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Abstract: In this article, we intend to study the progressive Type-I censoring (PT-TC) that has been examined, employing the Marshall-

Olkin extended exponential (MOEE) distribution as the fundamental lifetime distribution. The censoring technique is believed to be

independent and non-informative. Because maximum likelihood (ML) estimators cannot be derived in closed form, ML estimates

(MLEs) are calculated via Newton-Raphson method approaches. In this approach, MLEs and asymptotic confidence intervals for

unknown parameters are produced. Under squared error and linear exponential (LINEX) loss functions, the Bayes estimations of

unknown parameters with gamma priors are evaluated. Once both parameters are unknown, the Bayes estimators cannot be computed

explicitly. Then, the Markov Chain Monte Carlo (MCMC) technique is employed to construct Bayes estimates using the Metropolis-

Hasting (MH) algorithm. The highest posterior density (HPD) credible intervals of the unknown parameter are calculated. Simulation

studies are carried out to explore the finite sample effectiveness of the recommended estimators, as well as data set analyses at various

schemes of PT-TC samples.

Keywords: Bayesian estimation, Marshall-Olkin extended exponential distribution, progressive Type-I censoring scheme, maximum

likelihood estimation, Markov Chain Monte Carlo.

1 Introduction

The use of a progressive censoring scheme in life testing
and reliability research has received a significant amount
of emphasis in the literature. In several life testing tests,
the experimenter is necessitated to remove several live
units at a set period in the experiment, or maybe some
units may be unexpectedly lost from the experiment.
Examples of this kind are common in medical
investigations, as well as in numerous industrial and
agricultural operations. Typically, units are removed from
the experiment as part of such investigations in order to
reduce the time and costs connected with testing. Ref. [1]
originally described progressive censoring as a valuable
strategy for supplying inferential findings to data derived
from such studies. As a censoring strategy, we considered

PT-IC samples in this research. In summary, this strategy
is seen when a pre-determined number of life test units
are constantly withdrawn from the experiment at the
conclusion of each of the pre-specified time periods. It
gives the practical characteristic of knowing the
termination time as well as greater flexibility to the
experimenter during the design phase by allowing the test
units to be eliminated at non-terminal time points [2].

Assume n units are subjected to a life-testing
experiment. Let X1,X2, ...,Xn represent the lifespan of
these n units selected from a population with cumulative
distribution function (cdf) F(x) and probability density
function (pdf) f (x). Suppose x(1) < x(2) < ... < x(n)
represents the ordered lifetimes recorded from the life
test. When Ri items are deleted the surviving items at the
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Fig. 1: PT-IC Scheme

preset time of censoring Tqi
corresponding to the qith

quantiles, i = 1,2, ...,m, where m is the number of levels
in the test, Tqi

> Tqi−1
and n = r + ∑m

i=1 Ri, PT-IC is
noticed. The likelihood function under PT-IC is provided
via

L(θ ) ∝
r

∏
i=1

f (x(i);θ )
m

∏
j=1

(
1−F(T(q j);θ )

)R j (1)

where x(i) is the observed lifespan of the ith order statistic
(OS) [1]. Figure 1 depicts this censoring technique [3].
Thus, Type-I censoring and complete samples can be
considered special cases of PT-IC. For more details and
implementation of this kind of censoring, one may
mention [2,3,4].

Recently, various works for the PT-IC scheme have
been investigated such as: Ref. [5] derived the MLEs for
the parameters of the generalized inverted exponential
(GIE) model. Ref. [6] studied the statistical inference of
the inverse Weibull distribution. For the
Nadaraj-Haghighi distribution, Ref. [7] studied the MLEs
and Bayesian estimates (BEs) in the presence of
competing risks model under PT-IC for the GIE
distribution. For the Weibull distribution, [4] proposed a
competing risks model under PT-IC.

Ref. [8] proposed a way of inserting a positive
parameter to broaden a family of distributions for greater
flexibility or to build co-variate models. They
demonstrated that the approach has a stability quality and
that the distribution family is geometric and exceptionally
stable. They investigated extended exponential and
Weibull distributions. According to Marshall-Olkin, if
F̄(x) = 1−F(x) denotes the reliability function (RF) of a
continuous random variable X , then the resulting
distribution is described in the form of RE function is
provided by

F̄(x) =
αḠ(x)

1− ᾱḠ(x)
; −∞ < x < ∞, α > 0, (2)

where ᾱ = 1−α . If we take the RF of the exponential (E)
distribution which is given as Ḡ(x) = exp(−λ x) in
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Fig. 2: Pdf and cdf of MOEE distribution for some values of α
and λ

equation (2), we get the MOEE distribution with RF
given as:

F̄(x;α,λ ) =
α

exp(λ x)− ᾱ
; x > 0, α,λ > 0, (3)

thus the pdf and cdf of the MOEE distribution are
provided via

f (x;α,λ ) =
αλ exp(−λ x)

[1− ᾱ exp(−λ x)]2
; x > 0, α,λ > 0

(4)
and

F(x;α,λ ) =
1− exp(−λ x)

1− ᾱ exp(−λ x)
(5)

where α represents the shape parameter and λ is the scale
parameter. If α = 1 reduces to the E distribution [9]. Figure
2 illustrated the behavior of the pdf and cdf for the MOEE
distribution at some various values of α and λ .

The hazard rate function (hrf) of the MOEE
distribution is provided via

h(x;α,λ ) =
λ

1− ᾱ exp(λ x)
; x ≥ 0.

The behavior of the hrf and RF for the MOEE
distribution are illustrated in Figure 3 at some various
values of α and λ .
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Fig. 3: Hazard rate function and the RF of MOEE distribution

for some values of α and λ

Several authors studied the characteristics and
properties of the MOEE distribution. For example, Ref.
[10] studied the BE under squared error loss function and
both informative and non-informative priors. Ref. [11]
used the different estimations utilized as, ML, maximum
product spacing approach, least square, and weighted
least square approaches to assess the estimation of the
parameters, reliability function and hazard function.
Reliability test plans have been studied for MOEE
distribution by [9]. Ref. [12] studied progressive Type-II
censoring scheme. They studied the estimation and
prediction problems for the MLEs and BEs.

The main goal of this article, is to estimate the
unknown parameters for the MOEE distribution under
PT-IC employing both a classical and a Bayesian point
and interval estimation. We have organized the rest of the
paper as follows. Supposing that the lifetime of the test
units are independently MOEE distributed and using
PT-IC, the MLEs of unknown parameters are discussed in
Section 2. Construction of the asymptotic confidence
intervals are also demonstrated in this section. In Section
3, BEs and associated highest posterior density interval
estimates are obtained with respect to two different loss
functions; namely squared error and LINEX loss
functions. We have applied the MCMC method and
utilized Metropolis-Hasting algorithm to evaluate these
BEs. In section 4, a simulation study has been performed
for comparison purposes using Monte Carlo simulations,
and real-life data is analyzed to illustrate the proposed

estimation methods. Finally, a conclusion is given in
section 5.

2 Maximum Likelihood Approach

In this part, we use PT-IC data to calculate MLEs for the
unknown parameters of the MOEE distribution. As a
result, we may get the PT-IC samples
x = (x(1),x(2), . . . ,x(r)) that reflect the observed lives of
the n units under this censoring strategy. Given the
observed data x, the related probability function of α and
λ may be expressed as

L(α,λ )& ∝
r

∏
i=1

(
αλ exp(−λ x(i))

[
1− ᾱ exp(−λ x(i))

]2

)

m

∏
j=1

(
α exp(−λ Tq j

)

1− ᾱ exp(−λ Tq j
)

)R j

.

(6)

By applying the logarithm of L(α,λ ) to obtain
log-likelihood lnL which is represented as ℓ

ℓ(α,λ ) ∝ r ln(α)+ r ln(λ )

+
r

∑
i=1

(
−λ x(i)− 2ln

[
1− ᾱ exp(−λ x(i))

])

+
m

∑
j=1

R j

(
ln(α)−λ Tq j

− ln
[
1− ᾱ exp(−λ Tq j

)
])
.

(7)

The first partial derivatives of ℓ with regard to α and λ are:

∂ℓ

∂α
=

r

α
+

r

∑
i=1

(
2α exp(−λ x(i))

1− ᾱ exp(−λ x(i))

)

+
m

∑
j=1

R j

(
1

α
−

exp(−λ Tq j
)

1− ᾱ exp(−λ Tq j
)

)

=
r

α
+

r

∑
i=1

(
2α

exp(λ x(i))− ᾱ

)
+

m

∑
j=1

R j

(
1

α
− 1

exp(λ Tq j
)− ᾱ

)

∂ℓ

∂λ
=

r

λ
+

r

∑
i=1

(
− x(i)+

2ᾱx(i) exp(−λ x(i))

1− ᾱ exp(−λ x(i))

)

+
m

∑
j=1

R j

(
−Tq j

−
Tq j

ᾱ exp(−λ Tq j
)

1− ᾱ exp(−λ Tq j
)

)

=
r

λ
+

r

∑
i=1

(
− x(i)+

2ᾱx(i)

exp(λ x(i))− ᾱ

)

+
m

∑
j=1

R j

(
−Tq j

−
Tq j

ᾱ

exp(λ Tq j
)− ᾱ

)
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Equating ∂ℓ
∂α |α=α̂ and ∂ℓ

∂λ |λ=λ̂
to zero as follows:

r

α̂
+

r

∑
i=1

(
2α̂

exp(λ̂ x(i))− ˆ̄α

)

+
m

∑
j=1

R j

(
1

α̂
− 1

exp(λ̂ Tq j
)− ˆ̄α

)
= 0

(8)

r

λ̂
+

r

∑
i=1

(
− x(i)+

2 ˆ̄αx(i)

exp(λ̂ x(i))− ˆ̄α

)

+
m

∑
j=1

R j

(
−Tq j

−
Tq j

ˆ̄α

exp(λ̂ Tq j
)− ˆ̄α

)
= 0

(9)

The above two equations (8) and (9) cannot be
obtained numerically. To acquire the appropriate MLEs
for the above equations, we must use a suitable numerical
approach, such as Newton-Raphson. The MLEs of α and
λ are the numerical solutions of the preceding system of

equations for λ̂ and α̂ , respectively.
The asymptotic properties of MLEs imply that the

pair (α̂, λ̂ ) is approximately distributed as a bivariate
normal random variable with a mean of (α,λ ) and a

variance-covariance matrix of I−1
X (α̂ , λ̂ ). Here, IX(·)

represents the Fisher information matrix. The individual
elements of the Fisher information matrix are calculated
as follows:

IX(α,λ ) =




−E
(

∂ 2 lnℓ
∂α2

)
−E
(

∂ 2 lnℓ
∂α∂λ

)

−E
(

∂ 2 lnℓ
∂λ ∂α

)
−E
(

∂ 2 lnℓ
∂λ 2

)




where

∂ 2ℓ

∂α2
=

−r

α2
+

r

∑
i=1

(
2(exp(λ x(i))− ᾱ −α)
[
exp(λ x(i))− ᾱ

]2

)

−
m

∑
j=1

R j

(
1

α2
+

1
[
exp(λ Tq j

)− ᾱ
]2

)
,

∂ 2ℓ

∂λ 2
=

−r

λ 2
+

r

∑
i=1

(
2ᾱx2

(i) exp(λ x(i))
[
exp(λ x(i))− ᾱ

]2

)

+
m

∑
j=1

R j

(
T 2

q j
ᾱ exp(λ Tq j

)
[
exp(λ Tq j

)− ᾱ
]2

)
,

and

∂ 2 lnℓ

∂α∂λ
=

r

∑
i=1

(
−2x(i)(exp(λ x(i))− ᾱ)− 2ᾱx(i)[

exp(λ x(i))− ᾱ
]2

)

−
m

∑
j=1

R j

(
(exp(λ Tq j

)− ᾱ)Tq j
−Tq j

ᾱ
[
exp(λ Tq j

)− ᾱ
]2

)
.

Consequently, the pivotal quantities α̂−α√
σ11

and λ̂−λ√
σ22

are

approximately distributed as standard normal. Therefore,
100(1− τ)% approximate confidence intervals of α and

λ are then obtained as α̂ ±Zτ/2

√
σ11 and λ̂ ± Zτ/2

√
σ22

where Zτ/2 is the (τ/2)th upper percentile of the standard
normal distribution. Finally, the corresponding coverage
probabilities (CP),

CPα =P

[∣∣∣∣
α̂ −α√

σ11

∣∣∣∣≤ Zτ/2

]
, CPλ =P

[∣∣∣∣∣
λ̂ −λ√

σ22

∣∣∣∣∣≤ Zτ/2

]

can be computed using the Monte Carlo simulations.

3 Bayesian Approach

In this part, we will look at the Bayesian estimate of the
MOEE distribution’s unknown parameters using the
PT-IC technique. To get BEs of the parameters α and λ
for Bayesian parameter estimation, the square error (SE)
and LINEX loss functions are used. Consequently, the
BEs cannot always be articulated explicitly. As a result,
estimated BEs are generated employing numerical
techniques under informative prior.

Assume that each unknown parameter is
stochastically independent. Assume that the prior density
for the parameter α , are a gamma (µ1,1) and the
parameter λ , the prior distribution is taken to be a gamma
(µ2,ν2). As a result, the joint prior distribution for α and
λ is provided via

π(α,λ ) = π1(α)π2(λ )

π(α,λ ) = αµ1−1λ µ2−1 exp
(
−
{ α

ν1

+
λ

ν2

})

where the hyper-parameters µ1,ν1,µ2,ν2 are chosen to
represent previous information of the unknown
parameters. To choose the values of the hyper-parameters
µ1,ν1,µ2,ν2 we use the method of hyper-parameter
elicitation proposed by [16].
Given the observed data x = (x(1),x(2), . . . ,x(r)), the
associated posterior density (PD) may be represented as

π(α,λ |x) = π(α,λ )L(α,λ )∫ ∞
0

∫ ∞
0 π(α,λ )L(α,λ )dλ dα

.

The PD function may be described as follows:

π(α,λ |x) = K−1

[
αµ1−1λ µ2−1 exp

(
−
{ α

ν1

+
λ

ν2

})

×
r

∏
i=1

(
αλ exp(−λ x(i))[

1− ᾱ exp(−λ x(i))
]2

)

×
m

∏
j=1

(
α exp(−λ Tq j

)

1− ᾱ exp(−λ Tq j
)

)R j
]
.
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where k is a normalize constant. As a result, the PD may
be expressed as

π(α,λ |x) ∝ αr+µ1−1λ r+µ2−1 exp
(
−
{ α

ν1

+
λ

ν2

})

×
r

∏
i=1

(
exp(−λ x(i))[

1− ᾱ exp(−λ x(i))
]2

)

×
m

∏
j=1

(
α

exp(λ Tq j
)− ᾱ

)R j

.

(10)

Under the SE loss function, the BEs of any function,
namely g(α,λ ) is provided via

g̃BS = E(g(α,λ |x))

=

∫ ∞

0

∫ ∞

0
g(α,λ )π(α,λ |x)dλdα.

(11)

Under the LINEX loss function, the BEs of any
function, namely g(α,λ ) is provided via

g̃BL = E
(

exp(−cg(α,λ )) | x
)

=−1

c
ln

[∫ ∞

0

∫ ∞

0
exp
(
− cg(α,λ )

)
π(α,λ | x)dαααdλλλ

]

(12)

It can be observed that the estimates provided by (11)
and (12) cannot be reduced into closed-form expressions.
As a result, we use the most commonly used
approximation MCMC to generate the necessary
estimations.

The stages of the MH method to draw a sample from
the PD provided equation (11) are as described in the
following:

The first stage: Establish the initial value of θ as θ (0) =(
α̂, λ̂

)
.

The second stage: For i = 1,2, . . . ,M repeat the next
stages:

1.Let θ = θ (i−1).
2.Generate a new candidate parameter value δ from

N2(lnθ ,Sθ ).
3.Set θ ′ = exp(δ ).

4.Compute β = π(θ ′|x)
π(θ |x) , where π(·) is the posterior

distribution in equation (??).
5.Generate a sample u from the uniform U(0,1)

distribution.
6.Accept or reject the new candidate θ ′:

{
If u ≤ β set θ (i) = θ ′

Otherwise set θ (i) = θ .

Furthermore, part of the initial samples chosen from
the posterior density can be removed (burn-in), and the
remaining samples can be used to generate BEs using the

loss functions SE and LINEX. The equation (11) can be
approximated more precisely as

g̃SE(α,λ ) =
1

M− lB

M

∑
i=lB

g(αi,λi), (13)

g̃L(α,λ ) =
−1

c
ln
( 1

M− lB

M

∑
i=lB

exp
(
− cg(αi,λi)

))

(14)

where lB represents the number of burn-in samples.

4 Numerical Outcomes

The purpose of this section is to compare the performance
of the various estimating methods outlined in previous
sections. For illustrative purposes, we investigate a real
data set; moreover, a simulation study is used to evaluate
the behavior of the suggested approaches as well as to
assess the statistical performances of the estimators under
the PT-IC scheme. For calculations, we utilized R, a
statistical programming language. In addition, the bbmle

and HDInterval packages may be used to compute MLEs
and HPD intervals in R-language.

4.1 Real data analysis

In this part, we examine a real-world data set provided by
[20]. The original data set consists of 16 observations and
shows the failure times of software releases in hours, with
an average lifetime of 1000 hours from the start of program
execution. The data is as described in the following:

0.519 0.968 1.430 1.893 2.490 3.058 3.625 4.442
5.218 5.823 6.539 7.083 7.485 7.846 8.205 8.564

Ref. [10], verified that the MOEE distribution
provides a good fit for the given data set. The calculated
Kolmogorov-Smirnov (K-S) distance between the
empirical and the fitted extended for the MOEE
distribution was 0.1753 and its p-value is 0.647 where

α̂ = 2.689 and λ̂ = 0.3614.
From the original data, six PT-IC schemes are

generated with different m stages and removed items R j at
CT Tj, where j = 1,2, lifetime. These various schemes
are mentioned in Table 1. Note that:
Rm = n − (∑m−1

j=1 R j + r) and r is the amount of failure

items. Also, when Tm = max(x) and
R1 = R2 = . . . = Rm = 0. Type-I censoring scheme,
Scheme 6, may be seen as a special case of PT-IC, and
complete sampling can be regarded as a particular case of
PT-IC.

We compute the MLEs of the parameters α and λ and
their associated 95 % asymptotic confidence interval
estimates. We also compute BEs employing the MH
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Table 1: Different schemes for progressively Type-I censored

samples

Scheme m CT (Tj) Removed items (Ri)

1 4 (1, 2, 4, 7) (3, 0, 0 ,Rm)
2 4 (1, 2, 4, 7) (1, 1, 1, Rm)
3 4 (1, 2, 4, 7) (0, 0, 0, 3, Rm)
4 5 (1, 1.5, 3, 5, 7) (3, 0, 0, 0, Rm)
5 5 (1, 1.5, 3, 5, 7) (0, 0, 0, 3, Rm)
6 5 (1, 1.5, 3, 5, 7) (0, 0, 0, 0, n− r)
7 (1, 1.5, 3, 5, 8.564) (0,0,0,0,0)

algorithm under the non-informative prior where
µ1 = ν1 = µ2 = ν2 = 0. It is said that while using the MH
method to generate samples from the posterior
distribution, actual values of (λ ,α) are considered as

(λ (0),α(0)) = (λ̂ , α̂), where λ̂ and α̂ are the MLEs of the
parameters α and λ respectively. Thus, we considered the

variance-covariance matrix Sθ of (ln(λ̂ ), ln(α̂)), that can
be easily investigated employing the delta method.
Furthermore, we removed 2000 burn-in samples from the
total 10000 samples generated by the posterior density
and calculated BEs and HPD interval estimations using
[14].

All the estimated values of MLEs and associated
interval estimates (Asymptotic CI) and standard errors
(St.Er) are presented in Table 2. Also, Bayesian
estimation using MCMC by applying MH algorithm and
associated HPD intervals and St.Er are computed.

4.2 Simulation Study

In this part, we use Monte Carlo simulation research to
assess the performance of estimation approaches,
specifically MLE and Bayesian estimation, under the
PT-IC scheme for MOEE distribution. We produce 1000
data points from the MOEE distribution for the MLEs
under the following assumptions:

1.α = 1.5 and λ = 2.5, i.e. MOEE(1.5,2.5).
2.Sample sizes are n = 25, n = 50 and n = 100.
3.Number of stages of PT-IC are m = 4,5.
4.CTs Tj are proposed as follows:

–CT − I = (0.05,0.15,0.25,0.50)
–CT − II = (0.10,0.30,0.50,1.00)
–CT − III = (0.05,0.15,0.25,0.40,0.60)
–CT − IV = (0.10,0.30,0.50,0.75,1.00)

where j = 1, . . . ,m. The patterns of CT can be
classified according to m. In our study, CT − I and
CT − II are used when m = 3 and CT − III and
CT − IV are used when m = 5.

5.Removed items R j are assumed at different sample size

n as shown in Table 3 where Rm = n− (∑m−1
j=1 R j + r)

and r is the number of failure items.

It is indicate that scheme R1 and R11 are represent
Type-I censoring scheme as a special case with number of

failure items Rm = n − r and CT is Tm. We compute
MLEs and the accompanying 95% asymptotic CI based
on the produced data. When calculating MLEs, the initial
estimate values are assumed to be the same as the genuine
parameter values.

We calculate BEs for the Bayesian estimating
technique utilizing the MOEE algorithm with informative
priors. As in previous examples, we construct 1000
complete samples of size 60 from the MOEE(1.5,2.5)
distribution, and the hyper parameter values are
µ1 = 5.17,ν1 = 2.90,µ2 = 20.47,ν2 = 7.69.

The aforementioned informative prior values are used
to compute the required estimations. We use the MH
method with the MLEs as starting guess values and the

related variance-covariance matrix Sθ of (ln(α̂), ln(λ̂ )).
Finally, we removed 2000 burn-in samples from the total
10000 samples generated by the posterior density and
calculated BEs and HPD interval estimations using [14].

All of the mean estimates for both approaches are
presented in Tables 4.a and 4.b for sample sizes n = 50,
and n = 100, respectively. Furthermore, the first row
shows average estimations (Avg. ), whereas the second
row reflects corresponding means square errors (MSEs).
We have asymptotic confidence intervals for MLEs and
HPD for BEs based on MCMC, which are provided in
Tables 5.a and 5.b for sample sizes n = 50, and n = 100,
respectively. In addition, the first row indicates average
interval lengths (AILs), whereas the second row reflects
corresponding coverage probabilities (CPs).

According to the tabulated figures, greater values of n

lead to better estimates dependent on MSEs. It has also
been shown that MLEs compete effectively with
informative BEs. The AILs for BEs are better than theses
in MLs.The increasing in time censoring points, the more
efficient of estimates for all proposed methods of
estimation. Furthermore, MSEs and AILs of linked
interval estimations are often lower when units are
eliminated early in the process.

Two images depict the convergence of MCMC
estimates for α and λ . First; Figure 4 for m = 4 and
pattern of censoring R3 and CT − I for choosing sample
size n = 50. Second; Figure 5 for m = 5 and pattern of
censoring R10 and CT − IV for choosing sample size
n = 50.

5 Concluding Remarks

In this study, we looked at the challenge of estimating the
parameters for the MOEE distribution under PT-IC from
both a classical and a Bayesian standpoint. We estimated
MLEs and related asymptotic confidence intervals for the
MOEE distribution’s unknown parameters. Then,
utilizing informative priors, we generated BEs using
MCMC and the associated HPD interval estimates for two
loss functions: SE and LINEX loss. Furthermore, when
an informative prior is considered, a discussion of how to
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Fig. 4: Distribution and convergence of MCMC estimates for α and λ using MH algorithm under R3 and CT − I where m = 4 and

n = 50

Fig. 5: Distribution and convergence of MCMC estimates for α and λ using MH algorithm under R13 and CT − IV where m = 5 and

n = 50
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Table 2: ML and BEs with associated St.Er (in practices) and CIs based on different PT-IC schemes for given real data set at different

number of stages

Sch. Parm. MLE Bayesian: SE Bayesian: LINEX

Estimate (St.Er) Asy CI Estimate (St.Er) HPD Estimate (St.Er) HPD

1 α 1.339 (2.307) (0.774, 1.904) 1.345 (0.0004) (1.301, 1.385) 1.533 (0.0002) (1.504, 1.562)
λ 0.158 (0.186) (0.112, 0.203) 0.109 (0.0009) (0.070, 0.175) 0.167 (0.0006) (0.123, 0.210)

2 α 2.237 (3.039) (1.575, 2.899) 2.214 (0.0019) (2.153, 2.302) 1.916 (0.0043) (1.809, 2.042)
λ 0.244 (0.194) (0.202, 0.287) 0.260 (0.0002) (0.235, 0.290) 0.260 (0.0004) (0.225, 0.304)

3 α 1.506 (2.450) (0.972, 2.039) 1.499 (0.0012) (1.436, 1.543) 1.500 (0.0007) (1.447, 1.547)
λ 0.187 (0.205) (0.142, 0.232) 0.175 (0.0011) (0.118, 0.234) 0.171 (0.0008) (0.134, 0.229)

4 α 1.181 (2.165) (0.650, 1.712) 1.136 (0.0008) (1.085, 1.182) 1.654 (0.0009) (1.588, 1.691)
λ 0.147 (0.192) (0.101, 0.195) 0.179 (0.0006) (0.132, 0.229) 0.217 (0.0005) (0.177, 0.263)

5 α 1.154 (2.158) (0.684, 1.624) 1.186 (0.0008) (1.132, 1.237) 1.162 (0.0040) (1.030, 1.239)
λ 0.149 (0.201) (0.105, 0.193) 0.148 (0.0005) (0.117, 0.201) 0.191 (0.0028) (0.111, 0.269)

6 α 2.701 (3.184) (2.133, 3.268) 2.739 (0.0020) (2.663, 2.833) 2.734 (0.0009) (2.677, 2.782)
λ 0.277 (0.171) (0.247, 0.307) 0.346 (0.0005) (0.301, 0.387) 0.253 (0.0007) (0.210, 0.302)

7 α 2.647 (1.184) (2.145, 3.061) 2.678 (0.0018) (2.654, 2.762) 2.677 (0.0016) (2.652, 2.771)
λ 0.270 (0.165) (0.241, 0.296) 0.235 (0.0003) (0.211, 0.287) 0.236 (0.0004) (0.220, 0.256)

Note: Sch.-Scheme, Parm.-Parameter, St.E-Standard error.

Table 3: Different patterns for removing items from life test at different number of stages

m Scheme Patterns

n = 25 n = 50 n = 100

4 R1 (0(3),Rm) (0(3),Rm) (0(3),Rm)

R2 (1(3),Rm) (3(3),Rm) (5(3),Rm)

R3 (2(3),Rm) (5(3),Rm) (10(3),Rm)

R4 (3(3),Rm) (8(3),Rm) (15(3),Rm)

R5 (4,0(2),Rm) (9,0(2),Rm) (15,0(2),Rm)

R6 (8,0(2),Rm) (15,0(2),Rm) (30,0(2),Rm)

R7 (12,0(2)Rm) (24,0(2),Rm) (45,0(2),Rm)

R8 (0(2),4,Rm) (0(2),9,Rm) (0(2),15,Rm)

R9 (0(2),8,Rm) (0(2),15,Rm) (0(2),30,Rm)

R10 (0(2),12,Rm) (0(2),24,Rm) (0(2),45,Rm)

5 R11 (0(4),Rm) (0(4),Rm) (0(4),Rm)

R12 (1(4),Rm) (2(4),Rm) (4(4),Rm)

R13 (2(4),Rm) (4(4),Rm) (8(4),Rm)

R14 (3(4),Rm) (6(4),Rm) (12(3),Rm)

R15 (4,0(3),Rm) (8,0(3),Rm) (16,0(3),Rm)

R16 (8,0(3),Rm) (16,0(3),Rm) (32,0(3),Rm)

R17 (12,0(3),Rm) (24,0(3),Rm) (48,0(3),Rm)

R18 (0(3),4,Rm) (0(3),8,Rm) (0(3),16,Rm)

R19 (0(3),8,Rm) (0(3),12,Rm) (0(3),32,Rm)

R20 (0(3),12,Rm) (0(3),20,Rm) (0(3),48,Rm)

Here, (1(3),0), for example, means that the censoring scheme employed is (1,1,1,0).

choose the values of hyper-parameters in Bayesian
estimation based on historical samples is reviewed. The
simulation results show that MLEs informative BEs
utilizing MCMC outperform MLEs. In future study, we
will apply Bayesian estimation using MCMC; however,
alternative approaches such as Lindely’s approximation
or significance sampling can be applied with PT-IC.

Furthermore, maximum product spacing might be utilized
as an alternative to conventional estimates (MLEs).
Furthermore, the current methodology might be expanded
to the development of optimal progressive censoring as
well as other censoring approaches. For future works,
many authors can use the MOEE distribution for
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Table 4.a: Average estimated values and MSEs of the ML and BEs for MOEE distribution with α = 1.5and λ = 2.5under different

censoring schemes and sample size n = 50

m Sch. α̂ λ̂ α̃SE λ̃SE α̃L λ̃L α̂ λ̂ α̃SE λ̃SE α̃L λ̃L

4 CT-I = (0.05, 0.15, 0.25, 0.50) CT-II = (0.10, 0.30, 0.50, 1.00)

R1 Avg. 2.194 2.792 1.542 2.502 1.461 2.421 1.920 2.636 1.503 2.436 1.417 2.363
MSE 4.455 2.072 0.063 0.038 0.089 0.067 1.858 0.847 0.077 0.055 0.069 0.065

R2 Avg. 2.309 2.839 1.547 2.496 1.460 2.405 1.979 2.709 1.501 2.440 1.415 2.360
MSE 5.016 2.240 0.077 0.031 0.066 0.037 2.125 1.117 0.070 0.055 0.064 0.065

R3 Avg. 2.440 2.992 1.552 2.506 1.466 2.413 2.038 2.772 1.492 2.447 1.408 2.365
MSE 5.357 2.668 0.077 0.031 0.087 0.041 2.473 1.362 0.063 0.045 0.062 0.058

R4 Avg. 2.793 3.304 1.550 2.522 1.467 2.430 2.433 3.032 1.504 2.444 1.417 2.351
MSE 8.480 3.914 0.071 0.027 0.104 0.084 4.673 2.400 0.068 0.035 0.064 0.052

R5 Avg. 2.286 2.863 1.538 2.503 1.447 2.411 1.988 2.708 1.503 2.447 1.416 2.368
MSE 4.847 2.068 0.069 0.030 0.058 0.035 2.187 1.059 0.072 0.055 0.066 0.064

R6 Avg. 2.402 2.891 1.541 2.501 1.452 2.412 1.963 2.690 1.485 2.440 1.400 2.357
MSE 6.582 2.633 0.073 0.031 0.070 0.041 2.536 1.346 0.079 0.055 0.072 0.066

R7 Avg. 2.840 3.200 1.556 2.516 1.462 2.419 2.174 2.866 1.498 2.455 1.409 2.368
MSE 10.400 3.553 0.077 0.032 0.070 0.035 3.625 1.931 0.066 0.043 0.062 0.067

R8 Avg. 2.317 2.864 1.545 2.493 1.461 2.407 1.962 2.691 1.495 2.439 1.410 2.359
MSE 5.350 2.239 0.069 0.036 0.076 0.047 2.000 1.080 0.065 0.045 0.065 0.058

R9 Avg. 2.450 3.005 1.550 2.507 1.457 2.409 2.073 2.725 1.476 2.432 1.391 2.347
MSE 5.564 2.659 0.067 0.027 0.062 0.036 3.473 1.686 0.062 0.045 0.062 0.060

R10 Avg. 2.838 3.237 1.569 2.493 1.492 2.398 2.148 2.763 1.478 2.437 1.396 2.352
MSE 10.174 4.261 0.073 0.023 0.138 0.035 4.059 1.848 0.060 0.037 0.073 0.064

5 CT-III = (0.05, 0.15, 0.25, 0.40, 0.60) CT-IV = (0.10, 0.30, 0.50, 0.75, 1.00)

R11 Avg. 1.868 2.596 1.522 2.479 1.440 2.403 1.801 2.612 1.555 2.533 1.462 2.455
MSE 1.979 1.181 0.060 0.038 0.054 0.044 1.453 0.871 0.087 0.059 0.069 0.055

R12 Avg. 1.976 2.665 1.521 2.489 1.441 2.412 1.928 2.678 1.568 2.541 1.473 2.458
MSE 2.843 1.427 0.063 0.035 0.067 0.046 2.112 1.056 0.093 0.050 0.072 0.046

R13 Avg. 2.225 2.793 1.554 2.488 1.469 2.406 2.107 2.790 1.583 2.548 1.490 2.468
MSE 4.472 1.858 0.063 0.029 0.054 0.034 3.410 1.595 0.087 0.048 0.089 0.077

R14 Avg. 2.493 3.042 1.549 2.502 1.468 2.417 2.207 2.840 1.579 2.544 1.479 2.446
MSE 5.891 2.840 0.067 0.029 0.088 0.042 4.469 2.225 0.085 0.039 0.066 0.034

R15 Avg. 1.998 2.661 1.529 2.487 1.446 2.410 1.860 2.649 1.572 2.533 1.475 2.451
MSE 2.840 1.477 0.063 0.037 0.061 0.049 1.463 0.959 0.086 0.054 0.065 0.050

R16 Avg. 2.197 2.797 1.543 2.499 1.458 2.418 1.951 2.699 1.573 2.544 1.476 2.456
MSE 4.195 1.752 0.069 0.036 0.061 0.040 2.296 1.255 0.092 0.052 0.070 0.046

R17 Avg. 2.265 2.832 1.530 2.498 1.446 2.412 2.104 2.798 1.584 2.554 1.486 2.458
MSE 5.745 2.107 0.073 0.032 0.112 0.043 3.294 1.952 0.090 0.047 0.078 0.047

R18 Avg. 1.956 2.661 1.520 2.488 1.439 2.410 1.953 2.669 1.576 2.532 1.478 2.448
MSE 2.624 1.476 0.061 0.036 0.054 0.041 2.269 1.131 0.093 0.052 0.072 0.050

R19 Avg. 2.269 2.841 1.539 2.496 1.459 2.415 2.097 2.767 1.587 2.543 1.490 2.455
MSE 4.853 2.127 0.065 0.031 0.066 0.036 3.025 1.506 0.080 0.047 0.059 0.042

R20 Avg. 2.268 2.820 1.529 2.486 1.450 2.407 1.960 2.629 1.576 2.526 1.477 2.435
MSE 4.913 2.222 0.063 0.031 0.064 0.038 2.829 1.495 0.074 0.041 0.057 0.043

estimating its parameters under different types of ranked
set sampling.
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Table 4.b: Average estimated values and MSEs of the ML and BEs for MOEE distribution with α = 1.5 and λ = 2.5 under different

censoring schemes and sample size n = 100

m Sch. α̂ λ̂ α̃SE λ̃SE α̃L λ̃L α̂ λ̂ α̃SE λ̃SE α̃L λ̃L

4 CT-I = (0.05, 0.15, 0.25, 0.50) CT-II = (0.10, 0.30, 0.50, 1.00)

R1 Avg. 1.844 2.663 1.508 2.469 1.441 2.398 1.687 2.590 1.533 2.496 1.463 2.437
MSE 1.478 1.028 0.049 0.037 0.045 0.043 0.590 0.450 0.078 0.063 0.067 0.064

R2 Avg. 1.815 2.605 1.508 2.457 1.439 2.382 1.671 2.566 1.520 2.485 1.450 2.420
MSE 1.506 1.205 0.049 0.037 0.048 0.050 0.662 0.531 0.076 0.058 0.067 0.060

R3 Avg. 1.819 2.625 1.498 2.456 1.433 2.381 1.733 2.605 1.532 2.488 1.458 2.417
MSE 1.549 1.361 0.048 0.032 0.049 0.042 0.855 0.705 0.073 0.054 0.062 0.056

R4 Avg. 1.958 2.739 1.515 2.466 1.445 2.383 1.803 2.667 1.522 2.490 1.447 2.409
MSE 2.208 1.745 0.049 0.027 0.044 0.042 1.230 1.095 0.061 0.044 0.053 0.048

R5 Avg. 1.786 2.590 1.500 2.456 1.434 2.385 1.644 2.530 1.525 2.469 1.454 2.406
MSE 1.450 1.108 0.051 0.034 0.049 0.044 0.585 0.477 0.071 0.058 0.061 0.063

R6 Avg. 1.881 2.657 1.519 2.459 1.452 2.383 1.678 2.548 1.522 2.479 1.449 2.410
MSE 1.727 1.283 0.051 0.032 0.062 0.042 0.807 0.667 0.081 0.061 0.070 0.064

R7 Avg. 1.895 2.623 1.505 2.458 1.435 2.379 1.688 2.573 1.517 2.480 1.442 2.403
MSE 2.322 1.625 0.055 0.028 0.052 0.040 0.874 0.837 0.072 0.055 0.062 0.059

R8 Avg. 1.846 2.595 1.514 2.449 1.448 2.378 1.675 2.566 1.516 2.484 1.445 2.418
MSE 1.820 1.225 0.054 0.033 0.051 0.045 0.726 0.535 0.075 0.054 0.066 0.057

R9 Avg. 1.887 2.642 1.517 2.453 1.448 2.377 1.715 2.561 1.519 2.472 1.445 2.399
MSE 1.900 1.445 0.050 0.030 0.047 0.040 0.995 0.778 0.071 0.049 0.062 0.055

R10 Avg. 2.014 2.789 1.499 2.470 1.444 2.394 1.843 2.626 1.539 2.481 1.462 2.400
MSE 2.659 2.233 0.047 0.034 0.160 0.129 1.556 1.008 0.066 0.039 0.054 0.047

5 CT-III = (0.05, 0.15, 0.25, 0.40, 0.60) CT-IV = (0.10, 0.30, 0.50, 0.75, 1.00)

R11 Avg. 1.687 2.565 1.481 2.447 1.408 2.375 1.646 2.538 1.500 2.455 1.435 2.399
MSE 0.823 0.636 0.068 0.055 0.065 0.066 0.564 0.397 0.068 0.053 0.062 0.059

R12 Avg. 1.723 2.567 1.488 2.441 1.414 2.367 1.637 2.530 1.486 2.452 1.421 2.390
MSE 0.996 0.791 0.070 0.055 0.065 0.065 0.672 0.510 0.068 0.053 0.064 0.059

R13 Avg. 1.697 2.538 1.471 2.428 1.397 2.346 1.726 2.565 1.513 2.448 1.443 2.378
MSE 1.102 0.965 0.068 0.053 0.066 0.070 0.942 0.700 0.062 0.048 0.056 0.057

R14 Avg. 1.928 2.720 1.505 2.450 1.428 2.363 1.836 2.663 1.508 2.453 1.436 2.378
MSE 1.879 1.481 0.063 0.042 0.059 0.054 1.356 1.095 0.058 0.045 0.054 0.047

R15 Avg. 1.689 2.512 1.489 2.425 1.413 2.352 1.702 2.573 1.514 2.460 1.447 2.399
MSE 1.005 0.759 0.069 0.058 0.064 0.070 0.669 0.489 0.070 0.054 0.062 0.060

R16 Avg. 1.773 2.599 1.493 2.447 1.414 2.368 1.712 2.596 1.507 2.469 1.440 2.402
MSE 1.235 0.913 0.073 0.052 0.067 0.063 0.793 0.593 0.065 0.049 0.062 0.055

R17 Avg. 1.892 2.673 1.511 2.452 1.428 2.367 1.800 2.651 1.513 2.470 1.442 2.395
MSE 1.723 1.149 0.072 0.047 0.065 0.061 1.176 0.915 0.073 0.049 0.064 0.055

R18 Avg. 1.756 2.588 1.495 2.441 1.420 2.366 1.710 2.602 1.504 2.470 1.437 2.407
MSE 1.100 0.786 0.069 0.052 0.064 0.062 0.729 0.562 0.064 0.056 0.058 0.060

R19 Avg. 1.816 2.597 1.492 2.436 1.416 2.356 1.765 2.617 1.500 2.462 1.431 2.393
MSE 1.759 1.130 0.066 0.052 0.062 0.064 1.049 0.760 0.060 0.048 0.056 0.055

R20 Avg. 1.850 2.624 1.491 2.434 1.419 2.354 1.704 2.559 1.481 2.453 1.414 2.383
MSE 1.902 1.213 0.059 0.038 0.082 0.074 1.071 0.835 0.058 0.048 0.056 0.056

© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 6, 1033-1046 (2023) / www.naturalspublishing.com/Journals.asp 1043

Table 5.a: Average interval lengths and CPs(in%) of the ML and BEs for MOEE distribution with α = 1.5 and λ = 2.5 under different

censoring schemes and sample size n = 50

m Sch. α̂ λ̂ α̃SE λ̃SE α̃L λ̃L α̂ λ̂ α̃SE λ̃SE α̃L λ̃L

4 CT-I = (0.05, 0.15, 0.25, 0.50) CT-II = (0.10, 0.30, 0.50, 1.00)

R1 AIL 5.739 5.718 0.975 0.759 0.901 0.733 4.220 3.599 1.051 0.832 0.948 0.799
CP 92.3 95.2 95.1 95.9 94.5 95.0 92.9 95.1 95.6 95.0 94.7 95.1

R2 AIL 6.261 6.073 1.048 0.672 0.957 0.635 4.531 4.140 1.008 0.861 0.904 0.820
CP 93.3 96.3 96.1 95.6 96.1 95.8 93.2 94.9 95.9 95.0 95.6 95.2

R3 AIL 6.766 6.521 1.046 0.674 0.968 0.636 4.834 4.704 0.933 0.794 0.841 0.751
CP 93.9 96.1 96.6 95.0 96.9 95.3 93.2 95.7 94.7 93.9 94.4 96.3

R4 AIL 8.015 7.526 1.013 0.629 0.947 0.599 6.266 6.146 1.032 0.694 0.935 0.651
CP 93.3 96.8 94.8 96.4 95.8 95.8 93.8 95.8 95.3 95.6 95.8 95.4

R5 AIL 6.213 6.051 0.996 0.663 0.889 0.623 4.506 4.008 1.048 0.874 0.949 0.830
CP 93.9 96.6 95.0 96.0 95.8 95.7 92.6 94.3 94.7 94.8 94.8 95.4

R6 AIL 6.835 6.310 1.019 0.717 0.924 0.682 4.640 4.397 1.073 0.876 0.959 0.823
CP 93.5 95.7 95.4 95.9 95.0 95.6 93.8 94.8 94.2 94.4 94.0 94.4

R7 AIL 8.205 7.117 1.045 0.699 0.939 0.656 5.323 5.346 0.998 0.774 0.903 0.729
CP 93.0 96.2 96.0 95.6 96.0 95.6 92.1 94.1 94.7 95.3 94.6 95.1

R8 AIL 6.290 6.139 0.989 0.672 0.933 0.645 4.538 4.243 0.972 0.783 0.880 0.746
CP 93.4 96.4 94.3 95.1 94.4 95.7 93.4 95.5 94.9 95.9 94.8 96.1

R9 AIL 6.806 6.620 0.954 0.626 0.904 0.597 5.056 4.941 0.963 0.741 0.870 0.704
CP 92.9 96.4 95.3 95.6 96.0 95.5 92.4 94.2 96.0 95.5 95.2 95.2

R10 AIL 8.630 7.722 0.990 0.597 0.919 0.571 5.616 5.663 0.935 0.704 0.855 0.667
CP 93.6 95.2 95.4 94.9 95.5 95.1 93.5 96.1 94.6 94.2 94.4 94.2

5 CT-III = (0.05, 0.15, 0.25, 0.40, 0.60) CT-IV = (0.10, 0.30, 0.50, 0.75, 1.00)

R11 AIL 4.492 4.517 0.949 0.749 0.864 0.719 3.959 3.614 1.125 0.918 1.021 0.879
CP 93.4 96.0 94.6 94.7 94.0 95.2 93.0 95.4 94.8 94.9 95.2 94.7

R12 AIL 4.885 4.995 0.962 0.717 0.889 0.690 4.384 4.084 1.140 0.875 1.024 0.830
CP 92.6 95.4 95.1 94.7 95.4 94.2 92.3 95.0 95.9 96.9 95.9 95.3

R13 AIL 5.693 5.629 0.977 0.660 0.890 0.629 5.024 4.820 1.062 0.826 0.970 0.778
CP 93.4 96.0 94.3 95.2 96.1 96.1 92.9 94.4 95.5 95.0 95.5 94.9

R14 AIL 6.728 6.487 0.995 0.656 0.920 0.616 5.753 5.915 1.065 0.740 0.965 0.680
CP 92.9 96.0 95.7 95.0 95.8 94.7 92.6 94.9 95.8 94.5 95.1 94.6

R15 AIL 4.944 4.898 0.964 0.732 0.881 0.712 4.215 3.950 1.108 0.890 0.992 0.847
CP 92.5 95.5 96.1 95.1 95.9 95.0 93.2 95.8 95.5 95.7 95.4 95.4

R16 AIL 5.632 5.425 1.000 0.704 0.916 0.678 4.580 4.477 1.151 0.837 1.037 0.788
CP 92.5 95.7 95.1 95.4 95.2 95.3 93.1 95.4 94.8 95.7 95.3 95.5

R17 AIL 6.137 5.941 1.042 0.683 0.957 0.655 5.193 5.356 1.107 0.816 1.014 0.769
CP 93.3 95.9 95.4 95.8 95.6 95.0 92.8 95.0 95.7 95.0 94.4 94.6

R18 AIL 4.856 5.030 0.953 0.734 0.874 0.692 4.478 4.121 1.147 0.841 1.035 0.801
CP 93.1 95.3 94.7 96.1 95.5 95.9 91.9 94.7 95.3 95.0 95.6 94.3

R19 AIL 5.891 5.741 0.971 0.683 0.903 0.646 5.082 4.839 1.023 0.814 0.918 0.758
CP 92.4 95.2 95.3 94.3 95.1 94.3 93.5 94.9 94.7 94.7 94.7 94.5

R20 AIL 6.240 6.144 0.945 0.610 0.882 0.580 4.939 5.122 1.008 0.757 0.924 0.726
CP 93.0 96.5 96.4 95.0 96.1 95.2 93.0 95.1 94.9 94.5 95.6 94.7
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Table 5.b: Average interval lengths and CPs(in%) of the ML and BEs for MOEE distribution with α = 1.5 and λ = 2.5 under different

censoring schemes and sample size n = 100

m Sch. α̂ λ̂ α̃SE λ̃SE α̃L λ̃L α̂ λ̂ α̃SE λ̃SE α̃L λ̃L

4 CT-I = (0.05, 0.15, 0.25, 0.50) CT-II = (0.10, 0.30, 0.50, 1.00)

R1 AIL 4.030 4.115 0.864 0.714 0.793 0.683 2.875 2.530 1.059 0.944 0.974 0.919
CP 94.0 95.5 95.4 95.0 95.5 93.6 93.9 95.3 96.3 94.8 96.1 94.8

R2 AIL 4.105 4.460 0.849 0.707 0.778 0.671 3.050 2.819 1.051 0.906 0.968 0.871
CP 92.9 96.2 95.2 95.2 95.6 95.8 93.2 95.5 94.8 95.3 95.2 95.3

R3 AIL 4.268 4.939 0.847 0.637 0.788 0.609 3.453 3.268 1.026 0.883 0.938 0.849
CP 94.0 96.3 95.5 94.4 95.7 94.9 93.0 95.3 95.7 96.4 95.8 95.4

R4 AIL 4.792 5.582 0.817 0.633 0.749 0.600 3.877 4.118 0.932 0.800 0.846 0.759
CP 94.1 96.3 94.5 95.2 95.1 95.6 93.3 95.1 95.7 95.6 95.8 95.4

R5 AIL 4.053 4.413 0.875 0.648 0.806 0.622 2.986 2.739 1.007 0.920 0.925 0.892
CP 93.9 96.3 94.9 94.6 95.9 95.0 93.5 96.2 96.0 94.9 95.6 95.1

R6 AIL 4.399 4.809 0.848 0.679 0.784 0.657 3.231 3.055 1.106 0.928 1.011 0.892
CP 93.5 96.6 95.3 94.1 95.3 95.3 93.2 95.6 95.0 94.7 94.9 94.6

R7 AIL 4.630 5.310 0.919 0.632 0.857 0.614 3.470 3.574 1.034 0.921 0.941 0.880
CP 92.7 95.9 95.4 95.1 95.5 95.0 93.6 93.9 95.1 95.9 95.1 95.7

R8 AIL 4.187 4.504 0.895 0.683 0.826 0.663 3.114 2.885 1.060 0.877 0.981 0.849
CP 92.7 96.1 95.5 95.1 95.0 95.0 91.6 95.3 94.7 95.3 94.4 95.4

R9 AIL 4.459 5.081 0.852 0.643 0.786 0.613 3.525 3.459 1.041 0.850 0.958 0.816
CP 92.5 95.9 95.6 95.5 95.9 94.5 93.1 94.2 94.3 94.5 94.9 94.6

R10 AIL 5.018 5.816 0.834 0.624 0.813 0.621 4.029 4.085 0.933 0.745 0.850 0.724
CP 93.3 95.9 96.0 95.5 95.1 96.7 93.7 95.7 95.1 96.2 95.4 96.1

5 CT-III = (0.05, 0.15, 0.25, 0.40, 0.60) CT-IV = (0.10, 0.30, 0.50, 0.75, 1.00)

R11 AIL 3.378 3.170 0.979 0.897 0.888 0.869 2.829 2.524 0.997 0.824 0.924 0.803
CP 93.6 95.9 94.5 95.2 94.7 95.6 93.2 95.8 93.9 95.3 93.7 94.9

R12 AIL 3.559 3.490 1.023 0.854 0.926 0.821 3.022 2.839 1.013 0.862 0.931 0.833
CP 92.9 95.3 95.7 94.9 95.6 95.0 92.9 95.1 93.8 94.6 93.9 95.2

R13 AIL 3.679 3.985 1.009 0.818 0.914 0.784 3.489 3.335 0.986 0.830 0.904 0.807
CP 93.5 95.8 94.7 95.3 95.0 95.4 93.1 94.9 94.5 95.2 94.6 94.6

R14 AIL 4.394 4.811 0.963 0.748 0.875 0.705 4.028 4.314 0.959 0.703 0.885 0.661
CP 93.3 95.1 94.6 96.1 94.8 96.0 94.1 96.1 95.8 94.7 96.0 94.6

R15 AIL 3.510 3.433 1.024 0.864 0.931 0.835 3.081 2.762 1.001 0.908 0.924 0.883
CP 93.2 95.0 93.9 95.6 93.9 95.6 93.1 95.6 94.8 95.1 93.7 95.2

R16 AIL 3.794 3.795 1.053 0.864 0.951 0.820 3.312 3.115 0.996 0.847 0.927 0.820
CP 92.9 95.2 94.3 93.3 94.4 94.5 93.8 95.4 94.2 93.7 94.3 94.0

R17 AIL 4.228 4.325 1.040 0.786 0.942 0.755 3.712 3.709 1.038 0.844 0.949 0.803
CP 93.1 95.6 95.3 95.0 95.1 95.4 92.9 95.4 95.2 94.6 95.2 94.4

R18 AIL 3.635 3.527 1.004 0.835 0.915 0.801 3.172 2.882 0.982 0.924 0.902 0.888
CP 93.6 95.4 94.3 94.7 94.6 94.9 94.1 95.1 93.9 94.4 94.0 93.9

R19 AIL 3.952 4.073 1.005 0.841 0.910 0.796 3.607 3.420 0.938 0.868 0.866 0.835
CP 92.0 94.8 94.8 94.6 95.1 94.8 92.2 94.5 94.8 94.6 94.6 94.6

R20 AIL 4.278 4.714 0.943 0.694 0.860 0.666 3.570 3.596 0.945 0.845 0.870 0.811
CP 92.7 96.3 96.2 94.5 95.4 95.4 93.1 95.5 95.4 95.2 95.8 94.8
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