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Abstract—This paper develops an observer-augmented mul-
tistep model predictive control strategy with finite-control-set
principle to improve the robustness of the control loop against
disturbances, including external disturbances, parameter mis-
matches, and model uncertainties. The influence of the parameter
mismatches on the multistep finite-control-set model predictive
control is firstly discussed via simulations and quantified by
analyzing the probability of suboptimality. Furthermore, in order
to compensate for these effects, the disturbances are included
in the system model of the control problem as an extended
state and estimated with a disturbance observer. The estimated
disturbances as well as the system states are then delivered to the
optimization problem of the current control and incorporated
for the computation of the solution. The proposed method is
then implemented on a dSPACE system and tested under several
scenarios. The effectiveness of the proposal is validated with
experimental results.

Index Terms—ac drives, disturbance observer, finite control
set, model predictive control

I. INTRODUCTION

MODEL predictive control (MPC) was originally imple-
mented for the control of the process industry and have

been intensively studied since the 1970s [1]. Thanks to the
development of microprocessors as well as the advances in
numerical computation methods, MPC has regained attention
in the domain of power electronics with the response require-
ment of tens to hundreds of microseconds [2]. It serves as a
promising method for the control problem and can outperform
the conventional control methods in terms of the dynamic re-
sponse, the straightforward implementation for multi-variable
systems as well as for the nested cascaded control loops and
the inclusion of constraints [3].

Depending on the control objectives, MPC can be designed
as a current controller [4], a torque controller [5] or a speed
controller [6]. Because of the advantages of finite-control-set
MPC (FCS-MPC), e.g. the simple and straightforward imple-
mentation, the ability to handle system constraints and the
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simplicity to apply for multiple-input-multiple-output (MIMO)
systems [1], it has been deployed for various applications, such
as two-level voltage source inverters [7], three-level neutral
point clamped converters [8], cascaded H-Bridge inverters [9]
and modular multilevel converters [10], [11].

One of the main challenges of FCS-MPC is that solving the
underlying optimization problem is time consuming, especially
when the prediction horizon is long, i.e. longer than two steps.
Thus, the prediction horizon it set to one in most of the
previous works on FCS-MPC [7]. The single-step FCS-MPC
is conceptually simple and can be normally solved through
exhaustively searching all possible solutions. The number of
the voltage vectors can be reduced by using the deadbeat
solution [12] or the direct torque control (DTC) switching table
[13].

Comparing to the numerous works on single-step FCS-
MPC, the multistep FCS-MPC has received less attention due
to its heavy computational burden. However, it has been shown
in, e.g. [8], [14]–[16] that FCS-MPC with a long prediction
horizon can improve the control performance, especially for
high-order systems, e.g., electrical drives with LC filters
[14]. As shown, the torque ripple and the total harmonic
distortion (THD) of the current are significantly reduced with
a longer prediction horizon. In [17], the factors that affect
the performance of FCS-MPC are identified and discussed.
Subsequently, the guidelines for the design of FCS-MPC, e.g.
the choice of norm, the tuning of weighting factors, the length
of the sampling interval and of the prediction horizon, are
presented and analyzed in detail.

Besides the works focusing on the control algorithms, the
efficient implementation of FCS-MPC on real-time control
platforms has also been studied. For example, [18] imple-
mented a long-horizon FCS-MPC with the sphere decoder
on a field programmable gate array (FPGA). However, the
sphere decoding algorithm tends to have higher computa-
tional burden at the transient operation. In [19] and [20],
the modification of the initialization for the sphere decoding
algorithm has been proposed to solve this problem. In [19],
different initialization approaches for transient and steady-
state operation of medium voltage drives were implemented,
where the optimization problem is reformulated, in order to
obtain a new initial sphere for the sphere decoder during the
transient. A similar method was shown in [20]. Moreover, [21]
reduced the computational complexity of the sphere decoding
algorithm during the transient by computing a tighter sphere
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for the underlying optimization problem.
As it is indicated in [22], the performance of FCS-MPC,

being a proportional controller, can be adversely affected
by parameter variations. However, such variations during the
operation of the power electronic system, e.g., a variable
speed drive, are inevitable. For example, the resistance can be
affected by the temperature and the inductances are influenced
by the ferromagnetic saturation effect of the magnetizing field
[23]. In order to tackle this problem, some approaches have
been proposed. The min-max MPC computes the minimization
problem under the worst case of the control plant, which
is considered by computing the maximization problem [24].
The solution of the min-max MPC, however, is relatively
conservative and has high computational cost. [25] proposed
a Lyapunov-based MPC to guarantee the stability of the drive
system via an additional Lyapunov-function-based constraint.
In [26], an explicit integrator is added to the objective function
to reduce the average steady-state error. Moreover, model-
free techniques can also be applied to mitigate the problem
of parameter mismatches and disturbances, e.g. [27], [28], to
name but a few. Such methods do not require any information
of the motor parameters to realize the control. However, they
rely on the measurements and require significant time to obtain
the necessary information for control purposes.

Another widely applied technique is the implementation
of an observer. In [29], a parameter observer of the input
inductance and the input resistance was implemented to tackle
the adverse effect of model mismatches. [30] applied an
online parameter estimator to estimate the rotor resistance to
reduce the torque ripple. Nonetheless, the increased number
of the target parameters increases the complexity of the online
estimator. The disturbance observer is a promising method to
estimate the disturbances including the parameter variations as
well as the model uncertainty. An additional advantage of such
an approach is that the complexity of the observer can also be
mitigated [22]. [31] investigated disturbance observers for the
MPC and concluded that the implementation of a disturbance
observer can significantly improve the control performance
in terms of steady-state error and current harmonics. [32]–
[34] have implemented the disturbance observer to improve
the performance of the finite control set predictive torque
control for induction machines. [35] implemented the distur-
bance observer for improving the robustness of the deadbeat
predictive current control. However, few previous works have
investigated the influence of the parameter mismatches and the
model uncertainties on the multistep FCS-MPC. Moreover, a
systematic design and formulation of the disturbance-observer
augmented multistep FCS-MPC has not been discussed yet.

Motivated by the observations mentioned above, a distur-
bance observer is deployed to identify the errors caused by the
parameter mismatches and the model uncertainties. The main
contributions of this paper can be summarized as follows.

1) This paper firstly investigates the influence of the param-
eter mismatches on multistep FCS-MPC. To this aim, the
influence of parameter mismatches on the unconstrained
solution to the multistep FCS-MPC problem is examined.
As shown, multistep FCS-MPC has an inherent mecha-
nism to increase its robustness to parameter mismatches

owing to the fact that it directly accounts for the switching
nature of the power electronic system. Notwithstanding
the foregoing, a probabilistic analysis is presented to
show that parameter mismatches can still deteriorate
the performance of the system as they can affect the
complete and—to a lesser degree—the applied optimal
solution, especially as the length of the prediction horizon
increases.

2) To address the observed issues and enhance the robust-
ness of the controller, the system model is augmented
with a disturbance term that accounts for the disturbances,
including external disturbances, parameter mismatches
and model uncertainties. Subsequently, a Kalman filter
is designed to estimate the aforementioned disturbance.

3) The estimated state is used in the underlying optimization
problem to enhance the robustness of multistep FCS-
MPC. As demonstrated with the presented experimental
results with an induction motor drive system, the pro-
posed scheme provides high robustness to parameter vari-
ations, model inaccuracies, etc., thus achieving superior
steady-state and transient performance.

The remainder of this paper is organized as follows. In
Section II, the model of the induction motor and the principle
of multistep FCS-MPC are introduced. In Section III the
effects of the parameter mismatches on multistep FCS-MPC
are analyzed with simulations. The probability of obtaining
a suboptimal solution for the multistep FCS-MPC problem
under the existence of parameter mismatches is also presented.
Moreover, the augmented system and the general formulation
of the optimization problem for direct current control of IM
are given. In Section IV, the proposed method is verified with
experimental results and compared with the conventional mul-
tistep FCS-MPC under the parameter mismatches. Moreover,
the transient performance of the discussed methods is further
compared, including a load-step test and a speed-step test.
Conclusions are drawn in Section V.

II. PROBLEM STATEMENT

A. Induction Motor

The state variables for the current control of a squirrel-cage
induction machine are chosen as the stator current is and the
rotor flux ψr. The corresponding state-space formulation of an
IM in the αβ reference frame is given in the continuous-time
domain as

ẋ = Ac x+Bc vs , (1)

with x =
[
iTs ψT

r

]T
and

Ac =


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 ,
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σ 0
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0 0
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 . (2)
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where σ = LrLs − L2
m. Lr, Ls and Lm denote the rotor

inductance, the stator inductance and the mutual inductance,
respectively. Rs represents the stator resistance. Rr is the rotor
resistance. ωr denotes the angular speed of the rotor.

B. Multistep Finite-Control-Set MPC

Multistep FCS-MPC relies on the system model and solves
an optimization problem for the reference tracking based
on predictions of the system state. The system (1) can be
discretized with the forward Euler method or the exact dis-
cretization, and is rewritten for the purpose of compactness
as

x(k + 1) =Ad x(k) +Bd vs(k) ,

y(k) =Cd x(k) .
(3)

The principle of the multistep FCS-MPC for the current
control of the IM at the time step k is to solve an optimization
problem Ω, which can be written without loss of generality as
follows [36]

minimize
U(k)

J

subject to x(j + 1) = Ad x(j) +Bd Tc u(j) , (4)
u(j) ∈ U× U× U ,

where j = k, k + 1, . . . , k + Np − 1. Tc represents the
simplified Clarke transformation, which transforms the quan-
tities from the three-phase system into the two-phase system.
u denotes the three-phase switch position of the system, i.e.
u = [ua ub uc]

T . yr is the reference current and U denotes
the sequence of solutions for the optimization problem in (4).
It can be written as U(k) := [u(k)T u(k + 1)T . . .u(k +
Np − 1)T ]T . The cost function J of (4) is designed such that
a tradeoff between the accuracy of reference tracking and the
switching effort is created. It can be formulated as

J =

k+Np−1∑
j=k

∥yr(j+1)−Cd x(j+1)∥22+λ∥u(j)−u(j−1)∥22 ,

(5)
where λ is the weighting factor to proceed the tradeoff. For
multistep FCS-MPC problem, the control input constraint U
denotes the possible switching actions of the three phases and
is given in the following for the two-level inverters

U := {0, 1} . (6)

Each value in U represents the output voltage of inverter as 0
and Udc, respectively.

The optimization problem Ω in (4) is a mixed-integer
quadratic programming problem. The most straightforward
way to solve it is via exhaustive search, which enumerates
all possible switching combinations and evaluates the cost
function accordingly. It is efficient and suitable for a short
prediction horizon. However, the computational complexity
of the exhaustive search grows exponentially in the worst-
case with the prediction horizon Np. In order to tackle this
problem, several works have been carried out [15], [36]. In

Fig. 1: Comparison of solutions of (4) between the scenarios with and without
the Lm mismatch. The empty circles denote all the switching candidates V .
The filled diamonds represent the unconstrained solution Uunc and the filled
circles depict the solution U∗. The superscript .̄ denotes the quantities in the
nominal system without the parameter mismatch, which is shown in blue. The
quantities in the disturbed system are presented in green.

this paper, the modified sphere decoding algorithm from [36]
is implemented, where the solution of (4) is obtained with

U∗ = arg min
U(k)

∥HU(k)−Uunc(k)∥22 , (7)

where H is the generator matrix, which forms the search space
for Ω. Its computation is then shown in the following section.
Uunc(k) = HUo

unc(k), where Uo
unc(k) is the solution of (4)

omitting the constraint U.

III. PROPOSED OBSERVER-AUGMENTED MULTISTEP
FCS-MPC STRATEGY

The discrete nature of multistep FCS-MPC can alleviate the
effects of the disturbances to a certain level. The disturbances,
incorporating the parameter variations, the external distur-
bances and the unmodeled uncertainties, do not necessarily
affect the solution of the optimization problem of multistep
FCS-MPC. Nonetheless, the unconstrained solution Uunc will
be heavily influenced by the disturbances, which may lead
to a suboptimal solution for the problem (4). However, the
discrete nature of FCS-MPC impedes the analysis as well as
the quantification of these effects. Hence, these are discussed
in this section with the help of simulations.

A. Influence of the Parameter Mismatch on multistep FCS-
MPC

Several simulations were carried out to indicate the effects
of the parameter mismatches on the solution of the optimiza-
tion problem (4) and the control performance of the multistep
FCS-MPC for IM. The multistep FCS-MPC is designed such
that the switching frequency is in the range of a few kHz. The
solutions to the optimization problem in (4) with and without
the parameter mismatch of Lm is compared and shown in Fig.
1.
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In order to differentiate the optimization problem for the
nominal system and the system with parameter mismatch of
Lm, Ω̄ and Ω are deployed to represent them, respectively.
The unconstrained solutions Ūunc and Uunc have a slight
difference, which can be observed in Fig. 1. The sphere deter-
mined by Ūunc as the circle center and Ū∗ is larger than that
of the optimization problem Ω, which is not necessarily true
for all working points of IM. In spite of the small difference
between the unconstrained solutions Ūunc and Uunc, different
final solutions, i. e. U∗ and Ū∗, are found for Ω̄ and Ω.

B. Probability of Suboptimal solution under the Parameter
Mismatch

The integer characteristic of FCS-MPC impedes the quan-
tification of the effects from the disturbances. Simulations
on the admissible region of iα and iβ regarding different
parameter variations have been conducted, in order to study
the incidence of the varied solutions. The prediction horizon
Np is an important parameter for multistep FCS-MPC. There-
fore, the probabilities of suboptimal solutions with different
prediction horizons varying from Np = 1 to Np = 10 have
been evaluated. The simulations were conducted in various
operating points ranging from the no-load condition to the
full-load condition with a step of 10% of the rated torque.

The results of obtaining a suboptimal U(k) and a subopti-
mal u(k) are summarized in Fig. 2 and in Fig. 3, respectively.
Since the similar phenomenon can be observed between Lσr

(rotor leakage inductance) and Lσs (stator leakage inductance)
as well as between Rr and Rs, the simulation results of
Lσr, Rr and Lm are selected and presented. The probabilities
shown in Fig. 2 and in Fig. 3 are defined as the ratio
between the number of incidents with the suboptimal solutions
(different from the solutions in the nominal condition) and the
number of all simulations. The simulation results of rp = 50%
and of rp = 200% are also analogous, where rp is the ratio
for adapting the parameter of interest in the controller and is
defined by

rp =
pc
pm

× 100% , (8)

where pc is the parameter utilized in the controller and pm is
the nominal parameter of the IM.

As it is shown in Fig. 2, the probability P of obtaining the
suboptimal U(k) increases with the prediction horizon Np,
which can be explained by the fact that the existing model
errors accumulate as the the prediction horizon Np grows.

The probability of applying a suboptimal solution u(k) to
the inverter is also studied, since only the first element of
U(k) is applied for the control. The results are shown in
Fig. 3. It is worth mentioning that a relative lower probability
of suboptimality can be observed at the cases where the
prediction horizon is selected as 1, 2 and 5. In all parameter
variation scenarios, Np = 3 has the highest probability to
select the suboptimal solution.

C. Augmented System Model
In order to tackle the problem caused by the disturbances,

such as external disturbances, model uncertainties, and param-
eter mismatches, a disturbance observer (DOB) is deployed to
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Fig. 2: Probability of choosing different U(k) to the nominal condition
considering different Np and various parameter variations. (a) denotes the
influence of Lσr with rLσr = 50%. (b) represents the effects from Lm

with a ratio of 50%. (c) shows the influence of Rr , where rRr = 50%.

estimate the disturbance ϵ. The augmented model of an IM
for the disturbance observer can be written as

[
x(k + 1)
ϵ(k + 1)

]
=

[
Ad (I 0)T

0 I

]
︸ ︷︷ ︸

:=Aa
d

[
x(k)
ϵ(k)

]
+

[
Bd

0

]
︸ ︷︷ ︸
:=Ba

d

vs(k) ,

y(k) =
[
Cd 0

]︸ ︷︷ ︸
:=Ca

d

[
x(k)
ϵ(k)

]
,

(9)

where x ∈ R4×1, ϵ ∈ R2×1,Aa
d ∈ R6×6,Ba

d ∈ R6×2,Ca
d ∈

R2×6. As it is concluded in [37], a Kalman filter (KF)
can obtain relatively accurate estimation results and has tol-
erable computational burden for estimating slowly varying
parameters. Therefore, a KF is employed for estimating the
disturbances ϵ. A KF consists of two steps. The first step is
the prediction, which predicts the system propagation based
on the system dynamics. The second step is the update, which
corrects the prediction with the most recent measurement. The
computation procedure of KF for the system (9) at the time
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Fig. 3: Probability distribution of choosing different u(k) to nominal condi-
tion for different Np and various parameter mismatches. (a)-(c) denote the
influence of Lσr , Lm and Rr with a ratio of 50%, respectively.

step k can be written as

Prediction:
x̂k|k−1 = Aa

d,k−1x̂k−1|k−1 +B
a
duk−1 (10)

Pk|k−1 = Aa
d,k−1Pk−1|k−1A

a
d, k−1

T +Q

Update:
ỹn = yn −Ca

d x̂k|k−1

Sn = Ca
dPk|k−1C

a
d
T +R

Kn = Pk|k−1C
a
d
TS−1

n (11)
x̂k|k = x̂k|k−1 +Knỹn

Pk|k = (I −KnC
a
d )Pk|k−1

where Q and R denote the covariance matrices of the system
and measurement noise, respectively.

D. Multistep FCS-MPC with Increased Robustness

The complete block diagram of the proposed observer-
augmented multistep FCS-MPC control strategy is shown in
Fig. 4. As can be seen, the proposed multistep FCS-MPC algo-
rithm consists of the Kalman-filter based disturbance observer
and the multistep FCS-MPC algorithm that accounts for the
disturbances. Firstly, the three-phase current is measured at
time step k and transformed into the αβ reference frame.

Proposed Control

FCS-MPC

DOB

VSI

abc

αβ

IM

Load

i∗ u∗(k)

ωr

u∗(k − 1)

ϵ̂ ψ̂r î i

Fig. 4: The proposed augmented FCS-MPC control strategy for the induction
motor drive systems.

With i(k), the previously applied switch position u(k − 1)
and the measured motor speed, the estimated values, i.e. îs,
ψ̂r and ϵ̂ are computed based on the steps described in (10)
and (11). Subsequently, the estimated system states îs, ψ̂r and
ϵ̂ are delivered to the multistep FCS-MPC scheme in order to
compute the optimal three-phase switch position at step k,
i.e. u∗(k). To do so, problem (4) needs to be reformulated.
Specifically, with the help of (9), problem (4) becomes

minimize
U(k)

J

subject to x̂(j + 1) = Ad x̂(j) +Bd Tc u(j) + (I 0)T ϵ̂(j) ,

u(j) ∈ U× U× U ,
(12)

where

J =

k+Np−1∑
j=k

∥yr(j+1)−Cd x̂(j+1)∥22+λ∥u(j)−u(j−1)∥22 .

(13)
The cost function can be reformulated in a compact form as

J = θ(k) + 2(Θ(k))TU(k) + ∥U(k)∥2M , (14)

where

θ(k) :=∥Yr − Γ x̂(k)−Ξ ϵ̂(k)∥22 + λ∥Eu(k − 1)∥22 ,

Θ(k) :=((Yr − Γ x̂(k)−Ξ ϵ̂(k))T Υ− λ(Eu(k − 1))TS)T ,

M :=ΥTΥ+ λSTS ,

where M = HTH. Yr := [yr(k)
T yr(k + 1)T . . . yr(k +

Np−1)T ]T denotes the Np replicates of yr and Yr ∈ R2Np×1.
The matrices Γ ∈ R2Np×4, Ξ ∈ R2Np×2, Υ ∈ R2Np×3Np ,
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S ∈ R3Np×3Np and E ∈ R3Np×3 are given in the following

Γ =


CdAd

CdAd
2

...
CdAd

Np

 , S =


I 0 . . . 0
−I I . . . 0
0 −I . . . 0
...

...
. . .

...
0 0 . . . I

 , E =


I
0
0
...
0

 ,

Υ =


CdBdTc 0 . . . 0
CdAdBdTc CdBdTc . . . 0

...
...

. . .
...

CdAd
Np−1BdTc CdAd

Np−2BdTc . . . CdBdTc

 ,

Ξ =


Cd(I 0)T

(CdAd +Cd)(I 0)T

...
(CdAd

Np−1 +CdAd
Np−2 + . . .+Cd)(I 0)T

 .

As a result, the optimization problem for the proposed control
strategy can be compactly written as an integer least-squares
(ILS) problem of the form

U∗(k) = arg minimize
U(k)

∥HU(k)−Uunc(k)∥22 ,

subject to u(j) ∈ U× U× U ,

j = k, · · · , k +Np − 1 ,

(15)

where Uunc(k) = −HM−1Θ(k). Subsequently, problem
(15) can be solved with the sphere decoding algorithm [36].
The complete procedure of the proposed method is given in
Procedure 1.

Procedure 1 Multistep FCS-MPC with Increased Robustness

1: Measure the current and speed.
2: Compute the estimates based on the aforementioned mea-

surements, via (10) and (11).
3: Include the estimation results for the optimization problem

in (15).
4: Solve the optimization problem in (15) with the sphere

decoder.
5: Obtain the optimal sequence U∗(k).
6: Apply the optimal three-phase switch position u∗(k).

E. Stability Analysis

The closed-loop stability of power electronic systems con-
trolled with multistep FCS-MPC has been discussed in works,
such as [38] and [39]. However, the stability analysis is limited
to systems that do not account for external disturbances, model
uncertainties, etc. Therefore, in the following, the stability
analysis for the system controlled with the proposed approach
is given.
By assuming Np = 1, the cost function in (12) can be written
as1

J = ∥∆y(k+1)−κTc ∆u(k)+e(k)−ϵ̂(k)∥22+λ∥∆u(k)∥22 .
(16)

1Note that extension of the following analysis to longer horizons, although
laborious, is straightforward.

TABLE I: Parameters of the IM

Parameter Symbol Value

Rated current IN 4.61 A

Rated speed wmN 2840 rpm

Rated power PN 2.2 kW

Rated torque TN 7.4 Nm

Number of pole pairs np 1

Nominal stator resistance Rs 2.8225 Ω

Nominal rotor resistance Rr 2.2684 Ω

Nominal stator inductance Ls 243.6 mH

Nominal rotor inductance Lr 243.6 mH

Nominal mutual inductance Lm 233.8 mH

where

∆y(k + 1) = yr(k + 1)−CdAd x(k)

−CdBd Tc u(k − 1) ,

e = CdAd (x(k)− x̂(k)) ,
(17)

and κ denotes the diagonal elements of CdBd, since the
matrix (CdBd) ∈ R2×2 is approximately diagonal [39]. By
applying the analysis given in [39], the cost function can be
written as2

J = κ2 ∆uT T T
c Tc ∆u− 2κ (∆y + e− ϵ̂)T Tc ∆u

+ λ∆uT ∆u+ ∥∆y + e− ϵ̂∥22
= ∥∆u+M−1N∥2M + c ,

(18)

where
M = κ2 ∆T T

c Tc + λ I ,

N = −
[
κ (∆y + e− ϵ̂)T Tc

]T
,

c = ∥∆y + e− ϵ̂∥22 −NTM−1N .

(19)

As shown in [40], the estimation error e with KF is exponen-
tially bounded and the estimates converge in a mean-square
manner. Based on the above, and since problem (12) is a
quadratic program with the integer optimization variable U, it
can be concluded that the practical stability of the system is
guaranteed, as shown in [39].

IV. EXPERIMENTAL EVALUATION

The proposed method is validated with experiments. The
experimental setup of the drive system is shown in Fig. 5.
The proposed control strategy and the conventional multistep
FCS-MPC are implemented on a dSPACE SCALEXIO real-
time system, in order to evaluate their performance under the
existence of parameter mismatches and test the performance
of the proposed strategy during transient. The block diagram
of the experimental setup is shown in Fig. 6. The dSPACE
SCALEXIO Unit consists of one processor unit (Intel XEON
E3V6 CPU, 3.8GHz, 4 cores), one FPGA board (Xilinx
Kintex-7 160T), one analog-to-digital conversion (ADC) board
(DS6221) and one digital IO board (DS2655M2). All the
algorithms are implemented in the CPU. The CPU mini-
mum processing time (including communication and ADC

2Note that in the following expressions the time indication has been dropped
to simplify the notation.
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A B C

D

E

F G

Fig. 5: Setup of the electrical drives test bench. A: SEW Inverter for IM, B:
Danfoss Inverter for load PMSM, C: dSPACE SCALEXIO real-time control
system, D:Interface, E: Oscilloscope, F: IM, G: PMSM

Fig. 6: Block diagram of the experimental setup.

conversion time) is 8 µs. The sampling frequency is set to
fs = 10 kHz. The gating signals are generated by the dSPACE
DS2655 FPGA board, which has a device timing of 125MHz.
The gating signals are sent from the dSPACE to a three-
phase two-level SEW MDX inverter. The ADC is performed
by the dSPACE DS6221 A/D board, which has a minimum
conversion time of 250 ns. The DC-link voltage dc-link voltage
is fixed to a value of around 560V.The rotor position is
acquired with a 1024-ppr incremental encoder. The parameters
of the investigated induction motor are given in Table. I.
The IM is coupled with a permanent magnet synchronous
motor rated 2 kW, 6Nm. The KF is employed to estimate the
disturbance and the current, of which the measurement noise
covariance matrix was selected as the identity matrix and the
process noise covariance matrix was set as a diagonal matrix
such that the elements are around 10% of the individual state
value. More comments on the design of the estimators can be
found in [41]. The outer control loop, i.e. the speed loop, is
designed based on a proportional-integral (PI) controller and
was configured with the control parameters computed from
the symmetric optimum, resulting in the proportional gain

kp = 2.2359, and the integration gain ki = 0.1133.

A. Performance under Parameter Mismatches for Np = 1

The proposed control strategy is compared with the conven-
tional multistep FCS-MPC under the existence of parameter
mismatches. Firstly, their performances with Np = 1 are
compared. The average switching frequency fsw shown in this
section is computed with

fsw =
1

mM Ts

M∑
j=1

∥u(j)− u(j − 1)∥1 , (20)

where m is the number of the switches and M is the length of
the averaged window. The IM runs at 50% of the rated speed.
The proposed control strategy was activated at t = 2 s. The
corresponding experimental results, including measurements
on the currents and the switching frequency fsw, are shown
in Fig. 7.

As it is shown in Fig. 7, an obvious steady-state error
can be observed before t = 2 s in all scenarios, especially
at rLm = 150% shown in Fig. 7g and Fig. 7h, where
large ripples and control bias can be observed. After the
activation of the proposed control strategy, the steady-state
error is considerably alleviated. At the nominal condition and
rLm

= 67%, the proposed control strategy reaches the new
steady state immediately after the activation. At rLm = 150%,
the transient after the activation lasts longer. Moreover, the
switching frequency has significantly reduced in all test cases
after switching to the proposed method.

B. Performance under Parameter Mismatches for Np = 5

The proposed control strategy is further tested for Np = 5
and compared with the conventional multistep FCS-MPC. The
experimental results are shown in Fig. 8. It is worth mentioning
that larger ripples than the results under the control with Np =
1 can be observed, which may result from the lower switching
frequencies. After activating the proposed method, the bias that
can be noticed under the control of the conventional multistep
FCS-MPC is effectively mitigated. Moreover, smaller current
ripples can be observed at rLm

= 100% and rLm
= 150% with

the proposed controller, even though the switching frequencies
are lower. Similar to the conclusions drawn for the case where
Np = 1, the transient of the activation lasts only a short
time and the system reaches the new steady state promptly.
Moreover, the estimated disturbances under rLm

= 67% and
rLm

= 150% with Np = 1, Np = 5 are shown in Fig. 9 and
Fig. 10, respectively.

C. Comparison of the Total Demand Distortion

The total demand distortion (TDD) is an essential indica-
tor for evaluating the performance of multistep FCS-MPC.
Therefore, the TDD from the previous tests is investigated.
Moreover, since the proposed method has different switching
frequencies from the conventional multistep FCS-MPC during
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Fig. 7: Comparison of the conventional FCS-MPC and the proposed control strategy with Np = 1 under the parameter variation of Lm. The proposed
control strategy is activated at t = 2 s. (a)-(c) show the experimental results under rLm = 67%. (d)-(f) denote the performance of the controllers in nominal
condition. (g)-(i) represent the results with rLm = 150%.
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Fig. 8: Comparison of the conventional FCS-MPC and the proposed control strategy with Np = 5 under the parameter variation of Lm. The proposed control
strategy is activated at t = 2 s. (a)-(c) show the experimental results under rLm = 67%. (d)-(f) denote the performance of the controllers in nominal situation.
(g)-(i) represent the results with under rLm = 150%.
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(a) Np = 1

(b) Np = 5

Fig. 9: The estimated disturbance ϵ̂ in the αβ reference frame under the
parameter mismatch of rLm = 67%, as shown in Fig. 7 and Fig. 8 for (a)
one-step (Np = 1) and (b) five-step (Np = 5) FCS-MPC.

(a) Np = 1

(b) Np = 5

Fig. 10: The estimated disturbance ϵ̂ in the αβ reference frame under the
parameter mismatch of rLm = 150%, as shown in Fig. 7 and Fig. 8 for (a)
one-step (Np = 1) and (b) five-step (Np = 5) FCS-MPC.

the aforementioned tests, the TDD of the conventional multi-
step FCS-MPC with a comparable switching frequency is also
assessed. The corresponding TDD is computed by means of

TDD =
1√
2 IN

√∑
j ̸=1

i2s, j . (21)

The TDD values from various test cases are computed and
summarized in Fig. 11.

The parameter variation has influence on the solution of the
control problem and can further affect the switching frequency.
Therefore, the TDD of multistep FCS-MPC with similar
switching frequency to the proposed method is investigated
for the purpose of a fair comparison and shown in Fig. 11. It
can be concluded that the proposed method has lower TDDs
than the conventional multistep FCS-MPC with a similar or
even a much higher switching frequency.

D. Performance under the Load Step

The transient performance of the proposed control strategy
is tested under a load step from the no-load condition to the
full-load condition, which is given at t = 0.5 s and a load step
back to the no-load condition at t = 1 s.

(a) Np = 1 (b) Np = 5

Fig. 11: Comparison of TDDs at the steady state of the IM. The TDD of
the conventional FCS-MPC with the switching frequency shown in Fig. 7
(Np = 1) and Fig. 8 (Np = 5) is shown in blue. The TDD of the proposed
method is denoted by red. The TDD of the conventional FCS-MPC at a similar
switching frequency to the proposed method is given in yellow.

Fig. 12: Performance of the conventional FCS-MPC with Np = 5 during
transient of the load step.

A steady-state error can be observed in Fig. 12 from t = 0 s
to t = 0.5 s, where the conventional multistep FCS-MPC is
applied. It can be explained by the fact that the parameters in
Table I can be different from the real motor parameters and the
compensation of the digital delay may be inaccurate. After the
first load step, the conventional multistep FCS-MPC reaches
the new steady state after around 0.25 s. Moreover, a small
offset can be noticed at the new steady state. After the second
step, the currents still converge slowly towards their desired
values, while a noticeable steady-state error still exists.

Fig. 13: Performance of the proposed method with Np = 5 during transient
of the load step.
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Fig. 14: Stator current harmonic spectra for (a) the conventional FCS-MPC
and (b) the proposed method.

In comparison to the previous results with the conventional
multistep FCS-MPC, the proposed method shows more accu-
rate tracking results and converges to the desired reference
value immediately after the steps. Especially after the step
t = 1 s, the proposed method outperforms the conventional
multistep FCS-MPC regarding the tracking ability during both
steady state and transients. More specifically, obvious steady-
state errors can be observed with conventional multistep FCS-
MPC, i.e. around 30% of id and up to 25% on the q-coordinate
of the full load current. In contrast to that, the proposed method
eliminates the steady-state errors. It is worth mentioning that
the switching frequency remains relatively constant when the
proposed method is utilized, which could be explained by the
fact that thanks to the inclusion of the estimated disturbance
term ϵ̂, the motor parameter variation caused by the torque
step is fully compensated for.

For a deeper insight in the proposed method, the current
harmonic spectra from the steady-state operating point in Fig.
12 and Fig. 13 from t = 0.5 s to t = 1 s, i.e. id = 0.2 p.u.
and iq = 1 p.u., are shown in Fig. 14. The harmonic content
is computed in the per unit system. In both harmonic spectra,
significant harmonic energy around the switching frequency
can be noticed. However, the proposed method has smaller
harmonic content around the switching frequency. Compared
to the conventional multistep FCS-MPC, it can be observed
that the harmonic energy of the proposed method is lower, as
also quantified by the TDD which is around 17%, as opposed
to the TDD of conventional multistep FCS-MPC which is more
than 25%. Moreover, as can be seen in Fig. 14, the harmonic
energy at low frequencies is lower, implying that it could be
easier filtered out, if needed.

E. Performance under the Speed Step

The transient behavior of the proposed method is further
tested under a speed step from 300 rpm to the rated speed.
The speed step was given at t = 0.5 s. The turnaround times
of the conventional multistep FCS-MPC and the proposed
method are recorded and denoted in the figures as TAT . The
corresponding results are shown in Fig. 15 and Fig. 16.

It can be observed from Fig. 15 and Fig. 16 that the
proposed method improved the tracking accuracy in a wide
range speed values, both on the d- and q-axis. Thanks to
the inclusion of the disturbance state in the system model,

Fig. 15: Performance of the conventional FCS-MPC with Np = 5 under a
step-up change in the speed reference.

Fig. 16: Performance of the proposed method with Np = 5 under a step-up
change in the speed reference.

the disturbance observer can effectively address the mismatch
caused by the wrong speed applied in the prediction model
and avoid any steady-state error. Even though, comparing with
conventional multistep FCS-MPC, the proposed method has
an additional disturbance observing mechanism, the execution
time, which is evaluated by the turnaround time, does not
apparently increase. On the contrary, the turnaround time is
reduced at the low-speed operation (before t = 0.5 s).

F. Evaluation of the Computational Burden

In order to better demonstrate and compare the computa-
tional burden of both methods, the number of visited nodes
by the sphere decoding algorithm and the turnaround time are
evaluated regarding various prediction horizons. The experi-
mental results are shown in Fig. 17. As can be seen in that
figure, the proposed method has comparable computational
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(a) (b)

Fig. 17: Computational burden of the conventional FCS-MPC and the pro-
posed method in relationship with the prediction horizon Np. (a) represents
the number of visited nodes by the sphere decoding algorithm and (b) shows
the turnaround time (TAT ) of the respective control algorithms

.

complexity with that of conventional multistep FCS-MPC.
Moreover, it is worth noting that the average computational
cost of the proposed algorithm is smaller than that of conven-
tional multistep FCS-MPC, a difference which becomes more
evident as the length of the horizon increases.

V. CONCLUSION

In this paper, an observer-augmented multistep FCS-MPC
control strategy is proposed, which improves the controller
robustness against disturbances for an IM drive system, includ-
ing external disturbances, parameter mismatches and model
uncertainties. As it is shown in the simulations, the parameter
mismatch problem will not necessarily affect the solution of
the conventional multistep FCS-MPC. But its influence is not
negligible. Besides, because of the optimization problem is
built on the system dynamics of the nominal system, the
error caused by the disturbances accumulates with the increase
of the prediction horizon. The proposed method estimates
the disturbances resulted from the parameter mismatches and
the unmodeled uncertainties with a disturbance observer. The
estimation results, including the system states and the distur-
bances, are delivered to the controller to compute the switching
sequence. As a result, the flux observer of the conventional
multistep FCS-MPC for the current control in IM is omitted.

The proposed method is compared with the conventional
multistep FCS-MPC at the steady state and outperforms it in
terms of tacking accuracy and the total demand distortion of
the current. Moreover, the proposed method is tested under
the load step and shows a better transient performance. It also
shows better tracking accuracy under the speed-step test. After
the analysis of the harmonic spectra, it can be concluded that
the proposed method has different harmonic distribution to
the conventional method. More specifically, it has a smaller
harmonic content around the switching frequency and at low
frequencies. The execution time of the proposed time is also
evaluated with the turnaround time and the visited nodes as
metrics. As shown, the computational burden of the proposed
control strategy is similar to that of conventional multistep
FCS-MPC in terms of the worst-case scenario, and less on
average, especially as the horizon increases.
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