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ABSTRACT
The millihertz gravitational-wave frequency band is expected to contain a rich symphony of signals with sources ranging from
Galactic white dwarf binaries to extreme mass ratio inspirals. Many of these gravitational-wave signals will not be individually
resolvable. Instead, they will incoherently add to produce stochastic gravitational-wave confusion noise whose frequency content
will be governed by the dynamics of the sources. The angular structure of the power of the confusion noise will be modulated
by the distribution of the sources across the sky. Measurement of this structure can yield important information about the
distribution of sources on Galactic and extragalactic scales, their astrophysics and their evolution over cosmic time-scales.
Moreover, since the confusion noise is part of the noise budget of Laser Interferometer Space Antenna (LISA), mapping it will
also be essential for studying resolvable signals. In this paper, we present a Bayesian algorithm to probe the angular distribution
of the stochastic gravitational-wave confusion noise with LISA using a spherical harmonic basis. We develop a technique
based on Clebsch–Gordan coefficients to mathematically constrain the spherical harmonics to yield a non-negative distribution,
making them optimal for expanding the gravitational-wave power and amenable to Bayesian inference. We demonstrate these
techniques using a series of simulations and analyses, including recovery of simulated distributed and localized sources of
gravitational-wave power. We also apply this method to map the gravitational-wave foreground from Galactic white dwarfs
using a simplified model of the Galactic white dwarf distribution.

Key words: gravitational waves – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

The upcoming space-based Laser Interferometer Space Antenna
(LISA; Amaro-Seoane et al. 2017) promises access to the millihertz
gravitational-wave (GW) frequency band, which is inaccessible
to terrestrial ground-based detectors like the Laser Interferometer
Gravitational-wave Observatory (LIGO). A rich collection of Galac-
tic and extragalactic sources emit GWs at these frequencies. Among
them are double white dwarfs (DWDs) from both within the Milky
Way (Marsh 2011; Korol et al. 2017) and neighbouring satellite
galaxies (Korol, Koop & Rossi 2018; Korol et al. 2020), extreme
mass ratio inspirals (Amaro-Seoane et al. 2007; Babak et al. 2017;
Gair et al. 2017), supermassive blackhole binaries (Barausse et al.
2015; Klein et al. 2016), extragalactic stellar-mass binary black hole
(BBH) and binary neutron star inspirals (Lau et al. 2020), and even
exoplanets orbiting white dwarfs (Danielski et al. 2019; Tamanini &
Danielski 2019). Cosmological sources like cosmic strings (Auclair
et al. 2020), cosmological phase transitions (Caprini et al. 2016),
and primordial GW backgrounds (Bartolo et al. 2016) from the early
Universe are also potentially accessible by LISA, not to mention the

� E-mail: banag002@umn.edu

prospect of multiwavelength GW science in conjunction with next-
generation ground-based detectors (see e.g. Lasky et al. 2016; Fitz
Axen et al. 2018).

The GWs from many astrophysical sources will not be individually
detectable and will overlap to form a confusion noise in the detector,
usually called the stochastic GW background (Regimbau 2011;
Romano & Cornish 2017). The stochastic GW background from
binary inspirals is a major scientific target for both current ground-
based detectors like Advanced LIGO (Aasi et al. 2015) and Advanced
Virgo (Acernese et al. 2015), and for pulsar timing arrays (Kramer
& Champion 2013; Manchester et al. 2013; Brazier et al. 2019).
The current limits from ground-based detectors are �GW(f = 25 Hz)
< 3.4 × 10−8 (Abbott et al. 2021a) for an isotropic background
from compact binary coalescence and h0 < (1.7 − 2.1) × 10−25 for
point sources (Abbott et al. 2021b). The latest results from pulsar
timing arrays are from the NANOGrav collaboration that see strong
evidence for a common-spectrum red-noise process with a median
strain of 1.92 × 10−15 at a frequency of 1 yr−1 (Arzoumanian et al.
2020).

There has been a considerable theoretical effort in recent years
to model the angular power spectrum of the stochastic background
from astrophysical sources, primarily in the sensitive frequency band
of ground-based detectors (Cusin et al. 2018; Jenkins et al. 2018;
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5452 S. Banagiri et al.

Jenkins, Romano & Sakellariadou 2019; Alonso et al. 2020; Bartolo
et al. 2020), but also in the millihertz LISA band (Cusin et al.
2020). These studies suggest that the degree of anisotropy in the
extragalactic astrophysical stochastic background is relatively small
compared to the monopole. On the other hand, the anisotropy in the
stochastic background from supermassive black hole binaries in the
pulsar timing array band is expected to be much larger (Mingarelli
et al. 2017).

In the case of LISA, there is also a GW foreground from Galactic
DWDs that stands above the instrumental noise for a part of
the LISA band while still being stochastic in nature. While this
foreground is considered an inconvenient noise source for resolvable
signals, it is of astrophysical interest in its own right and contains
useful information about the physical and spectral distribution
of the DWDs (Benacquista & Holley-Bockelmann 2006; Breivik,
Mingarelli & Larson 2020b). For the rest of the paper, we will use
the term stochastic gravitational-wave confusion noise (SGCN) to
refer to both stochastic backgrounds and foregrounds collectively.

The angular structure of the GW power from an SGCN will
directly follow the distribution of the sources that generates it. The
antenna patterns of the detectors are not isotropic and also change
throughout LISA’s orbit, which ensures that the angular structure can,
in principle, be measured with enough integration time. Spherical
harmonic functions are a natural basis to describe the distribution
of power on the sky and have been frequently used in algorithms
developed to measure these anisotropies, both for LIGO and LISA,
albeit in a frequentist manner (Ungarelli & Vecchio 2001; Kudoh
& Taruya 2005; Taruya & Kudoh 2005; Taruya 2006; Thrane et al.
2009; Renzini & Contaldi 2018). In particular, recently Contaldi et al.
(2020) developed a frequentist maximum likelihood method to map
GW power with LISA.

In this paper, we present a Bayesian algorithm to map the power
of an SGCN using a spherical harmonic basis. There are several ad-
vantages to developing a Bayesian version of this method, especially
in the case of LISA, where the Galactic foreground dominates. First,
the Bayesian version can be better integrated with global analyses
designed to extract multiple resolvable signals (Littenberg et al.
2020), in order to map the foreground simultaneously along with
them. Accounting for the foreground in this way can be crucial for
accurately inferring the properties of the resolvable signals. Frequen-
tist searches also generally require the inversion of a Fisher matrix
connecting different sky directions or harmonics. The poor angular
sensitivity of GW detectors, LISA included, creates degeneracies that
make this inversion mathematically ill-conditioned, necessitating the
use of techniques like singular value decomposition (see e.g. Thrane
et al. 2009; Contaldi et al. 2020). These degeneracies are better
accommodated with a Bayesian approach, which requires no such
inversion. Additionally, the angular sensitivity of the spherical
harmonic expansion is set by cutting off the expansion in � at
some �max parameter value. This parameter value is chosen in a
somewhat ad hoc way in frequentist searches but can be much more
naturally accommodated in Bayesian searches by allowing the data
to determine it.

Historically, one hindrance of a Bayesian spherical harmonic
implementation has been that the generic expansion describes a
complex field on the sky, while GW power is non-negative by
definition. We demonstrate a way to mathematically impose this
constraint using Clebsch–Gordan coefficients in a Bayesian spherical
harmonic analysis. This mathematical technique was used recently
to measure the angular distribution of GW detections by LIGO–
Virgo (Payne et al. 2020), while a similar method was also recently
used in the pulsar timing array band (Taylor, van Haasteren &

Sesana 2020). We also introduce the Bayesian LISA Pipeline (BLIP)
designed to simulate LISA data, perform the spherical harmonic
analysis on the simulated data, and conduct Bayesian inference to
recover the simulated parameters.

The rest of the paper is structured as follows. In Section 2, we
review SGCNs and the spherical harmonic basis and calculate the
detector response function of LISA to GW power in the spherical
harmonic basis. In Section 3, we calculate the Clebsch–Gordan de-
composition for non-negative fields and develop the parametrization
necessary for Bayesian inference. Section 4 introduces the BLIP
pipeline and discusses the likelihood function and the configuration
used for the analyses in this paper. Section 5 demonstrates mea-
surement of anisotropies in simulated LISA data in the spherical
harmonic basis with the Clebsch–Gordan decomposition. Section 6
discusses applications of the technique to the Galactic foreground
followed by a discussion and conclusion in Section 7.

2 STO CHASTI C GRAV I TATI ONA L-WAVE
CONFUSI ON N OI SE

Astrophysical SGCNs result from an incoherent superposition of
GWs from many disparate sources that are not individually resolv-
able (Regimbau 2011).1 Appealing to the central limit theorem,
one can characterize the SGCN as coloured Gaussian noise in the
detectors (Allen & Romano 1999). This is usually a good assumption
for sources in the LISA band that overlap with one other. The metric
perturbation at (t, x) corresponding to an SGCN can be written in the
Fourier basis as

hij (t, x) =
∑

A

∫ ∞

−∞
df

∫
d2n h̃A(f , n) eA

ij (n)

× exp{−2π if(t − n · x/c)}, (1)

where A = {+, ×} denotes polarization, c is the speed of light, n is
the directional unit vector, eA

ij (n) are the polarization tensors and i, j
denote spatial indices. The frequency of the SGCN is represented by
f and h̃A(f , n) are the Fourier components of the perturbations that
satisfy the following,

〈h̃A(f , n)〉 = 0,

〈h̃A(f , n) h̃∗
A′ (f ′, n′)〉 = 1

2
SA(f , n) δA,A′ δ(f − f ′) δ2(n, n′). (2)

Under the assumption of Gaussianity the power spectrum SA(f, n) is
the main measurable quantity of an SGCN. For the rest of this paper,
we will also assume that the SGCN is unpolarized i.e. S+(f , n) =
S×(f , n) = 1/2 SGW(f , n). The power spectrum is conventionally
characterized by the dimensionless energy density �GW(f, n) per
logarithmic frequency bin (Allen & Romano 1999), related to SGW(f,
n) via,

�GW(f , n) = 2π2f 3

3H 2
0

SGW(f , n), (3)

where H0 is the Hubble constant. In general, the distribution of
the power on the sky will not be isotropic but will rather trace
the distribution of its sources. To describe the angular structure of
the SGCN, we will first assume that its frequency and directional

1This implies that the strength of the background depends on the sensitivity
of the detector. While more sensitive detectors are also better at detecting
SGCNs, they can also resolve more sources potentially reducing the confusion
noise from astrophysical sources.
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dependence can be factorized as

�GW(f , n) = �(f )P(n). (4)

The spectral shape of the SGCN is given by �(f) whileP(n) describes
the angular distribution of the background, normalized so that:∫

S2
d2nP(n) = 1. (5)

A common way to parametrize the spectral shape �(f) is to write
it as a power law:

�(f ) = �ref

(
f

fref

)α

, (6)

where α is the spectral index of the power law, fref is some
reference frequency, and �ref = �(f = fref). In particular, stochastic
backgrounds and foregrounds from compact binaries are expected to
follow a power law with α = 2/3 (Phinney 2001). For the rest of this
paper, we will assume the power-law spectral shape to hold.

Spherical harmonics provide a general orthonormal basis to
parametrize an arbitrary continuous and differentiable function on
the two sphere:

P(n) = 1√
4πa0,0

∑
�,m

a�,mY�,m(n), (7)

where {Y�,m} are the spherical harmonic functions and the nor-
malization factor of

√
4πa0,0 ensures that the expansion satisfies

equation (5). The coefficients {a�,m} are in general complex numbers
and characterize the distribution of the field on the sky. The harmonics
of positive and negative m are related by

Y�,−m(n) = (−1)mY ∗
�,m(n), (8)

The spherical harmonic functions form an orthonormal basis on the
two sphere,∫

d2n Y�,m(n)Y ∗
�′,m′ (n) = δ�,�′δm,m′ (9)

2.1 Detector response in the spherical harmonic basis

The currently proposed LISA space mission consists of three satel-
lites orbiting around the Solar system barycenter in an approximately
triangular formation (Amaro-Seoane et al. 2017). The sides of the
triangle will be about 2.5 × 106 km with the centroid following the
same orbit as the Earth. Three Michelson channels can be formed
at each vertex by considering the differential strain between the two
arms containing the vertex. Since any two channels will share an arm
with each other, the noise in the three channels is not independent of
each other.

The default Michelson channels suffer from laser phase noise
that can swamp out any possible GW signal. By time-shifting
and linearly combining the Michelson channels, one can gen-
erate data combinations where the laser phase noise is can-
celed out, a process called time-delay interferometry (TDI). Two
generations of such TDI combinations are generally used. The
first generation TDI channels are usually called X, Y, and Z
and work best when the arm lengths of the LISA constellation
can be approximated to be constant. The second-generation TDI
channels, sometimes called A, E, and T, have also been devel-
oped, which work as well for slowly evolving arm lengths. We
point to Tinto & Dhurandhar (2020) for a detailed overview of
TDI.

The strain data dI(t) from any channel I is the sum of the
instrumental noise nI(t) and the GW signal in the channel hGW

I (t),

dI (t) = nI (t) + hGW
I (t). (10)

Due to the linear nature of the Fourier transform this relationship
carries over to the frequency domain as well,

d̃I (f ) = ñI (f ) + h̃GW
I (f ). (11)

In the case of SGCNs, due to the Gaussian nature of both the GW
strain and the instrumental noise and under the assumption that they
are uncorrelated, the power spectral density (PSD) of the data is the
sum of the signal and the noise PSDs,

SII (f ) = Sn
II (f ) + SGW

II (f ). (12)

A similar relation will also hold for cross-correlation between
channels I and J,

SIJ (f ) = Sn
IJ (f ) + SGW

IJ (f ). (13)

Since we decompose GW power in the orthonormal spherical
harmonic basis, it is also useful to calculate the detector response to
each spherical harmonic mode. First, we define the antenna pattern
function of channel I of the detector as (Cornish & Larson 2001;
Cornish 2002b)

FA
I (f , t, n) = DI (f , t, n) : eA(n), (14)

where DI(f, t, n) is the detector response tensor.
For a Michelson channel with vertex at r and arm orientations

given by unit vectors u and v, the response tensor is given by

Dmich(f , t, n) = 1

2
[(u ⊗ u)T (f , u · n)

− (v ⊗ v)T (f , v · n)] exp{2πif n · r/c}, (15)

assuming that the satellite motion is negligible during the round-
trip light-traveltime between the satellites. The response tensor is a
function of time owing to the temporal variation of u and v as the
satellites move in their orbits. Here, T (f , u · n) is the timing transfer
function of interferometric detectors to GWs, which for an equal arm
detector is given by (Schilling 1997; Cornish & Larson 2001)

T (f , u · n) = 1

2

[
sinc

(
f

2f∗
(1 − n · u)

)
exp

(
−i

f

2f∗
(3 + n · u)

)

+ sinc

(
f

2f∗
(1 + n · u)

)
exp

(
−i

f

2f∗
(1 + n · u)

)]
,

(16)

where L = 2.5 × 109 m is the arm length of LISA and f∗ ≡ c/2πL.
Since the SGCN is measured as the excess GW power in a detector,
to detect it, we will need to correlate two channels I and J.2 Assuming
LISA’s motion can be neglected, the GW strain signal in channel I
from the metric perturbation defined in equation (1) will be

hI (t, x) =
∑

A

∫ ∞

−∞
df

∫
d2n h̃A(f , n) FA

I (f , n) e−2πif t . (17)

Cross-correlating data between two channels I and J lead to the
response function to the GW power distribution P(n) on the sky,

RIJ (f , t) =
∫

d2n

4π
P(n)

(∑
A

FA
I (f , n)FA

J

∗
(f , n)

)
. (18)

2Note that I and J can be the same channel of LISA. In the case of LIGO and
Virgo, we usually only correlate distinct spatially separated interferometers,
so the correlation response function is called the overlap reduction function.
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Expanding P(n) in the spherical harmonic basis as in equation (7)
we can define the response function to the Y�,m mode to be,

RIJ
�,m(f , t) =

∫
d2n

4π
Y�,m(n)

(∑
A

FA
I (f , n)FA

J

∗
(f , n)

)
. (19)

Finally combining equations (3), (4), (7), and (19), the SGCN GW
power in the correlation between channels I and J is

SGW
IJ (f , t) = 3H 2

0

2π2f 3

�(f )√
4πa0,0

∑
�,m

a�,mRIJ
�,m(f , t). (20)

3 C L E B S C H – G O R DA N D E C O M P O S I T I O N

The general spherical harmonic expansion describes a complex field.
We can constrain it to be real everywhere on the sky with the
condition:

a�,−m = (−1)ma∗
�,m. (21)

However, the decomposition of GW power needs to be not only
real but also non-negative for any direction on the sky, i.e. �(f,
n) ≥ 0. This is especially important for LISA, as the GW power
distribution will be highly anisotropic due to the foreground from
Galactic binaries. Implementing this constraint is also necessary for
Bayesian inference with the spherical harmonic basis. This is because
the posterior should be zero for any set of a�,m’s that contains even
the tiniest spot on the sky with negative GW power. Previous work
in the PTA band attempted to solve this problem by numerically
checking the sign of the GW power on the sky using a grid (Taylor
& Gair 2013; Taylor et al. 2015) and assigning a probability of zero
for a given set of a�,m’s if any of the pixels have negative power.
However, one can always use finer and finer grids to check this
which makes this solution computationally untenable. A solution that
mathematically guarantees non-negative power is much preferable.
In this section, we describe a solution to this problem using Clebsch–
Gordan coefficients.

First, we define a function S(n) which is the square root of the
spherical harmonic expansion, i.e.

S(n) =
[∑

�,m

a�,mY�,m(n)

]1/2

. (22)

We then expand S(n) through its own spherical harmonic expansion
as

S(n) =
∑
�,m

b�,mY�,m(n). (23)

The necessary and sufficient condition for the GW power to be
non-negative then becomes S(n) ∈ R which implies that b�,−m =
(−1)mb∗

�,m. From equations (22) and (23), we get

∑
L,M

aL,MYL,M =
(∑

�,m

b�,mY�,m(n)

)2

. (24)

Expanding the right-hand side gives us:∑
L,M

aL,MYL,M =
∑
�,m

∑
�′,m′

b�,mb�′,m′Y�,m(n)Y�′,m′ (n). (25)

The Clebsch–Gordan coefficients CLM
�m,�′m′ enable us to write

products of spherical harmonics as a sum over spherical harmonics,3

3Alternatively, one can use Wigner-3j symbols.

a trick that has been used in GW literature before but in different
contexts (Cornish 2001, 2002a). Here, we get

Y�,m(n)Y�′,m′ (n) =
Lmax∑

L=Lmin

√
(2� + 1)(2�′ + 1)

4π (2L + 1)

×CLM
�m,�′m′CL0

� 0,�′ 0YL,M (n). (26)

The expansion obeys selection rules related to the symmetries of the
rotation group SO(3). We point to Ch. 16 of Arfken (2012) for a
detailed discussion of the mathematics of spherical harmonics and
Clebsch–Gordan coefficients. The selection rules can be listed as

(i) M = m + m
′

(ii) Lmin = min(|� − �
′ |, |m + m

′ |) and Lmax = � + �
′

(iii) L is an integer

For compactness, let us define β
L,M
�m,�′m′ such that:

β
L,M
�m,�′m′ =

√
(2� + 1)(2�′ + 1)

4π (2L + 1)
CLM

�m,�′m′ CL0
� 0,�′ 0, (27)

when the selection rules are satisfied, but β
L,M
�m,�′m′ = 0 otherwise. We

can then write equation (26) as

Y�,m(n)Y�′,m′ (n) =
∑
L,M

β
L,M
�m,�′m′YL,M (n). (28)

Combining this with equation (25) gives

∑
L,M

aL,MYL,M (n) =
∑
L,M

(∑
�m

∑
�′m′

b�,mb�′,m′β�m,�′m′
L,M

)

×YL,M (n). (29)

Since the set of YLM form an orthonormal basis, this provides the
recipe for converting between a�,m and b�,m:

aL,M =
∑
�,m

∑
�′,m′

b�,mb�′,m′β�m,�′m′
L,M . (30)

Often, we want to impose an artificial cutoff on angular sensitivity
of some �a

max on the expansion in a�,m’s. This cutoff can correspond
to estimated resolution limits of the detector itself, or it might be
astrophysically motivated. The corresponding cutoff of the expansion
on the b�,m’s is taken to be �b

max = �a
max/2 assuming that �a

max is an
even number. This is a consequence of the second selection rule that
Lmax = � + �

′
, which implies that the cutoff on the expansion in the

b�,m’s should be half that of the a�,m’s if we want all terms higher
than �a

max in the latter to be zero. For the rest of this paper, we will
use this relation and assume �a

max is even.
Since �(f, n) is proportional to S2(n), it is invariant under any

transformation that leaves the latter invariant. The constraint that
S(n) be real 4 makes �(f, n) invariant under a parity transformation
{b�,m} → {−b�,m}. However, this leftover symmetry introduces
degeneracies that induce multiple modes in the posterior distribution.
Moreover, since the {a�,m} expansion is normalized as in equa-
tion (5), there is also a scale invariance within the {b�,m} space, i.e.
with the transformation {b�,m} → {κ b�,m}, where κ is some constant.
One can break both these symmetries by fixing the value of one of
the b�,m coefficients. In this paper, we choose to fix b0,0 = 1.

A similar method to what is used here can also be applied to
expand a probability distribution or any other non-negative function

4In fact, we could have chosen S such that � = |S|2 in which case S could
be any general complex number. The degree of degeneracies would be higher,
so it would be a less economical choice than what we actually make.
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on the two sphere. Most of the results in this section will generalize
to that case with the additional requirement that the normalization of
the distributions be one. Indeed, the Clebsch–Gordan based spherical
harmonic decomposition was recently used to constrain anisotropies
in the distribution of BBH progenitors using events detected by
LIGO–Virgo up-to-the second observing run in Payne et al. (2020),
and also to develop an optimized anisotropic pipeline for PTAs in
Taylor et al. (2020).

4 BLIP PIPELINE

This section briefly introduces the BLIP pipeline,5 which is an
independen PYTHON-based implementation for LISA data analysis
and the details of it. The pipeline is written to make it easy to add
new GW signal models and likelihood models along with simulating
instrumental Gaussian noise in the time domain. The instrumental
noise is simulated through the acceleration and position noises using
the spectral form described in the LISA proposal (Amaro-Seoane
et al. 2017). The functional forms for the power spectrum of the
acceleration and position noise are given by

Sp(f ) = Np

[
1 +

(
2 mHz

f

)4
]

Hz−1,

Sa(f ) =
[

1 +
(

0.4 mHz

f

)2
] [

1 +
(

f

8 mHz

)4
]

Na

(2πf )4
Hz−1.

(31)

The noise levels can be set by the end-user by modifying Np and
Na, but the current implementation assumes that they are the same
in all satellite links. In this paper, we set Np = 9 × 10−42 and Na =
3.6 × 10−49 Hz−4 to match the instrumental noise levels described in
the LISA proposal. The code also implements TDI with Michelson,
X − Y − Z and A − E − T (Adams & Cornish 2010; Tinto &
Dhurandhar 2020) channels and heliocentric rigid-body orbits of
the LISA satellites. This is implemented in an adiabatic manner by
modelling the satellites to be stationary for small segments of time
(
1 yr) both for signal simulation and recovery, and allowing them
to move between the time segments. The current implementation
of orbits neglects the differential time delay for laser light on the
round trip between two satellites – i.e. the traveltime difference from
satellite A to B and from B to A – and also neglects their breathing
modes. The satellites’ orbital motion is especially important in
partially breaking the degeneracies of the antenna patterns when
detecting an anisotropic SGCN.

Finally, the BLIP pipeline is built to facilitate Bayesian in-
ference and supports emcee (Foreman-Mackey et al. 2013) and
dynesty (Speagle 2020) samplers. All results in this paper were made
through the dynesty sampler. The Clebsch–Gordan coefficients are
implemented with the help of the Wigner module of SymPy (Meurer
et al. 2017).

4.1 Analysis configuration

For the remainder of this paper, we will use X − Y − Z TDI channels
with a rigid-body orbiting configuration of LISA. To analyse the
simulated data, we employ Fourier transforms with a duration of Tseg

= 1 × 105 s with the aforementioned adiabatic approximation within
each segment. The sampling frequency of the data is fs = 0.25 Hz. We

5https://github.com/sharanbngr/blip

only consider the Fourier components to be between fmin = 2 × 10−4

Hz and fmax = 2 × 10−2 Hz. It is also desirable for computational
purposes to approximate the covariance matrix of the data in the
frequency–time analysis to be diagonal across frequency and time.
For this to be true, we require the autocorrelation time-scale to be
much smaller than Tseg (Banagiri et al. 2020). The value of Tseg =
1 × 105 s is thus chosen as a compromise between the autocorrelation
time-scale of LISA, which is ∼104 s for this band, and the motion
of the satellites. Each time segment is Hann-windowed before being
Fourier transformed.

4.2 Likelihood function

The PSD and the cross-spectral density (CSD) of the data are
combinations of the GW power from the SGCN and of the in-
strumental noise power (Cornish & Romano 2013). Assuming that
both are Gaussian, the Fourier domain likelihood is based on the
multidimensional complex Gaussian distribution (Adams & Cornish
2010):

L(d̃|Np,Na, �ref, α, {b�,m}) =
∏
t,f

1

2πTseg|C(t, f )|

× exp

(
−2 d̃∗

t,f C(t, f )−1 d̃t,f

Tseg

)
.

(32)

Here, d̃t,f = [d̃X(t, f ), d̃Y (t, f ), d̃Z(t, f )] is the array of data in
the Fourier domain for the three channels measured in the time
segment labelled by t and at frequency f. As previously mentioned,
the data are Fourier transformed in segments of duration Tseg, and
the product is across all frequency bins and time-segments. Here,
C(t, f) is the 3 × 3 covariance matrix across the three channels, and
as seen in equations (12) and (13), its elements are the sum of the
signal spectral densities (defined in equation 20) and the instrumental
noise spectral densities Sn

IJ (f ). We follow the derivation in Adams
& Cornish (2010) of the actual expressions for the noise spectral
densities. Appendix A goes into more detail and an explicit form
of the covariance matrix in terms of the noise and signal spectral
densities is given.

The term |C(t, f)| is the determinant of the covariance matrix. In
many applications of Bayesian inference to GW data, one usually
can ignore the overall normalization because it is constant and
model independent. This is not true in this case, because the
model parameters enter the likelihood through the covariance matrix.
Correctly modelling the normalization is thus essential to the problem
of Bayesian inference of the SGCN. The matrix inverse is calculated
numerically.

5 SI M U L AT I O N A N D D E T E C T I O N

5.1 Validation

We first validate the Clebsch–Gordan technique by recovering an
ad hoc distribution of power, simulated with a power-law spectral-
index SGCN with �a

max = 4. The simulated {b�,m} coefficients are6

(1.0, 0.75, 0.5, 0.7j, 0.7 − 0.3j, 1.1j ) which yield the GW power
distribution on the sky shown in Fig. 1. These values are chosen
only to validate the ability of the algorithm to recover an arbitrary

6In HEALPix order.
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5456 S. Banagiri et al.

Figure 1. Skymaps for the simulation and analysis described in Section 5. Maps b and c show the median posterior sky distribution of �(f = 1 mHz) in the
Solar system barycentric frame, for an analysis time-scale of 1 yr and 2 months, respectively. The injected power was the same in both cases and is shown in
map a. The improvement of the 1-yr recovery compared to the 2-month recovery is clear. The full posteriors corresponding to maps b and c are shown in Figs 3
and 4, respectively.
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Mapping the sky with LISA 5457

Figure 2. The 2.5 and 97.5 percentile values of the prior distribution for each pixel are shown here, without the multiplicative factor of �(f). The range of
values shows the range of the prior support at each pixel, covering a 95 per cent confidence interval. For comparison, a uniform distribution on the sky will have
a value of 2.31 × 10−3 sr−1 in each pixel for these HEALPix maps which use nside = 6. The prior thus covers a range of about two orders of magnitude above
and below uniform distribution in each pixel.

distribution of power on the sky. The spectral index of the power law
is chosen to be consistent with binary inspiral at α = 2/3 with �(f =
25 Hz) = 2 × 10−7.

The spherical harmonic coefficients {b�,m} are complex if m �=
0 and thus have two degrees of freedom. We parametrize them by
their amplitude |b�,m| and phase φ�,m. We set uniform priors between
[0, 3] on the amplitude and uniform priors between [−π , π ] on the
phase. For the modes with m = 0, i.e. b�,0’s which are real, we set
uniform priors between [−3, 3]. To examine the support of this prior,
we draw many samples from this prior distribution. Each sample
corresponds to a unique distribution on the sky. Fig. 2 shows the 2.5
and 97.5 percentile values of the sky-distribution of these samples at
each pixel, without the factor of �(f). A HEALPix map with nside = 6

is used. The range of these values shows the range of support per
pixel from the prior. Note that while this helps with visualizing the
prior range, this is not a perfect measure because the distributions
across pixels are not independent of each other.

The variance of the prior sky map due to these choices of priors
is shown in Fig. 2. This shows broad support for many modes and
implies that the priors are not peaked at any particular region in the
space.

We use the single channel signal-to-noise ratio (SNR) as a metric
to characterize the strength of the signal, defined as

SNR =
√√√√Tseg

∑
t,f

δf
SGW

XX (t, f )

Sn
XX(f )

, (33)

where the summation is over time and frequency band used for
analysing the data. Note that while the SNR is a metric of the strength
of the SGCN, for a non-isotropic distribution of the SGCN, it does
not grow as ∼T1/2 as would be expected in the isotropic case. This
is because the sensitivity to different directions changes with time
as LISA rotates in its orbit around the Sun. Hence, the GW power
from an anisotropic SGCN will also exhibit a time modulation with
a periodicity of a year.

We ran two separate analyses with a duration of 1 yr and 2 months.
Figs 3 and 4 show the posterior corner plots for the former and the
latter, respectively. We witness bimodalities in the posteriors for
the b�,m in the 2-month run, which are related to the parity symmetry
described in Section 3. While our choice of fixing b0,0 = 1 breaks this
symmetry in principle, in practice, this breaking is only approximate

and can fail in the limit of a weak signal or a small amount of
observation time. This is because while two modes may be related
by a sign change due to parity, we are limited by the ability of
LISA to resolve this relative sign (with respect to b0,0). However,
with enough time or a stronger signal, the breaking of the symmetry
becomes complete, and the sampler finds the right mode as seen in
the posterior for the 1 yr run. The injected skymap, and the recovered
median posterior skymaps for the 2 month and 1 yr runs are shown
in Fig. 1. The median posterior map is the skymap generated from
median values of posterior samples.

To quantify the recovery of the angular power distribution, we use
coherence as a measure of the similarity of the injected and recovered
posterior skymaps (Romano et al. 2015; Taylor et al. 2020; Yang et al.
2020). First, we transform the skymaps into a pixel basis on the sky
using healpy. Since GW power is non-negative, we define excess
power in pixel i with respect to the mean as

��i = �i − 〈�〉, (34)

where 〈�〉 is the average power across all pixels. The coherence �

between the injected skymap �i
inj and the recovered skymap �i

rec is
then defined as

� =
∑

i ��i
inj ��i

rec√∑
i

(
��i

inj

)2
√∑

i

(
��i

rec

)2
. (35)

Defined in this way, the coherence is a real number between −1 and
1 as usual. Since we have the entire posterior of sky distributions,
we can also measure the confidence of the coherence. The median
and 95 per cent quantiles on the coherence for the 2 months run is
0.426+0.428

−0.516. The median and 95 per cent quantiles of the coherence
for the 1-yr run is 0.956+0.032

−0.064. The improvement from the 1-yr run
compared to the 2-month run is evident not just by the better median
coherence but also by much narrower quantiles of uncertainty.

5.2 Localized sources

Next, we test the ability to recover signals from localized sources
of GW power, often referred to as point sources in the literature.
Examples of such sources could be combined gravitational radiation
from a large globular cluster or a nearby galaxy. The GW power
from these sources would be an incoherent superposition of all the
GWs emitted by individual sources within them. Such sources are
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5458 S. Banagiri et al.

Figure 3. Posteriors corresponding to skymaps in Fig. 1 with a signal amplitude �ref = 2 × 10−7 for the duration of 1 yr. This corresponds to a single channel
theoretical SNR ≈ 149. The shaded region in the 1D posteriors is 95 per cent confidence levels while the light and dark regions in the 2D posteriors are 1σ

and 2σ confidence levels, respectively. The parameters Np and Na are the posterior measurements for the position and acceleration noises, respectively, using
the functional forms described in equation (31). The parameters α and �ref measure the spectral shape of the SGCN while the rest of the parameters are
measurements of b�,m’s which describe the distribution of GW power on the sky. The dashed green lines are the true values of these parameters used when
simulating the data.

generally localized to much smaller angular scales than is possible to
resolve with LISA. Thus, when we map them with spherical harmonic
methods, the power is usually smeared on larger angular scale as
determined by the strength of the signal, the integration time and the
�a

max scale where we cutoff the expansion. The dependence on the
latter is demonstrated in Fig. 5 where three months of simulated data
containing a point source signal is analysed using �a

max = 4 and 6,
with the same �(f) in both cases. As expected, the smearing of the
power is smaller in the case of �a

max = 6. In both cases, we still
assumed α = 2/3 power-law spectrum.

6 G A L AC T I C F O R E G RO U N D

The Galactic white dwarf foreground is expected to be one of
the primary sources of confusion noise seen by LISA. Due to its
strength and strong anisotropy, characterizing this foreground will
be a primary application of the method described here. Accurately
mapping the foreground will also be important for searches of
resolvable sources as it is a major source of noise. The confusion
noise in the detectors due to the Galactic foreground will exhibit a
time modulation tied to its anisotropy as LISA orbits the sun.
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Mapping the sky with LISA 5459

Figure 4. Posteriors for an analysis with a signal amplitude �ref = 2 × 10−7 for the duration of 2 months. This corresponds to a single channel theoretical SNR
≈ 59. The shaded region in the 1D posteriors is 95 per cent confidence levels while the light and dark regions in the 2D posteriors are 1σ and 2σ confidence
levels, respectively. The bimodalities seen in the 1D posteriors are due to the parity symmetries described in Section 3 which are only approximately broken in
the limit of a weak signal or short integration time. With a stronger signal, the breaking of the symmetry becomes more complete and the degenerate modes go
away as the sampler finds the right mode, as can be seen in the posterior for the 1 yr run (Fig. 3).

We simulate the Galactic foreground by modelling it as stochas-
tic coloured-Gaussian noise with a power-law spectrum given by
equation (6). Following Breivik et al. (2020a, b) and McMillan
(2011), we model the spatial distribution in the Galaxy using a
disc+bulge model. However, instead of simulating an ensemble of
individual DWD systems, we instead distribute the DWD density in
the Galactocentric frame using this model. The disc is modelled as

ρd (r, z) ∝ exp(−r/rh) exp(−z/zh), (36)

where the radial scale height is assumed to be rh = 2.9 kpc, and the
vertical scale height zh = 0.3 kpc following the thin disc model
of Breivik et al. (2020a). The Galactic bulge is modelled to be

azimuthally symmetric,

ρb(r) ∝ exp(−(r/rcut)2)

(1 + r ′/r0)γ
, (37)

where γ = 1.8, r0 = 0.075 kpc, rcut = 2.1 kpc, r ′ =
√

r2 + (z/q)2,
and q = 0.5.

The distribution is then transformed to the Solar system barycenter
coordinates. The DWD density at each point in this grid is modulated
by the distance to it from Earth and the grid is projected on to the
sky to produce an unnormalized distribution on the sky. The skymap
is then normalized to one and multiplied by the power spectrum of
the foreground, modelled as an α = 2/3 power law, producing the
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5460 S. Banagiri et al.

Figure 5. Recovered skymaps for simulated localized sources using 3 months of simulated data. The red star indicates the true position of the source. The map
on the left uses a cutoff of �a

max = 4 while the map on the right uses �a
max = 6. Consequently, the power is smeared to a larger extent on the sky for the former

compared to the latter.

Figure 6. Skymaps for the simulation and recovery of the Galactic DWD
foregrounds described in Section 6 with 1 yr of data. The top panel shows
the simulated skymap while the bottom shows posterior median recovery
skymap. Both maps show the distribution of �(f = 1 × 10−3 Hz) in the
Solar system barycentric frame. The bright spots in the map correspond to
the Galactic central bulge.

simulated GW power skymap seen on the top panel of Fig. 6. The
GW power distribution is then convolved with the time-dependent
LISA detector response to calculate the GW power in the detector
from which the simulated time-domain data are generated.

Here, we have simulated a year of Galactic foreground data in
the manner described above, which we then analysed using the
Clebsch–Gordan method with �a

max = 4. In the analysis, we have
used fmax of 10−3 Hz to simulate the drop in the foreground due to
mass transfer DWDs in a simplistic manner. The bottom panel of
Fig. 6 shows the recovered skymap. We see that the overall shape is
qualitatively well recovered, especially the Galactic bulge. We also
compute the coherence between the injected and recovered map.
The median and 95 per cent quantiles on the coherence for the
foreground analysis is 0.924+0.018

−0.024. This demonstrates the Clebsch–
Gordan method’s efficacy in mapping the Galactic DWD foreground.
We leave a more sophistical analysis of recovering the foreground’s
actual shape, and the exact frequency cutoff caused by mass transfer
to a future paper.

7 D I SCUSSI ON AND C ONCLUSI ON

We have developed a Bayesian mapping algorithm using the spherical
harmonic basis that can optimally recover any arbitrary distribution
of GW power on the sky using LISA data, while imposing the phys-
ical constraint that the GW power is non-negative in all directions
on the sky. This method was validated through a series of end-to-end
simulations of different types of SGCNs.

While this paper developed mapping tools and validates them,
there are several directions to push this forward and apply them for
astrophysical use. The Galactic foreground simulated in this paper
is ultimately simplistic in that it assumes that it is Gaussian and has
the spectral shape of a power law with α = 2/3. It will be essential
to relax these assumptions and validate this method on a realistic
simulated foreground formed from catalogues of DWDs generated
with population synthesis codes. This might also require relaxing the
assumptions of Gaussianity. Additionally, as Breivik et al. (2020b)
show, mapping the foreground on the sky can help constrain Galactic
structure in a manner complementary to resolvable DWDs while also
probing the stellar evolution history of the Galactic white dwarfs. It
would be interesting to study what mapping the foreground could
tell us about the astrophysics of Galactic foreground with the optimal
analysis developed in this work and using realistic simulations. One
can also expand this to study the astrophysics of the Galactic DWD
population in a more model-independent manner by constraining the
properties of the foreground in narrow frequency bands.
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Mapping the sky with LISA 5461

It will also be essential to study how the algorithm’s angular
sensitivity, characterized by the �a

max parameter, will scale with the
strength of the stochastic confusion noise and the duration of the
analysis. A data-centric way would be to determine the optimal
�a

max directly from the data based on statistical considerations, for
example, using Bayesian model selection. We can also make �a

max
an independent parameter that is directly fit by the data. Since
the dimensionality of the spherical harmonic parameter space itself
depends on �a

max, such an analysis would need to use Reversible-Jump
Markov-chain Monte Carlo approaches similar to those developed in
Cornish & Littenberg (2015).

Finally, an important application would be a joint analysis with
both resolvable signals and the Galactic DWD foreground. One of
the core strengths of mapping the foreground in a Bayesian manner is
the possibility of simultaneous inference of resolvable signals along
with the Galactic foreground. This will allow an unbiased estimation
of the properties of the resolvable signals while accounting for the
temporal modulation of the noise due to the Galactic foreground. One
can also imagine multiple SGCNs, arising from different sources that
might be separable if they have different spectral shape and angular
structure (e.g. Adams & Cornish 2014).
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A P P E N D I X : T H E C OVA R I A N C E M AT R I X I N
T H E PR E S E N C E O F A N S G C N

As described by equations (12) and (13), the CSD between channel
I and channel J can be written as a linear combination of the
instrumental noise power and the GW power due to the SGCN,

SIJ (t, f ) = Sn
IJ (f ) + SGW

IJ (t, f ). (A1)

As shown by equation (20), the GW power can be written as a
summation over the response function to spherical harmonic modes,

SGW
IJ (f , t) = 3H 2

0

2π2f 3

�(f )√
4πa0,0

∑
�,m

a�,mRIJ
�,m(f , t). (A2)

We assume a strictly equal-arm LISA configuration with the same
noise levels in all links, for which the noise autopower of the X − Y −
Z TDI channels can be written in terms of acceleration and position
noise, defined in equation (31), as (see the appendix of Adams &
Cornish 2010):

Sn
II = 16 sin2

(
f

f∗

) [
Sp(f ) + 2Sa(f )

(
1 + cos2

(
f

f∗

))]
. (A3)

Similarly, the cross-power between two channels I, J where I �= J is,

Sn
IJ = 4 sin2

(
f

f∗

)
cos

(
f

f∗

) [−2Sp(f ) − 8Sa(f )
]
. (A4)

Note that because the Michelson channels share arms, the noise
between channels is not independent of each other, as evident by
the non-zero cross-power. This requires us to use a full covariance
matrix for statistical analysis through the likelihood of equation (32);
treating the three channels independently would lead to biased
inferences.

We can now write down the elements of the covariance matrix in
the presence of an SGCN. The diagonal elements in the X − Y − Z
combination are given by

CII (t, f ) = 3H 2
0

2π2f 3

�(f )√
4πa0,0

∑
�,m

a�,mRII
�,m(f , t) + 16 sin2

(
f

f∗

)

×
[
Sp(f ) + 2Sa(f )

(
1 + cos2

(
f

f∗

))]
, (A5)

whereas the off-diagonal elements (I �= J) are given by

CIJ (t, f ) = 3H 2
0

2π2f 3

�(f )√
4πa0,0

∑
�,m

a�,mRIJ
�,m(f , t)

+ 4 sin2

(
f

f∗

)
cos

(
f

f∗

)[−2Sp(f ) − 8Sa(f )
]
. (A6)

We now see how the independent parameters that are sampled
over enter the covariance matrix. The noise parameters Np and Na

enter through the acceleration and position power spectra as seen in
equation (31). The �ref, α and spherical harmonic b�,m parameters
that describe the SGCN enter through the GW power; the latter being
related to the a�,m parameters through equation (30).
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