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Abstract—Control of multi-phase machines is a challenging
topic due to the high number of controlled variables. Conven-
tional control methods, such as field-oriented control (FOC),
address this issue by introducing more control loops. This,
however, increases the controller design complexity, while the
tuning process can become cumbersome. To tackle the above, this
paper proposes a deep deterministic policy gradient algorithm
based controller that fulfills all the control objectives in one
computational stage. More specifically, the proposed approach
aims to learn a suitable current control policy for six-phase
permanent magnet synchronous machines to simplify the com-
missioning of the drive system. In doing so, physical limitations of
the drive system can be accounted for, while the compensation of
imbalances between the two three-phase subsystems is rendered
possible. After validating the training results in a controller-
in-the-loop environment, test bench measurements are provided
to demonstrate the effectiveness of the proposed controller.
As shown, favorable steady-state and dynamic performance is
achieved that is comparable to that of FOC. Therefore, as
indicated by the presented results, reinforcement learning-based
control approaches for multi-phase machines is a promising
research area.

Index Terms—Multi-phase machines, current control, perma-
nent magnet synchronous machine (PMSM), power electronics,
deep reinforcement learning, deep deterministic policy gradient
(DDPG)

I. INTRODUCTION

Permanent magnet synchronous machines (PMSMs) em-
ploying a multi-phase winding configuration have attracted
considerable attention due to their fault-tolerant operating
capabilities. As a result, they are increasingly used in applica-
tions where reliability is crucial, such as autonomous driving
or more-electric aircraft.

However, the control of multi-phase PMSMs is considerably
more complex than that of conventional three-phase machines.
Vector space decomposition (VSD) is a common approach for
modeling the machine [1], resulting in three subsystems for
a six-phase PMSM. Based on the developed system model,
a model-based control, such as field-oriented control (FOC),
is a typical current control approach for six-phase PMSMs.
Such a control scheme, however, requires additional control
loops to account for imbalances or to compensate for the
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dominant harmonics [2], [3]. As a result, the controller de-
sign complexity increases, and the tuning procedure becomes
more cumbersome, thus frequently making the commissioning
process challenging.

Model predictive control (MPC) is an alternative to the
aforementioned control method for six-phase PMSMs [4],
[5]. As MPC can tackle all relevant control objectives in
one control loop—by means of an objective function that
quantifies the control tasks—it greatly simplifies the con-
troller design procedure. At the same time, the tuning effort
is also alleviated. However, despite the promising results,
the associated computational complexity of MPC makes its
real-time implementation particularly challenging, as high-end
control platforms are typically required to meet the increased
computational requirements. Moreover, its dependency on the
mathematical model of the plant implies that a precise model
of the drive system is crucial. Failing to meet this, the system
performance can significantly deteriorate.

Reinforcement learning (RL) based algorithms are another
emerging method for controlling power electronic systems
[6]. Tested applications range from grid-tied inverters [7]
to electric machines that are controlled by means of direct
torque control [8] or indirect current control [9]. RL offers the
opportunity to reduce the complexity of the control structure
and streamline the commissioning process of the drive system.

In this paper, the current control concept of [10] based on
the deep deterministic policy gradient (DDPG)—introduced
in [11] as a continuous control approach—is extended to
six-phase machines. More specifically, a DDPG agent inde-
pendently controls the stator currents of a six-phase PMSM
obtained by the VSD transformation. This control approach is
referred to as DDPG-CC hereinafter. Moreover, as with FOC,
imbalances of the three-phase subsets can be compensated for
by controlling the currents in the additional subspaces. The
presented results demonstrate the advantages of the proposed
control approach. Finally, to the best knowledge of the authors,
the presented work is the first to apply DDPG-based control
to multi-phase machines.

The structure of this paper is as follows. The succeeding
section presents the concept of the proposed DDPG-CC.
Following, the training of the DDPG agent, which is conducted
exclusively in simulation, is described. Subsequently, details
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Fig. 1: Block diagram of the proposed DDPG-CC for six-phase PMSM.

regarding the experimental setup for transferring the trained
agent from the simulation to the test bench are provided.
Finally, the performance of the proposed control approach
is assessed. Specifically, measurements on the test bench are
discussed, and the control performance is compared with that
of FOC.

II. CONTROL CONCEPT

The block diagram of the proposed DDPG-CC concept is
illustrated in Fig. 1. The DDPG-CC manipulates the reference
voltages. Its setup is described in Section II-B. Additionally,
the control loop comprises two separate voltage limitations,
modulators and voltage source inverters (VSIs), the VSD and
inverse VSD transformations, and a six-phase PMSM. The
implementation of the voltage limitation is detailed in Sec-
tion II-C. Carrier-based pulse width modulation (CB-PWM)
is employed for the voltage modulation. The outputs of both
modulators, the gate signals S1−12, are fed into two indepen-
dent three-phase VSIs, which share a common dc-link voltage
source. The six-phase PMSM model, the corresponding VSD,
and inverse VSD transformation are defined in Section II-A.

A. Model of the Six-Phase PMSM
For the considered non-fault-tolerant operation, VSD is a

suitable modeling approach for multi-phase machines, which
can also be derived from the theory of symmetrical com-
ponents [12]. It represents a generalized form of the Clarke
transformation for multi-phase machines. The VSD transfor-
mation matrix TVSD is based on the number of phases of
the machine and the geometric distribution of the windings.
The stator currents are decomposed into several orthogonal
subspaces that allow independent control of each component.
For the six-phase machine under consideration (Fig. 2), the
VSD matrix is given as

TVSD =
1
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Fig. 2: Winding configuration in the stator- and rotor-fixed
coordinate systems with δ = 2

3π and γ = π
6 . 1N and 2N refer to

the two possible neutral point configurations, namely 1N stands
for the case where the neutral points of both three-phase winding
subsets Na1→c1 and Na2→c2 are connected, while 2N for the
case where the neutral points are not connected.

The natural phase quantities of the stator currents are defined
as

ia1→c2
s = [ia1s ib1s ic1s ia2s ib2s ic2s ]T . (2)

From (1) and (2), the decomposed stator-fixed VSD current
components are calculated by

iVSD′

s = TVSDi
a1→c2
s , (3)

where iVSD′

s = [iαs iβs i
X
s iYs i0

+

s i0
−

s ]T . Since the machine
model shall be defined in rotating reference frames, the Park
transformation, given by

TP(ϑel) =

[
cos(ϑel) sin(ϑel)

− sin(ϑel) cos(ϑel)

]
, (4)

is employed. To this aim, with the electrical rotor position ϑel
for the αβ-components and −ϑel for the XY -subspace, as



in [3], a transformation matrix is defined as

T αβXY
P =

TP(ϑel) 02 02

02 TP(−ϑel) 02

02 02 I2

 . (5)

Combining (1) and (5) yields the transformation matrix

TP
VSD = T αβXY

P TVSD . (6)

With (6), the stator current vector in rotating reference frames

iVSD
s = [ids i

q
s i

x
s i

y
s i

0+

s i0
−

s ]T (7)

can be calculated by

iVSD
s = TP

VSDi
a1→c2
s . (8)

Following this, the machine model is described by

vdqs = Rsi
dq
s + ωelJψ

dq
s +

d

dt
ψdq

s , (9a)

vxys = Rsi
xy
s − ωelJψ

xy
s +

d

dt
ψxy

s , (9b)

v0±s = Rsi
0±
s +

d

dt
ψ0±

s , (9c)

where vms are the decomposed stator voltages, Rs is the per-
phase stator resistance, J =

[
0 −1
1 0

]
, ωel is the electrical

rotational speed, ψm
s are the decomposed flux-linkages, and

m ∈ {dq, xy, 0±}. Since only the 2N topology is considered
for this work, (9c) is neglected. Finally, assuming ψm

s to be
linear, the flux-linkage is modeled using absolute inductances,
i.e.,

ψd
s = ψPM + Ld

s i
d
s , (10a)

ψq
s = Lq

s i
q
s , (10b)

ψx
s = Lx

s i
x
s , (10c)

ψy
s = Ly

s i
y
s , (10d)

where ψPM is the flux-linkage of the permanent magnets and
Lm
s is the stator inductance on the m coordinate.

B. DDPG-Based Current Controller

In the control setup shown in Fig. 1, the goal of the
DDPG-CC is to minimize the difference

eVSD
s = iVSD

s,ref − iVSD
s (11)

between the reference currents

iVSD
s,ref = [ids,ref i

q
s,ref i

x
s,ref i

y
s,ref ]

T (12)

and the actual currents

iVSD
s = [ids i

q
s i

x
s i

y
s ]

T . (13)

In RL, this is represented by the reward function r(k), which
the agent maximizes in the training. In this work, the reward
function

r(k) =

{
−∥eVSD

s (k)∥1, for i1(k) ≤ Imax

−∥eVSD
s (k)∥1 − i1(k), for i1(k) > Imax

(14)

is defined based on the ℓ1-norm of (11). Additionally, to stay
within the operating limits of the system, the reward function
introduces a penalty when the amplitude of the phase current
i1(k) = ∥iVSD

s ∥2 exceeds its maximum allowed value Imax.
Regarding the observation vector, as per [10], it is defined

as

o(k) =


eVSD
s (k)∫

eVSD
s (k) · fc
iVSD
s (k)

vVSD
s,lim(k − 1)

n(k)

 (15)

to account for a six-phase PMSM. As can be seen in (15),
the proposed observation vector contains the reference current
tracking error eVSD

s , the integrated reference current tracking
error scaled by the control frequency fc, the actual currents
iVSD
s , the limited reference voltages vVSD

s,lim applied in the
previous time step, and the mechanical speed of the PMSM n.
To ensure that all observations are within the same order of
magnitude, all inputs of the observation vector are normalized
by their respective rated or maximum values, i.e., rated current
Ir, rated speed nr, and maximum stator voltage Vmax.

The DDPG-CC outputs the action vector

a(k) =
[
vds,ref(k) v

q
s,ref(k) v

x
s,ref(k) v

y
s,ref(k)

]T
(16)

that contains the reference voltages as the manipulated vari-
ables of the system. As stated in Section II-A, the zero
sequence subspace is omitted due to the usage of the 2N
topology. Therefore, the respective voltage reference is set to
zero v0±s,ref = 0.

C. Voltage Limitation
The control action of DDPG-CC is bounded to ensure that

the physical limitation of the stator voltage is taken into
account in the training process and the subsequent controller
behavior. The maximum available voltage depends on the
modulation scheme and the dc-link voltage Vdc. As CB-PWM
is used for each three-phase subsystem, a maximum stator
voltage of

Vmax =
Vdc
2

(17)

can be realized. As detailed in [1], the three subspaces of the
used VSD are orthogonal to each other. Therefore, the ampli-
tude of the reference voltage that accounts for all subspaces
can be calculated with the ℓ2-norm of the reference voltages in
each axis. Considering (17), this amplitude ∥a(k)∥2 is bound
by

∥a(k)∥2
!
≤ Vmax . (18)

In this work, the reference voltages in the dq-subspace
vdqs,ref(k) = [vds,ref(k) vqs,ref(k)]

T and xy-subspace
vxys,ref(k) = [vxs,ref(k) v

y
s,ref(k)]

T are separately bounded,
albeit by considering the same maximum voltage Vlim.
Consequently, the voltage constraints

∥vdqs,ref(k)∥2 ≤ Vlim (19a)

∥vxys,ref(k)∥2 ≤ Vlim (19b)



have to be met at each discrete time instance. With (18) and
(19), the maximum stator voltage is defined by

Vmax =
√

2(Vlim)2 . (20)

Hence, the maximum voltage of the dq-and xy-subspaces Vlim
is calculated by

Vlim =
Vmax√

2
=

Vdc

2
√
2
. (21)

The voltage limitation is implemented within the subspaces
based on [13]. The concept described in [13] for the limitation
of the voltages in the dq-system of a three-phase PMSM
is adopted for the dq-subspace of the six-phase PMSM and
transferred to the xy-subspace in the same way. Specifically,
when either of the limitations in (19) is violated, the voltages
are limited to (21) while prioritizing the d- and the x-direction
respectively and maintaining a safety margin of 5%, leading
to the limited reference voltage vector

vVSD
s,lim(k) =

[
vds,lim(k) v

q
s,lim(k) v

x
s,lim(k) v

y
s,lim(k)

]T
. (22)

If the voltage limitation is active in either the dq- or the xy-
subspace, the integration of the reference current tracking error
in the observation vector o(k) is stopped to prevent integrator
windup (clamping).

One disadvantage of the implemented approach for the volt-
age limitation is that the dc-link voltage cannot be utilized to
its full extent. Furthermore, a preference of either the x- or the
y-axis is inconclusive compared to the dq-subspace. Different
approaches to handling the voltage limitation for multi-phase
systems have been presented in the literature, e.g., [14], [15].
Since this paper focuses on extending the DDPG-CC to six-
phase machines, these approaches are omitted to simplify the
control concept. Nevertheless, a voltage limitation concept
with a higher utilization for the presented DDPG-CC will be
investigated in future work.

III. TRAINING OF THE DDPG AGENT

The training of the DDPG-CC is conducted exclusively in
a simulation environment in this work. For this purpose, the
Matlab 2023a Reinforcement Learning Toolbox [16] is used.
Compared to the real-world control setup shown in Fig. 1, the
simulation model omits the VSI, the modulation, and the VSD
transformation. Therefore, a sinusoidal voltage is assumed to
be applied to the PMSM, which is modeled according to (9)
and (10). The voltage limitation is implemented as defined in
Section II-C.

In each training episode, uniformly distributed random
values for all reference currents iVSD

s,ref and the speed n are
determined and kept constant for the entire episode. The
duration of one training episode is set to τq = Lq

s/Rs.
Suitable hyperparameters for the DDPG agent are deter-

mined by random search, which is chosen as a compromise
between finding agents with sufficient control performance and
manageable computational effort. Only a subset of hyperpa-
rameters is considered in the random search. Specifically, the
learn rates of the actor and critic are varied, as well as the

TABLE I: Hyperparameters used in the training.

Parameter Value
Training samples 700,000
Minibatch size 64
Experience buffer length 700,000
L2 regularization actor & critic 0.01
Target network update frequency actor &
critic

1

Target smooth factor 1 · 10−3

Discount factor 0.9
Learn rate critic 1 · 10−6 - 1 · 10−3

Learn rate actor 1 · 10−6 - 1 · 10−3

Exploration standard deviation 1 %− 10 % · Vmax

Exploration decay rate 0.1 %− 20 % of samples
Actor hidden layer 1
Actor neurons in hidden layer 64
Actor hidden layer activation function ReLU
Actor output layer activation function tanh
Critic hidden layer 3
Critic neurons in hidden layer 64/64/64
Critic hidden layer activation function ReLU
Critic output layer activation function linear

standard deviation and decay rate of the Ornstein-Uhlenbeck
noise, which is used for exploration in DDPG [11]. The
remaining parameters are set to fixed values based on the
literature [10]. The resulting values or value ranges of the
hyperparameters are listed in Table I. Based on Table I, 1024
agents are randomly sampled within the ranges and trained.

IV. EXPERIMENTAL SETUP

Among the trained agents, the best one—determined accord-
ing to the criteria explained in Section V-A—is implemented
on the control platform. Before applying the DDPG-CC to a
real-world setting, it is tested in a controller-in-the-loop (CIL)
environment. Moreover, a conventional control method, i.e.,
FOC, is designed in this section to serve as a benchmark
for evaluating the performance of the proposed DDPG-CC
scheme.

A. Implementation on the Control System

The UltraZohm, an open-source rapid control prototyp-
ing system, is used as the control platform [17]. It uses a
Xilinx Zynq UltraScale+ MPSoC, which offers two ARM-
R5 processors (RPU), four ARM-A53 processors (APU), and
programmable logic (PL). The actor neural network of the
DDPG-CC is implemented in the RPU of the UltraZohm.
The parameters of the actor neural network, i.e., the weights
and biases, are exported from Matlab after the training and
implemented in the UltraZohm software; no further training
on the target platform is conducted. The actor neural net-
work is calculated in real-time with a control frequency of
fc = 10 kHz. The modulator and inverter handling are realized
in the PL.

B. CIL Environment

The correct implementation of the DDPG-CC in the RPU
is ensured by utilizing the CIL environment offered by the



Fig. 3: Test bench setup.

TABLE II: Parameters of the PMSM, inverter, and controller.

Parameter Symbol Value Unit
d-axis inductance Ld

s 125 µH
q-axis inductance Lq

s 126 µH
x-axis inductance Lx

s 39 µH
y-axis inductance Ly

s 35 µH
Stator resistance Rs 64.3 mΩ
PM flux linkage ψPM 4.7 mVs
Pole pairs p 5 -
Rated dc-link Vdc,r 36 V
Rated current Ir 18 A
Maximum current Imax 30 A
Rated speed nr 1,100 min−1

Control frequency fc 10 kHz
Switching frequency fPWM 10 kHz

UltraZohm. Subsequently, instead of commissioning the algo-
rithm on the real system, a six-phase PMSM model is simu-
lated in the PL. The machine model is formulated according
to (9) and is thus identical to the model used in training,
i.e., a correct implementation of the control algorithm must
lead to consistent results between CIL and simulation. This
procedure is beneficial for complex control algorithms, such
as DDPG-CC. To this extent, the correctness and the real-
time capability of the implemented algorithm on the target
platform are tested over the entire operating range without the
risks that commissioning on the test bench entails. Without the
intermediate CIL step, discrepancies between the test bench
and simulation results cannot conclusively be attributed to
whether they stem from deviations between the simulation
model and reality or a faulty implementation. Further details
about the CIL environment are provided in [18].

C. Test Bench Setup

Fig. 3 shows the laboratory setup used for the experimental
tests. The prime mover is coupled with the device-under-test
(DUT), a six-phase PMSM. The prime mover sets different
fixed rotational speeds, while the current control of the DUT
is tested using validation profiles for the dq- and the xy-
subspace. An incremental encoder is coupled with the DUT
and fed into the digital incremental decoder card in the
UltraZohm. The six phases of the PMSM are connected with
two independent three-phase VSIs, specifically designed to be
used in conjunction with the UltraZohm. They share a common
dc-link voltage source. The analog measurement signals are

PI T−1
P (ϑel)−

edqs vdqs,ref vαβs,ref

PI T−1
P (−ϑel)−

exys vxys,ref vXY
s,ref

Fig. 4: FOC structure for the dq- and xy-subspace.

transmitted from both VSIs to two analog-to-digital adapter
boards (LTC2311-16) inside the UltraZohm.

The parameters of the test bench setup are listed in Table II.
The simulation and CIL model are built based on these
parameters.

D. Conventional Current Control of Multi-Phase Machines

In the context of multi-phase machines, extensions of con-
ventional FOC algorithms are employed to account for the
additional subspaces and the occurring harmonic currents. As
shown in [2] and [3], besides the proportional-integral (PI)
controllers for the d- and q-currents, additional PI controllers
for the x- and y-currents are used to compensate for imbal-
ances between the three-phase subsets. Therefore, the x- and
y-currents are controlled to zero. Moreover, to improve the
current quality, as quantified by the current total harmonic
distortion, resonant (R) controllers are added to the dq- and
xy-subspace. Since the 2N topology is used in this work, no
R or P controllers are required for the 0±-subspace.

For a fair comparison in the context of this work, the R con-
trollers are omitted since the DDPG-based current control
approach presented in Section II-B does not aim to compensate
for harmonic currents, but it only accounts for imbalances. The
resulting FOC structure is shown in Fig. 4. The controllers are
tuned according to the modulus optimum method.

V. PERFORMANCE ASSESSMENT

This section assesses the performance of the DDPG-CC
for a six-phase PMSM. To this end, the performance of the
best agent according to Section V-A is evaluated based on a
validation profile of reference changes and compared with that
of FOC. Test bench measurements and CIL experiments are
reported hereafter. In addition, the capability of the DDPG-CC
to handle imbalances between the two three-phase subsystems
is discussed.

A. Evaluation of the Trained Agents

The trained agents are evaluated according to the integral
absolut error (IAE) over a series of defined simulation runs.
In each run, the same set of arbitrary reference-point changes
for the d-, q-, x- and y-currents is simulated at a fixed speed
n ∈ {0, 0.25, 0.5, 0.75, 1} · nr. The simulation time is set to
tsim = 15τq , and the reference change occurs at t = 5τq . The
IAE criterion

QIAE =
1

4

∫ tend

0

∥eVSD
s (t)∥1 dt (23)
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Fig. 5: Experimental results for DDPG-CC with arbitrary changes in the references of ids (blue), iqs (red), ixs (green), iys (purple)
at different rotational speeds.

is calculated for each simulation with tend = tsim. The best-
performing agent is determined using the arithmetic mean
Q̄IAE over all simulation runs.

B. Control Performance in the dq- and xy-Subspace
A validation profile with arbitrary changes of iVSD

s,ref is
used to determine the control performance of the DDPG-CC
algorithm over a wide range of operating points. The range of
the set-point values for the x- and y-currents is smaller than
that for the d- and q-currents to represent a real-world scenario.
Fig. 5 shows the measurement results of the DDPG-CC for
three different rotational speeds. The DDPG-CC algorithm
tracks the reference values iVSD

s,ref in the dq- and the xy-axis
without a steady-state error for rotational speeds within the
rated operation area.

Current harmonics are present in all subspaces. However, as
can be observed, some harmonics increase with an increasing
rotational speed while being more pronounced in the xy-
subspace. The root cause of this is the presence of 5th

and 7th harmonics in the induced phase voltage of the real
machine. Since the control approaches under consideration
are not designed to compensate for their resulting currents,
the excitation of harmonic currents of corresponding orders
increases with higher rotational speeds. This phenomenon is
more pronounced in the xy-subspace since the current limiting
impedance within this subspace is relatively small compared
to the dq-subspace. As mentioned in Section III, these effects
are not modeled in the training. Therefore, DDPG-CC cannot

suppress these harmonics. However, the ability to control all
currents of the subspaces individually is not hindered by the
fact that these effects are not modeled in the training.

C. Control of Imbalances

As described in Section IV-D, controlling the dc-component
in the xy-subspace compensates for imbalances between the
two three-phase subsystems. The DDPG-CC allows indepen-
dent control of all subspaces (see Fig. 5). Thus, the DDPG-CC
can compensate for the aforementioned imbalances. Fig. 6
shows the operation of the six-phase PMSM with a change
in the reference of the y-axis from iys,ref = 0A to iys,ref = 2A.
While ixys = 0A, the two three-phase subsystems are bal-
anced. An asymmetry between the subsystems is created by
specifying iys,ref ̸= 0 as indicated by the phase currents in
Fig. 6.

D. Comparison to FOC

To better assess the performance of the proposed controller,
the DDPG-CC is benchmarked against the FOC scheme de-
signed in Section IV-D. The transient behavior of the evaluated
DDPG-CC agent achieves faster rise times than FOC in most
operating points. This, however, occurs at the expense of
higher overshoots, as illustrated in Fig. 7 for one operating
point. In addition to controlling the changing reference for
iqs , the influence on the other axes is comparable between the
DDPG-CC and FOC. With regards to the steady-state behavior,
as previously mentioned, the current harmonics produced by
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trol of imbalances between the two three-phase subsystems.
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Fig. 7: Experimental results for DDPG-CC with a change in
the reference iqs,ref (gray) with ids (blue), iqs (red), ixs (green),
iys (purple) and FOC (dashed) at n = 1100min−1.

DDPG-CC increase at higher rotational speeds due to the in-
creased back-electromotive force harmonics, see Fig. 5. Since
both DDPG-CC and FOC do not actively control the current
harmonics, i.e., FOC does not use R controllers and DDPG-CC
is trained on a machine model without current harmonics,
they show similar behavior regarding the current ripples. This
is illustrated in the Fast Fourier Transform (FFT) in Fig. 8
for one exemplary operating point of the validation profile at
rated speed. Overall, DDPG-CC is able to decrease the current
harmonics compared to FOC. A possible explanation for this
is the faster transient behavior of DDPG-CC, as indicated by
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Fig. 8: Experimental results for the FFT of the phase currents,
FOC (blue) and DDPG-CC (red) at n = 1100min−1 and with
ids,ref = −11.3A, iqs,ref = 11.3A, ixs,ref = 0.55A and iys,ref =
−1.87A.
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Fig. 9: Comparison of iqs between FOC (blue) and DDPG-CC
(red) in CIL (dashed) and measurement (solid line) at n =
500min−1.

the short rise time of DDPG-CC in Fig. 7.
Following, the validity of the testing procedure is demon-

strated. To this aim, Fig. 9 shows measurements of the test
bench and CIL environment for the control strategies in
question. Both DDPG-CC and FOC exhibit a higher overshoot
on the test bench compared to the CIL environment. This indi-
cates a discrepancy between the identified machine parameters
in Table II, which are used for the training, tuning of FOC,
and CIL, and the real machine. These deviations are expected
due to measurement uncertainties and effects not accounted
for in the model, e.g., saturation and current harmonics.

The IAE is calculated as a performance metric according
to (23) using the validation profile for DDPG-CC and FOC
on the test bench as well as in the CIL environment. The full
validation profile of Fig. 5 is used, i.e., tend = 0.632 s. Fig. 10
shows the resulting IAE values at each measured rotational
speed. The performance of DDPG-CC is comparable to that
of FOC over the entire operating range. One noteworthy effect
of DDPG-CC is the dependency of the IAE on the speed in
the CIL environment. While QIAE of FOC remains nearly
constant in CIL, DDPG-CC performs considerably better in
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Fig. 10: QIAE of the validation profile for DDPG-CC (red) and
FOC (blue) in CIL (dashed, circle) and measurement (solid
line, cross) at different rotational speeds.

the region of nr/2. This indicates insufficient training at the
boundaries of the rotational speed. A possible explanation
is the uniform distribution of random speed values between
standstill and rated speed used in the training, which skews
the training towards the median of 550min−1.

As expected, the IAE of the CIL measurements are smaller
compared to the test bench measurements due to noise, param-
eter mismatch, and current harmonics that adversely affect the
latter. The mentioned effects depend on the rotational speed,
which leads to increasing IAE values at higher speeds. Due
to its ability to handle current harmonics more favorably than
FOC, DDPG-CC has a lower IAE at higher speeds in the test
bench measurements.

VI. CONCLUSION

This paper presented a novel deep RL current control
scheme based on the DDPG algorithm for six-phase PMSMs.
The DDPG agent was trained exclusively in a simulation
environment and the best agent according to IAE was trans-
ferred to the test bench. Moreover, to account for the physical
limitations of the drive system in the training process, a
limitation of the action vector of the agent was introduced.
As demonstrated with the presented experimental results, the
proposed DDPG-CC scheme achieves independent control of
the currents in the dq- and xy-subspace, implying that com-
pensating imbalances between the two three-phase subsystems
is possible. Furthermore, as shown, the control performance,
as quantified by the IAE over a defined validation profile, is
comparable to that of conventional control techniques, such as
FOC.

Future work could explore the possibility of determining
agents with improved control performance by applying more
advanced hyperparameter optimization methods than random
search, such as Bayesian optimization or evolutionary algo-
rithms. In addition, the training model could be extended to ac-
count for current harmonics. Alternatively, training DDPG-CC
on the test bench is an interesting research direction. This
would allow consideration of current harmonics while elimi-
nating the discrepancies between test bench measurements and

simulations caused by the challenging identification of the ex-
act machine parameters. Finally, applying the control concept
to machines with higher-rated power should be investigated.
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[5] P. F. C. Gonçalves, S. M. A. Cruz, and A. M. S. Mendes, “Predictive
current control of six-phase permanent magnet synchronous machines
based on virtual vectors with optimal amplitude and phase,” in 2019
International Conference on Smart Energy Systems and Technologies
(SEST), 2019, pp. 1–6.

[6] S. Zhang, O. Wallscheid, and M. Porrmann, “Machine learning for the
control and monitoring of electric machine drives: Advances and trends,”
IEEE Open Journal of Industry Applications, vol. 4, pp. 188–214, 2023.

[7] D. Weber, M. Schenke, and O. Wallscheid, “Steady-state error com-
pensation for reinforcement learning-based control of power electronic
systems,” IEEE Access, pp. 1–1, 2023.

[8] M. Schenke and O. Wallscheid, “A deep Q-learning direct torque
controller for permanent magnet synchronous motors,” IEEE Open
Journal of the Industrial Electronics Society, vol. 2, pp. 388–400, 2021.

[9] G. Book, A. Traue, P. Balakrishna, A. Brosch, M. Schenke, S. Hanke,
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