two black triangles:
bac and the black triangle on the other side of bc. Hence, uvw is contained
in st(P, b) or st(P, c). Since b = v, the only remaining choice is uvw ∈
White(Φ2, c).
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To see (4), consider first the case that uvw shares interior points with
only two black triangles, abc and bcd. Then one of its edges, say uv crosses
bc, so u = a and w = d. But v cannot lie in the interior of the two black
triangles or its edges, so v = b. Then c is the only remaining point such that
uvw ∈ White(Φ2, c). If uvw shares interior points with three or more black
triangles, then the black triangles share only one common vertex, x, hence
uvw ∈ White(Φ2, x). □

4.3. Global Optimality. The first main result of this paper asserts that
Sibson’s theorem on increasing angle vectors extends from order-1 to order-2
Delaunay triangulations. We first illustrate our approach by giving a new
proof of Sibson’s angle vector optimality for the order-1 Delaunay trian-
gulation. Note that we establish the non-strict optimality while Sibson’s
theorem gives the strict one in the generic case.

Theorem 4.4 (Sibson’s Theorem [20]). Let A ⊆ R2 be finite and generic,
P a complete triangulation of A, and D = Del(A). Then Vector(P ) ⪯
Vector(D).

Proof. The genericity of A implies ∡xay ̸= ∡xby whenever points a, b ∈ A
lie on the same side of the line that passes through x, y ∈ A. However, there
may be two or more triplets of points in A that define the same angle. It will
be convenient to have distinct angles, so we first apply a perturbation that
preserves the order of unequal angles while making equal angles different.
The relation for the perturbed points implies the same but possibly non-
strict relation for the original points, since undoing the perturbation does not
change the order of any two angles. So assume that the angles defined by the
points in A are distinct, and to derive a contradiction, assume Vector(D) ≺
Vector(P ). More specifically, we write α1 < α2 < . . . < α3m and φ1 <
φ2 < . . . < φ3m for the angles of D and P , respectively, and we assume
αi = φi, for 1 ≤ i ≤ p − 1, and αp < φp, for some 1 ≤ p ≤ 3m. In other
words, p is the first index at which the two angle vectors differ, and the
p-th angle of D is smaller than the p-th angle of P . Write α = αp and
let bac ∈ D be the triangle with α = ∡bac. By the assumption of distinct
angles, bac ̸∈ P . To simplify the discussion, we assume that the line, L, that
passes through b and c is horizontal and that a lies above L. Since P is a
complete triangulation of A, every point of A is a vertex of P . We consider
two cases for the triangles of P that cover the upper side of bc.

If there is only one such triangle, bdc, then d ̸= a as P does not contain
the triangle bac. Since D is the Delaunay triangulation of A, d lies outside
the circumcircle of bac and therefore ∡bdc < α. This implies that bdc must
be a triangle of D as the angle vectors of D and P coincide at angles less
than α. This is a contradiction as both bac and bdc cannot belong to D.

If there are at least two triangles of P covering the upper side of bc, then
we consider the triangle bxy that shares b with bac. Here x is above L and y
is below L. Since c is a vertex of P , xy intersects bc and ∡bxy < ∡bxc < α.
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As in the first case, this implies that bxy is a triangle in D, which leads to
a contradiction as triangles bxy and bac intersect. □

We now use a similar approach to establish the angle vector optimality
for the order-2 Delaunay triangulation.

Theorem 4.5 (Angle Vector Optimality). Let A ⊆ R2 be finite and generic,
P a complete triangulation of A, Φ2 = f(P ), and ∆2 = f(Del(A)). Then
Vector(Φ2) ⪯ Vector(∆2).

Proof. Write D = Del(A), so ∆2 = f(D). The genericity of A implies that
D and ∆2 are unique, but there may be two or more triplets of points that
define the same angle. As in the proof of Theorem 4.4, it will be convenient to
have distinct angles, so we apply a perturbation and assume that the angles
defined by the points in A are distinct. To derive a contradiction, assume
Vector(∆2) ≺ Vector(Φ2). More specifically, we write α1 < α2 < . . . < α3m

and φ1 < φ2 < . . . < φ3m for the angles of ∆2 and Φ2, respectively, and we
assume αi = φi, for 1 ≤ i ≤ p − 1, and αp < φp, for some 1 ≤ p ≤ 3m. In
other words, p is the first index at which the two angle vectors differ, and
the p-th angle of ∆2 is smaller than the p-th angle of Φ2. Write α = αp and
let bac ∈ ∆2 be the triangle with α = ∡bac. By the assumption of distinct
angles, bac ̸∈ Φ2. To simplify the discussion of the various cases, we assume
without loss of generality that

• the line, L, that passes through b and c is horizontal;
• the triangle bac, and therefore the vertex a, lie above L;

see Figures 3 and 4. We first consider the case in which bac is a black
triangle. There are three subcases, and in each we get a contradiction by
constructing two triangles that share interior points. Note that two white
triangles may share interior points, but not if they triangulate the same star.

Case 1: bac is a black triangle in ∆2. By definition of D = Del(A), bac
does not contain a point of A in its interior, and if x ∈ A \ {a} lies above
L, then the angle ∡bxc is strictly smaller than α. We say a collection of
triangles covers the upper side of the edge bc if every interior point of bc has
an open neighborhood whose intersection with the closed half-plane above
L is contained in the union of these triangles. The black triangles in Φ2

cover the entire convex hull of A and therefore also the upper side of bc. It
is possible that a single black triangle in Φ2 suffices for this purpose, and
this is our first subcase.

Case 1.1: the upper side of bc is covered by a single triangle,
bxc ∈ Black(Φ2), as in Figure 3 on the left. Since ∡bxc < α, bxc must be
a white triangle in ∆2. Specifically, since a and x are both above L, and a
lies inside the circumcircle of bxc, we have bxc ∈ White(∆2, a).

To get a contradiction, we construct a second such white triangle. Since
there are at least two points of A above L, Lemma 4.2 implies that P contains
an edge connecting x to another point, x′ ̸= x, above L. Hence, wh(P, x) has
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Figure 3: Edges of black and white triangles are bold and fine, respectively, and
edges of triangles in ∆2 and Φ2 are pink and green, respectively. Left: two overlap-
ping triangles in White(∆2, a) constructed in Case 1.1. Middle: two crossing edges
of black triangles in Φ2 constructed in Case 1.2.1. Right: two overlapping triangles
in White(∆2, c) constructed in Case 1.2.2.

a non-empty overlap with the open half-plane above L. Since bc belongs to
the boundary of wh(P, x), there is a triangle bx′c in White(Φ2, x). We have
x′ ̸= x by construction, and x′ ̸= a because this would imply that ∡bx′c = α
is an angle in Vector(Φ2), which we assumed it is not. Since x′ lies outside
the circumcircle of bac, we have ∡bx′c < α, so bx′c ∈ White(∆2, a). But bxc
and bx′c share interior points, which is a contradiction.

Case 1.2: to cover the upper side of bc requires two or more trian-
gles in Black(Φ2), as in Figure 3 in the middle and on the right. Among
these triangles, let bxy and cx′y′ be the ones that share the vertices b and c
with bac. Assuming x, x′ lie above L and y, y′ lie below L, we have ∡bxy < α
and ∡cx′y′ < α, which implies bxy, cx′y′ ∈ ∆2. The two triangles share in-
terior points with bac, so they cannot be black and are therefore white in
∆2.

Case 1.2.1: at least one of x, x′ differs from a. Assume x ̸= a. Since
xy crosses bc, it must cross another edge of bac, which by Lemma 4.3 (2)
can only be ac. If x′ = a, then x′c = ac, and if x′ ̸= a, then x′y′ crosses ab
and bc, again by Lemma 4.3 (2). In either case, bxy and cx′y′ share interior
points inside triangle abc, which contradicts bxy, cx′y′ ∈ Black(Φ2).

Case 1.2.2: both x and x′ are equal to a. Then bay, cay′ ∈ Black(Φ2).
Since ∡bay < α and ∡cay′ < α, both are white triangles in ∆2. By
Lemma 4.3 (1), bay ∈ White(∆2, c) and cay′ ∈ White(∆2, b), which im-
plies that cy and by′ are edges in Del(A). If y ̸= y′, then there are three
possible choices for the points b, c, y, y′. First, they form a convex quad-
rangle, byy′c, with the points ordered as they are seen from a. But then by′

and cy cross, which contradicts that they both belong to Del(A). Second, y
lies inside bcy′. Since cay′ ∈ White(∆2, b), the circumcircle of cay′ encloses
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b and therefore y, which is one point too many for a white triangle in ∆2.
Third, y′ lies inside bcy, but this is symmetric to the second choice. Since
we get a contradiction for all three choices, we conclude that y = y′.

To get a contradiction, we use Lemma 4.2 to construct yet another triangle
baz ∈ White(∆2, c). Specifically, we let L be the line that passes through
a and b, and rotate the picture so L is horizontal and c, y lie above L.
Hence, there is a point z above L such that yz is an edge in P and baz ∈
White(Φ2, y). We have z ̸= y by construction, and z ̸= c by assumption
on angle α. Since ba and ac are both edges in the boundary of st(P, y), za
crosses bc, so ∡baz < α, which implies that baz is a white triangle in ∆2,
and by Lemma 4.3 (1), baz ∈ White(∆2, c). But bay and baz share interior
points, which is a contradiction. This concludes the proof of the first case.

za ax = a = x′

b c

d

α

y = d = y′

α

b c cb

α d z

z′x′ x

Figure 4: As before, we draw edges of black and white triangles bold and fine, respec-
tively. To simplify, we show only edges of triangles in ∆2. Left: two overlapping tri-
angles in White(∆2, a) constructed in Case 2.1.1. Middle: similar two overlapping
triangles in White(∆2, a) constructed in a chain of deductions in Case 2.1.2. Right:
a white triangle whose circumcircle encloses two points constructed in Case 2.2.

Case 2: bac is a white triangle in ∆2. Let d be the point such that
bac ∈ White(∆2, d). Then da, db, dc are edges of black triangles in ∆2. We
distinguish between the cases in which d lies below and above L.

Case 2.1: d lies below L; see the left and middle panels of Figure 4.
Then ∡bxc < ∡bac for all x ∈ A above L, and ∡byc < ∡bdc for all y ∈ A
below L. Similar to Case 1.1, we distinguish between the upper side of bc
being covered by one or requiring two or more black triangles in Φ2. In both
cases, we derive a contradiction by constructing triangles in White(∆2, a)
that share interior points.

Case 2.1.1: the upper side of bc is covered by a single triangle,
bxc ∈ Black(Φ2); see the left panel of Figure 4. Then ∡bxc < α, so bxc
is a triangle in ∆2, and since a lies inside its circumcircle, we have bxc ∈
White(∆2, a). Using Lemma 4.2, we find a point x′ above L such that xx′

is an edge in P and bx′c is a triangle in White(Φ2, x). We have x′ ̸= x by
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construction, and x′ ̸= a, else ∡bx′c = α would be an angle in Vector(Φ2).
Again ∡bx′c < α, so bx′c ∈ White(∆2, a). This is a contradiction because
bxc and bx′c share interior points.

Case 2.1.2: to cover the upper side of bc requires at least two
triangles in Black(Φ2). Among these triangles, let bxy and cx′y′ be the
ones that share b and c with bac, respectively, and assume that x, x′ are
above L and y, y′ are below L. We first prove that d is connected to b and
c by edges of black triangles in Φ2, and thereafter derive a contradiction by
constructing two triangles in White(∆2, a) that share interior points.

Claim: bd and cd are edges of triangles in Black(Φ2).

Proof. To derive a contradiction, assume the claim is false and bd is not edge
of any black triangle in Φ2. Hence y ̸= d. Since ∡bxy < α, bxy is also in
∆2. It shares interior points with the star of d without having d as a vertex,
which implies that bxy must be white in ∆2.

Consider bdc, which is not necessarily a triangle in ∆2 or Φ2. However,
since d is the only point inside the circumcircle of bac, there is no point of
A inside bdc. Since xy crosses bc, it must cross either bd or cd. Assuming
xy crosses bd, bxy shares interior points with the two black triangles with
common edge bd in ∆2, so bxy ∈ White(∆2, d) by Lemma 4.3 (3). This is
not possible since bxy and bac share interior points. Thus, xy crosses cd.
Since bxy ∈ Black(Φ2), this implies that cd cannot be edge of any black
triangle in Φ2. Hence y′ ̸= d, so we can use the symmetric argument to
conclude that x′y′ crosses bd. But this is a contradiction since in this case
bxy and cx′y′ share interior points inside the triangle bcd; see the middle
panel of Figure 3 where the situation is similar. This completes the proof of
the claim.

Since bd and cd are edges of triangles in Black(Φ2), we have y = y′ =
d. Consider st(P, d), which contains b and c on its boundary. The black
triangles in Φ2 that cover the upper side of bc all share d as a vertex, which
implies that bc lies inside this star. Indeed, by Lemma 3.4, it is an edge of
a triangle in White(Φ2, d). Thus, there exists a triangle bzc ∈ White(Φ2, d)
with z above L. We have z ̸= a by assumption on α, so ∡bzc < α, which
implies that bzc is also a white triangle in ∆2, and since its circumcircle
encloses a, bzc ∈ White(∆2, a).

To construct a second such white triangle, note that this implies that
ab and ac are edges of triangles in Black(∆2). As illustrated in the middle
panel of Figure 4, all of ab, ac, ad, bd, cd are edges of black triangles in ∆2, so
bac, bdc ∈ Black(∆2). Hence, bd and cd are edges in the boundary of st(D, a),
and since bzc ∈ White(∆2, a), we also have bdc ∈ White(∆2, a). The angle
at b satisfies ∡dbc < ∡dac < α because a lies inside the circumcircle of dbc,
and since dbc is a triangle in ∆2, it must therefore also be a triangle in Φ2.
It cannot be in Black(Φ2) because the upper side of bc requires at least two
black triangles of Φ2 to be covered, by assumption. Hence, dbc is white in
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Φ2. It shares interior points with the two black triangles with common edge
dz in Φ2, so dbc ∈ White(Φ2, z), by Lemma 4.3 (3).

Finally consider White(Φ2, z). It contains bdc and, by Lemma 4.2, it
covers the upper side of bc. Hence, there is a triangle bz′c ∈ White(Φ2, z)
with z′ above L. We have z′ ̸= z by construction, and z′ ̸= a by assumption
on α. Again, ∡bz′c < α, so bz′c ∈ ∆2, and since its circumcircle encloses a,
we have bz′c ∈ White(∆2, a). But this is a contradiction because bzc and
bz′c share interior points.

Case 2.2: d lies above L; see the right panel of Figure 4. Similar to Case
2.1.2, we begin by proving that d is connected to b and c by edges of black
triangles in Φ2.

Claim: bd and cd are edges of triangles in Black(Φ2).

Proof. To derive a contradiction, assume the claim is false and bd is not edge
of any black triangle in Φ2. Among the one or more black triangles needed
to cover the upper side of bc, let bxy ∈ Black(Φ2) be the triangle that shares
b with bac. Letting x be the vertex above L, we have x ̸= d by assumption.
If bxy covers the upper side of bc by itself, then y = c, and otherwise, y lies
below L. In either case, ∡bxy < α, so bxy is also a triangle in ∆2. It cannot
be black because it shares interior points with st(D, d) without having d as
a vertex, so bxy is a white triangle in ∆2. But this implies y ̸= c. Indeed, if
y = c, then either bxy = bac, which contradicts the assumption on α, or the
circumcircle of bxy encloses a as well as d, which is one point too many for
a white triangle in ∆2.

So y is below L. Note that the circumcircle of bac encloses d and therefore
bdc, and since x lies on or outside this circle, it cannot lie inside bdc. Since
xy crosses bc, it thus must cross another edge of this triangle, either bd or cd.
Assuming xy crosses bd, which is common to two black triangles in ∆2, we get
bxy ∈ White(∆2, d) from Lemma 4.3 (3). But bxy and bac ∈ White(∆2, d)
share interior points, which is a contradiction. Hence, xy crosses bc and cd,
so cd cannot be an edge of a black triangle in Φ2.

Let now cx′y′ be among the triangles in Black(Φ2) needed to cover the
upper side of bc that shares c with bac. By a symmetric argument, we
conclude that x′y′ crosses bc and bd. But this is a contradiction because bxy
and cx′y′ share interior points inside the triangle bcd; see again the middle
panel of Figure 3 but substitute d for a. This completes the proof of the
claim.

Hence, bd and cd are edges of black triangles in Φ2. This implies that b
and c are points in the boundary of st(P, d). As argued above, there are no
points of A inside bdc, so st(P, d) covers the upper side of bc. There is a
circle that passes through b and c and encloses d but no other points of A,
so by Lemma 3.4, bc is an edge of a triangle in White(Φ2, d). Let z be the
point above L such that bzc ∈ White(Φ2, d). We have z ̸= d by construction,
and z ̸= a by assumption on α. Hence, ∡bzc < α, which implies that bzc
is also a triangle in ∆2. However, the circumcircle of bzc encloses a and d,
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which is one too many for a white triangle in ∆2. This furnishes the final
contradiction and completes the proof of the theorem. □

4.4. Counterexamples. Can Theorem 4.5 be extended or strengthened?
In this subsection, we present examples that contradict the extension to or-
der beyond 2 and the strengthening to order-2 hypertriangulations obtained
from possibly incomplete triangulations.

Figure 5: From left to right : the order-1, order-2, and order-3 Delaunay triangula-
tions of four points, interleaved with the two possible triangulations of these points.

Order beyond 2. Four points in convex position permit only two trian-
gulations: D = Del(A), and P , which consists of the other two triangles
spanned by the four points. As illustrated in Figure 5, Del2(A) consists
of shrunken and possibly inverted copies of all four triangles, and Del3(A)
consists of shrunken and inverted copies of the two triangles in P . Assuming
A is generic, Sibson’s theorem implies Vector(P ) ≺ Vector(D). There are
two level-3 hypertriangulations: the order-3 Delaunay triangulation, with
Vector(Del3(A)) = Vector(P ), and another, with Vector(P3) = Vector(D).
Hence, Vector(Del3(A)) ≺ Vector(P3). In words, the vector inequality as-
serted in Theorem 4.5 for order-2 Delaunay trinagulations does not even
extend to order 3.

Compare this with Eppstein’s theorem [7], which asserts that for n points
in convex position in R2, the order-(n − 1) Delaunay triangulation lexico-
graphically minimizes the increasing angle vector. For n = 4 and points in
convex position, the above conclusion is a consequence of this theorem.

Incomplete hypertriangulations. Theorem 4.5 compares the order-2
Delaunay triangulation with all complete level-2 hypertriangulations, each
aged from a triangulation that contains each point in A as a vertex. En-
larging this collection to possibly incomplete level-2 hypertriangulations is
problematic since they do not necessarily have the same number of angles as
Del2(A). We can still compare the smallest angles, but there are counterex-
amples. Indeed, Figure 6 shows a set of nine points whose order-2 Delaunay
triangulation does not maximize the minimum angle if incomplete level-2
hypertriangulations participate in the competition. We note that for these
particular nine points, the angle vectors of Del2(A) and the displayed level-2
hypertriangulation have the same length. This implies that the requirement
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of completeness cannot be weakened to maximality, which is equivalent to
having the same number of triangles.

[fg] [eh]

[cg]

a b

c

d

g h

i

[gh]

[di]

[gi] [hi]

[cd]

[eg]

[de] [fd]

[fh]

[ag] [bg] [ah] [bh]

[bd][ad]

[dg] [dh]

e f

[ch]

Figure 6: The minimum angle in the displayed level-2 hypertriangulation is larger
than the minimum angle of the order-2 Delaunay triangulation of the same points.
Indeed, the smallest angle in the hypertriangulation of about 9 degrees is defined
by the vertices [eh], [dh], [gh]. For comparison, the circle in the picture proves that
the angle of about 6.4 degrees defined by the vertices [bc], [cd], [ac] belongs to the
order-2 Delaunay triangulation (not shown).

4.5. Corollary for MaxMin Angle. Theorem 4.5 implies that among all
complete level-2 hypertriangulation, the order-2 Delaunay triangulation is
distinguished by maximizing the minimum angle. Using Sibson’s result for
level-1 hypertriangulations [20], there is a short proof of this corollary. No
such similarly short proof is known for the angle vector optimality of order-2
Delaunay triangulations.

Corollary 4.6 (MaxMin Angle Optimality). Let A ⊆ R2 be finite and
generic, and P a complete triangulation of A. Then the minimum angle of
the triangles in Φ2 = f(P ) is smaller than or equal to the minimum angle
of the triangles in ∆2 = f(Del(A)).

Proof. Write D = Del(A), for each x ∈ A, write D(x) = Del(A \ {x}), and
let P (x) be the triangulation of A \ {x} obtained by removing the triangles



22 ORDER-2 DELAUNAY TRIANGULATIONS OPTIMIZE ANGLES

that share x from P and adding the triangles in the constrained Delaunay
triangulation of wh(P, x). By Sibson’s theorem, the smallest angle in P is
smaller than or equal to the smallest angle in D, and for each x ∈ A, the
smallest angle in P (x) is smaller than or equal to the smallest angle in D(x).
The smallest angle in ∆2 is the minimum angle in D and all D(x), and the
smallest angle in Φ2 is the minimum angle in P and all P (x), for x ∈ A.
Hence, the smallest angle in Φ2 is smaller than or equal to the smallest angle
in ∆2. □

5. Uniqueness of Local Angle Property

In this section, we prove the second main result of this paper, which sup-
ports the Local Angle Conjecture formulated at the end of Section 3.3 by
proving it for the case k = 2. We begin with three basic lemmas on hyper-
triangulations that satisfy some or all of the conditions in Definition 3.2.

5.1. Useful Lemmas. To streamline the discussion, we call a union of black
triangles a black region if its interior is connected and it is not contained in
a larger black region of the same triangulation. Similarly, we define white
regions. Furthermore, we refer to black or white angles when we talk about
the angles inside a black or white triangle.

Lemma 5.1 (Black Regions are Convex). Let A ⊆ R2 be finite and generic,
and let Pk be a level-k hypertriangulation of A that satisfies (bb). Then
every black region of Pk is convex, and all vertices of the restriction of Pk

to the black region lie on the boundary of that region.

Proof. Let a be a boundary vertex of a black region, with edges ab0,
ab1, . . . , abp+1 bounding the p + 1 incident black triangles in the region.
(bb) implies ∡abi−1bi + ∡abi+1bi > π for 1 ≤ i ≤ p, so the sum of the
2(p + 1) angles is larger than pπ. Hence, the sum of the remaining p + 1
angles at a is less than π, as required for the black region to be convex at a.
The same calculation shows that a ring of black triangles around a vertex
in the interior of the black region is not possible.

□

Lemma 5.2 (Total Black Angles). Let A ⊆ R2 be finite and generic, and
let Pk be a level-k hypertriangulation of A that has the local angle property.
Then the sum of black angles at any vertex of Pk is less than π.

Proof. Let a be a vertex of Pk. If a is a boundary vertex, then the claim is
trivial. If a is an interior vertex and incident to at most one black region,
then the claim follows from Lemma 5.1. So assume that a is interior and
incident to p ≥ 2 black and therefore the same number of white regions.
Let ab1, ab2, . . . , ab2p be the edges separating the black and white regions
around a, with the region between ab1 and ab2 being black. We also assume
that the angle between any two consecutive edges is less than π, else the
claim is obvious.
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We look at the edge ab2 and claim that ∡ab1b2 > ∡ab3b2. The black
region between ab1 and ab2 satisfies (bb), so its triangulation is the farthest-
point Delaunay triangulation. In it, every triangle that shares an edge with
the boundary of the region has the property that the angle opposite to the
boundary edge is minimal over all choices of third vertex [7]. Therefore,
∡ab1b2 is greater than or equal to the angle opposite to ab2 inside the black
triangle.

Similarly, the triangulation of the white region between ab2 and ab3 sat-
isfies (ww), so its triangulation is the constrained Delaunay triangulation
of the region. Thus, ∡ab3b2 is smaller than or equal to the angle opposite
to ab2 inside the white triangle. Applying (bw) to ab2, we get the claimed
inequality.

We repeat the same argument for all other edges separating black from
white regions around a, and compare the sum of black and white angles
opposite these edges:∑p

i=0
(∡ab2i+1b2i+2 + ∡ab2i+2b2i+1) >

∑p

i=0
(∡ab2ib2i+1 + ∡ab2i+1b2i) ,

(1)

in which the indices are modulo 2p. The sum of black angles at a is pπ
minus the first sum in (1), and the sum of white angles at a is pπ minus the
second sum in (1). Therefore the sum of black angles at a is less then the
sum of white angles at a. □

Lemma 5.3 (Local Angle Property and Aging Function). Let A ⊆ R2

be finite and generic, Pk a level-k hypertriangulation of A, and Pk−1 =
F−1(Black(Pk)) a level-(k − 1) hypertriangulation of A. If Pk has the local
angle property, then Pk−1 satisfies (ww).

Proof. We consider two adjacent white triangles with vertices [Xa], [Xb],
[Xc] and [Xb], [Xc], [Xd] in Pk−1. Applying the aging function, we get two
black triangles of Pk with vertices [Xab], [Xac], [Xbc] and [Xbc], [Xbd], [Xcd].
They share [Xbc], which implies that the sum of their angles at this vertex
is less than π by Lemma 5.2. The two black triangles are homothetic copies
of abc and bcd, and so are the corresponding two white triangles in Pk−1, so
(ww) follows. □

5.2. Level-2 Hypertriangulations. We are now ready to confirm the Lo-
cal Angle Conjecture for level-2 hypertriangulations.

Theorem 5.4 (Local Angle Conjecture for Level 2). Let A ⊆ R2 be finite
and generic, and let P2 be a maximal level-2 hypertriangulation of A. Then
P2 has the local angle property iff it is the order-2 Delaunay triangulation of
A.

Proof. No two black triangles in P2 share an edge, which implies that (bb)
is void. On the other hand, there are pairs of adjacent white triangles
that belong to the triangulation of white regions in P2. In complete level-2
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hypertriangulations, each such region is a polygon without points (vertices)
inside, but in the more general case of maximal level-2 hypertriangulations
considered here, there may be such points or vertices. In either case, (ww)
implies that the restriction of P2 to each white region is the constrained
Delaunay triangulation of this region.

Let P be the underlying (order-1) triangulation of A, which consists of
the images of the black triangles in P2 under the inverse aging function.
We begin by establishing that P is maximal and therefore P2 is complete.
Suppose x ∈ A is not a vertex of P , and let abc be the triangle in P that
contains x in its interior. Consider the triangle with vertices c′ = [ab], b′ =
[ac], and a′ = [bc] in Black(P2). The edge connecting b

′ and c′ is shared with
[wh(P2, a)], and this white region contains x′ = [ax]. Since P2 is maximal,
by assumption, x′ is a vertex of the restriction of P2 to this white region.
Recall that the triangle b′d′c′ in the constrained Delaunay triangulation of
the white region has the property that the angle at d′ is maximal over all
possible choices of d′ visible from b′ and c′. Hence, ∡b′d′c′ ≥ ∡b′x′c′, but
also ∡b′x′c′ = ∡bxc > ∡bac = ∡b′a′c′ because x is inside abc. This implies
∡b′d′c′ > ∡b′a′c′, which contradicts (bw) for P2, so P is necessarily maximal.

Applying Lemma 5.3 to P2, we conclude that P satisfies (ww). Since P
is a maximal, the only choice left is that P is the Delaunay triangulation of
A. The black triangles in P2 thus coincide with the black triangles in the
order-2 Delaunay triangulation of A, and P2 restricted to each of its white
regions is the constrained Delaunay triangulation of this region. Hence, P2

is the order-2 Delaunay triangulation of A. □

5.3. Level-3 Hypertriangulations. We say A ⊆ R2 is in convex position
if all its points are vertices of convA. For such sets, we can extend Theo-
rem 5.4 to level-3 hypertriangulations. The main differences to general finite
sets are that all triangulations have the same number of triangles, and the
aging function exists, as established by Galashin in [9] but see also [6]. We
use this function together with the characterization of the order-2 Delaunay
triangulation as the only level-2 hypertriangulation that has the local angle
property.

Theorem 5.5 (Local Angle Conjecture for Level 3). Let A ⊆ R2 be finite,
generic, and in convex position, and let P3 be a hypertriangulation of A.
Then P3 has the local angle property iff it is the order-3 Delaunay triangu-
lation of A.

Proof. By Theorem 3.3, the order-3 Delaunay triangulation has the local
angle property. Let P3 be a possibly different level-3 hypertriangulation
that also has the local angle property, and let P2 = F−1(Black(P3)), which
exists because A is in convex position [9]. By Lemma 5.3, P2 satisfies (ww).
Recall that (bb) is void for level-2 hypertriangulations, so if in addition to
(ww), P2 also satisfies (bw), then it has the local angle property. By The-
orem 5.4, this implies that P2 is the order-2 Delaunay triangulation of A.
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Its white triangles are in bijection with the triplets of points whose circum-
circles enclose exactly one point of A, and since Black(P3) = F (White(P2)),
so are the black triangles of P3. Thus, P3 has the same black triangles as
the order-3 Delaunay triangulation of A. Furthermore, the white regions of
P3 coincide with the white regions of the order-3 Delaunay triangulation,
and because the restriction of either triangulation to a white region is the
constrained Delaunay triangulation of that region, we conclude that P3 is
the order-3 Delaunay triangulation of A.

c

a

b = x1

d = xp

a

y3

w = xi+1 w = yq

u = y1
v = xi

u = xi−1

c = x2

y2
v

b

d

[auv]

[auw]

[ay3v]

[uwv]

[awv][awv]
[auv]

[ay2v]

Figure 7: The superposition of three levels. Left: part of the star of a in P on
level 1, the (white) triangles in this star aging to black triangles in P2 on level 2,
and the only two white triangles in the star of [av] aging to two black triangles in
P3 on level 3. One is similar to uvw and the other to auw, which is assumed to
be unique. Right: compared to the configuration on the left, there are two extra
white triangles, which increase the star of [av] in P2 from two to four triangles.
Accordingly, we see a white quadrangle on level 3.

It remains to show that P2 indeed satisfies (bw). To derive a contradic-
tion, we assume it does not. Let [ab], [ac], [bc] and [ab], [ac], [ad] be the
vertices of a black triangle and an adjacent white triangle that violate (bw),
so ∡bac < ∡bdc. Let P = F−1(Black(P2)), and consider the star of a in P .
All vertices are in convex position, including a, b, c, d, so we may assume that
ac crosses bd, as in Figure 7 on the left. Let ax1 = ab, ax2 = ac, . . . , axp = ad
be the sequence of edges in the star of a that intersect bd. We consider the
polygon with vertices a, x1, x2, . . . , xp. Since A is in convex position, the
polygon is convex, which implies that its constrained Delaunay triangula-
tion is also the Delaunay triangulation of the p + 1 points. Denote this
Delaunay triangulation by ∆, and note that it includes bcd = x1x2xp: a is
outside the circumcircle of bcd, because abc and bcd violate (bw), and so is
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every xi with 3 ≤ i ≤ p− 1, because bcd is a triangle in White(P2, a). The
rest of ∆ consists of abd = ax1xp and the triangles of White(P2, a) on the
other side of x2xp. An ear of ∆ is a triangle that has two of its edges in
the boundary of the polygon. For example, ax1xp is an ear, but since every
triangulation of a polygon with at least four vertices has at least two ears,
there is another one, and we write uvw = xi−1xixi+1 for a second ear of ∆.
The corresponding triangle in P2 has vertices [au], [av], [aw] and is adjacent
to black triangles with vertices [au], [av], [uv] and [av], [aw], [vw]. Both
pairs violate (bw) because a lies outside the circumcircle of uvw. Looking
closely at this configuration, we note that [av] is shared by the two black
triangles and also belongs to [wh(P2, a)] and [wh(P2, v)]; see again Figure 7
on the left. We distinguish between two cases: when [av] belongs to only one
triangle in the triangulation of the latter white region, and when it belongs
to two or more such triangles.

Assuming the first case, we apply the aging function to the two white
triangles sharing [av], which gives two black triangles with vertices [auv],
[auw], [awv] and [auv], [awv], [uwv] in P3. They share an edge, and since a
lies outside the circumcircle of uvw, they violate (bb), which is the desired
contradiction.

There is still the second case, when [av] belongs to two or more triangles
in the triangulation of [wh(P2, v)]. Let [uv] = [y1v], [y2v], . . . , [yqv] = [wv] be
the vertices of [wh(P2, v)] connected to [av]; see Figure 7 on the right. These
q edges bound q − 1 white triangles in P2. Consider their images under the
aging function, which are q−1 black triangles in P3. Together with the black
triangle with vertices [auv], [auw], [awv], these black triangles surround a
convex q-gon with vertices [auv] = [ay1v], [ay2v], . . . , [ayqv] = [awv]; see
again Figure 7 on the right. The q-gon is convex because A is in convex
position, and we claim it is a white region in P3. If there is any black triangle,
T , inside this q-gon, then we consider any generic segment connecting T to
the boundary of the q-gon, and the closest part of that segment to the
boundary colored black in P3. By construction, the triangle T ′ containing
this part has two vertices labeled [avz1] and [avz2], for some z1 and z2.
Hence, F−1(T ′) is a white triangle of P2 incident to [av], which is impossible,
as all white triangles in P2 incident to [av] age to black triangles surrounding
the q-gon. Recall that P3 satisfies (ww), so the restriction of P3 to the q-gon
is the (constrained) Delaunay triangulation of the q-gon.

Consider the edge connecting [auv] = [ay1v] and [awv] = [ayqv] of the q-
gon, and let [ayiv] be the third vertex of the incident white triangle. Because
this triangle is part of the (constrained) Delaunay triangulation, we have
∡uyjw < ∡uyiw for all j ̸= i, and because P3 satisfies (bw), we have
∡uyiw < ∡uvw. Recall that a lies outside the circumcircle of uvw, so
∡uvw+∡uaw < π. This implies ∡uyiw+∡uaw < π. Hence, the circumcircle
of the triangle with vertices [uv], [yiv], [wv] does not enclose any of the other
vertices. It follows that the triangle belongs to the constrained Delaunay
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triangulation of the polygon with vertices [uv] = [y1v], [y2v], . . . , [yqv] =
[wv], but it does not because this polygon is triangulated with edges that
all share [av]. This gives the final contradiction. □

6. Concluding Remarks

In this last section, we discuss open questions about hypertriangulations.
The obvious one is whether optimality properties other than angles can be
generalized from level 1 to higher levels: for example the smallest circumcir-
cle [3], the smallest enclosing circle [17], roughness [18], and other functionals
[5, Chapter 3] and [14], which are all optimized by the order-1 Delaunay tri-
angulation. In addition, we list a small number of more specific questions
and conjectures directly related to the discussions in the technical sections
of this paper.

Flipping as a proof technique. Sibson’s original proof for the angle
vector optimality of the Delaunay triangulation [20] uses the sequence of
edge-flips provided by Lawson’s algorithm [12]. There is such a sequence
for every complete triangulation, and each flip lexicographically increases
the vector. The authors of this paper pursued a similar approach to prove
Theorem 4.5 using the flips of Types I to IV developed in [6]; see Figure 8 on
the right. While these flips connect all level-2 hypertriangulations of a finite
generic set (Theorem 4.4 in [6]), they do not necessarily lexicographically
increase the angle vector.

Indeed, there is a level-2 hypertriangulation of six points, Q2, different
from the order-2 Delaunay triangulation, such that every applicable flip
lexicographically decreases the sorted angle vector. The six points in this
example are a, b, c, g, h, i in Figure 8, and we obtain Q2 from the shown
hypertriangulation by removing the vertices [ad], [dg], [be], [eh], [cf ], [fi]. In
Q2, there are only three possible flips, all of Type I, and all three lexico-
graphically decrease the sorted angle vector. Incidentally, six is the smallest
number of points for which such a counterexample to using flips as a proof
technique for level-2 hypertriangulations exists.

Let P2 be the level-2 hypertriangulation in Figure 8 (without removing
points d, e, f). It provides a counterexample to using a local retriangulation
operation more powerful than a flip as a proof technique. To explain, let
P and P ′ be two complete level-1 hypertriangulations of the same set. Let
P2 = F (P ) and P ′

2 = F (P ′) be the aged level-2 hypertriangulations such that
the restriction to any white region is the constrained Delaunay triangulation
of that region. Equivalently, P2 and P ′

2 satisfy (ww). If P and P ′ are
connected by a single flip of Type I, we say that P2 and P ′

2 are connected
by a compound flip. It consists of a sequence of Type I flips affecting white
regions in P2, followed by a Type III flip, followed by a sequence of Type I
flips affecting white regions in P ′

2. Such a compound flip may increase the
sorted angle vector even if some of its elementary flips do not. Nevertheless,
all compound flips applicable to P2 in Figure 8 decrease the sorted angle
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Type III
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[fi]

[ac]

d

h

b

a

e

i

[bc]

[ci]
f

[eh]

c

g

[ad]

[ag]

[dg]

[ab]

[bg]

[be]

[bh]

[ch]

[cf ]

[ai]

Figure 8: Right: the four types of flips that connect the level-2 hypertriangulations
of a given set. Left: a complete level-2 hypertriangulation such that every applicable
compound flip decreases the sorted angle vector. The dashed edges appear after
removing vertices [ad], [dg], [be], [eh], [cf ], [fi].

vector, thus spoiling the hope for an elegant proof of Theorem 4.5 using
compound flips. This motivates the following question.

Question A. Does there exist a flip-like approach to proving Theorem 4.5
on the angle vector optimality for complete level-2 hypertriangulations?

Angle vector optimality and local angle property. Recall that Theo-
rem 4.5 proves the optimality of the Delaunay triangulation only for order-2
and among all complete level-2 hypertriangulations. Indeed, Section 4.4
shows counterexamples for order-3 and for relaxing to maximal level-2 hy-
pertriangulations. This motivates the following two questions:

• Is there a sense in which the order-k Delaunay triangulations opti-
mize angles for all k?

• Among all maximal level-2 hypertriangulations, which one lexico-
graphically maximizes the sorted angle vector?

Recall also that Theorem 5.4 proves that the local angle property character-
izes the order-2 Delaunay triangulation among all maximal level-2 hypertri-
angulations, leaving the case of higher orders open. We venture the following
conjecture, while keeping in mind that some condition on the family of com-
peting hypertriangulations is needed to avoid Delaunay triangulations of
proper subsets of the given points.

Conjecture B. Let A ⊆ R2 be finite and generic, and for every 1 ≤ k ≤
#A−1 let Fk be the family of level-k hypertriangulations that have the local
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angle property. Then Pk ∈ Fk has the maximum number of triangles iff Pk

is the order-k Delaunay triangulation of A.

In the formulation of this conjecture, we maximize the number of triangles
over all members of Fk, and not over all level-k hypertriangulations of A,
because the latter may not contain any that have the local angle property.
To see this, let A be any finite set that is not in convex position. For
k = #A − 1, all triangles are black, and by Lemma 5.1, condition (bb) of
the local angle property implies that no point in the interior of convA is
a vertex of the triangulation. Thus every hypertriangulation on this level
that has the local angle property does not have the maximum number of
triangles. Also note that Theorem 5.5 shows that the conjecture holds for
the case k = 3 and points in convex position. More generally, for such points
all level-k hypertriangulations have the same number of triangles; see [6] for
interpretation of results from [9, 16].

Maximal and maximum hypertriangulations. Recall that a hyper-
triangulation is maximal if no other hypertriangulation of the same level
subdivides it. We say a hypertriangulation is maximum if no other hy-
pertriangulation of the same level has more triangles. In an attempt to
generalize Lemma 2.6 to levels beyond 2, we conjecture that the number of
triangles in a maximum hypertriangulation depends on the given points but
not on how these points are triangulated.

Conjecture C. Let A ⊆ R2 be finite and generic. Then any two maximal
level-k hypertriangulations of A have the same and therefore maximum num-
ber of triangles. In other words, every maximal level-k hypertriangulation is
maximum.

The conjecture holds for points in convex position [9, 16], and we have
verified it for a few small configurations in non-convex position. If true, this
might have combinatorial meaning as the vertices of maximal hypertrian-
gulations would then encode data from the matroid defined by the point
set. We refer to [10] for an extensive discussion of this topic in connection
to zonotopal tilings and collections of separated subsets, in particular for
points in convex position.
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