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Abstract:  

Over the course of the last four decades, the rotor diameter of Horizontal Axis Wind Turbines 

(HAWTs) has undergone a substantial increase, expanding from 15 meters (30kW) to an 

impressive 240 meters (15MW), primarily aimed at enhancing their power generation capacity. 

This growth in blade swept area, however, gives rise to heightened loads, stresses and deflections, 

imposing more rigorous demands on the structural robustness of these components. To prevent 

sudden failure and to plan effective inspection, maintenance, and repair activities, it is vital to 

estimate the reliability of the rotor blades by considering all the forces (aerodynamic and structural 

dynamics) acting on them over the turbine's lifespan. This research proposes a comprehensive 

methodology that seamlessly combines fluid-structure interaction (FSI) simulation, Kriging 

model/algorithm and Adaptive Kriging Monte Carlo Simulation (AKMCS) to assess the reliability 

of the HAWT rotor blades. Firstly, high-fidelity FSI simulations are performed to investigate the 

dynamic response of the rotor blade under varying wind conditions. Recognizing the 

computationally intensive nature and time-consuming aspects of FSI simulations, a judicious 

approach involves harnessing an economical Kriging model as a surrogate. This surrogate model 

adeptly predicts blade deflection along its length, utilizing training and testing data derived from 

FSI simulations. Impressively, the Kriging model predicts blade deflection 400 times faster than 

the FSI simulations, showcasing its enhanced efficiency. The optimized surrogate model is then 

used to estimate the flap wise blade tip deflection for one million wind speed samples generated 

using Weibull distribution. Thereafter, to evaluate the reliability of the blades, statistical modeling 

using methods such as Monte Carlo Simulation (MCS), AKMCS is performed. The results 

demonstrate the faster convergence of AKMCS requiring only 21 samples, as opposed to 1 million 

samples for MCS with minimal reduction in the precision of the estimated probability of failure 

(Pf) and reliability index (β). Demonstrated on the backdrop of an IEA-15MW offshore reference 

WT rotor blade, the proposed methodology underscores its potential to be seamlessly incorporated 

into the creation of WT digital twins, due to its near real-time predictive capabilities for Pf and β 

assessments. 

 

1. Introduction 

The need of boosting alternative renewable energy sources to reduce the dependency on 

conventional fossil fuel dependency has become an important global issue [1]. It is forecasted that 

30% of the global electricity production will come from wind energy by 2050, with 12% from 

offshore wind and 18% from onshore wind, thus wind energy becoming a ‘new conventional’ 

rather than a non-conventional energy resource [2].  Industry experts predict that in the coming 

years U.S., China, and some of the European Union countries have planned to increase the 

contribution of the wind energy share to their energy demand to about 20% [3]. The increased 



reliance on wind energy has pushed engineers to build wind turbines (WTs) to produce more power 

output by increasing the blade size (and consequently increasing the blade swept area) [4]. 

Significant progress has been made over the last four decades, as the WT generation capacity has 

increased, from kW-class to MW class. The increase in capacity is credited to a significant increase 

in the rotor diameter from approximately 30m (kW) to 240m (15MW) recently [5]. However, 

increasing size and flexibility of large wind turbine blades, makes them more prone to aeroelastic 

issues emanating by fluid-structure interaction (FSI). The resulting aeroelastic effects on rotor 

blades may augment the risk of instabilities from blade deflection, vibration, and flutter during the 

operation of WTs [6]. In addition, due to their increasingly thin shape, WT blades grow more 

vulnerable to deflections and material fatigue. Furthermore, the problem becomes critical when 

WTs operate in a wind farm under the wake distribution of other WTs, thereby leading to uneven 

distribution of loads on the blades, further pushing the blade towards failure. Therefore, for 

optimizing WT design, maintaining structural integrity, and maximizing energy output, 

understanding and minimizing aeroelastic effects is essential by precisely modeling the FSI on the 

rotor blades. An FSI model integrates the aerodynamic forces acting on the rotor blades with their 

structural behavior by accounting for the complex coupling between aerodynamics and structural 

dynamics. Numerous methods have been developed to study the interaction of fluid and the WT 

rotor blade, of which the Blade Element Method (BEM) is widely applied, the validity [7, 8] along 

with the limitations of BEM is well discussed in the scientific literature [9, 10].  

BEM theory was utilized to evaluate the aerodynamic performance of a horizontal axis wind 

turbine in work by Shen et al. (2014) [11]. The researchers discovered that BEM accurately 

predicted the WT’s power output, thrust, and tip speed ratio compared to experimental data. The 

study proved that BEM might be utilized to predict performance in steady-state circumstances. 

Using BEM-based techniques, Shives and Schreck (2017) [12] investigated the impact of various 

rotor configurations on WT performance. Variable-pitch and fixed-pitch rotor designs, as well as 

their power output and loads, were all examined. The findings demonstrated that BEM successfully 

captured the trends and relative performance differences among the various rotor configurations, 

offering suggestions for improving WT design. In a different work by Barlas (2014) [13], the 

dynamic response of a WT under turbulent inflow conditions was examined using BEM theory. 

The researchers examined how turbulent wind affected the rotor blades' aeroelastic behavior. They 

discovered that BEM-based approaches could reasonably capture the dynamic response under 

moderately turbulent conditions. However, the precision fell highly turbulent flow conditions, 

highlighting the limitations of BEM in capturing unsteady aerodynamic effects. Gebraad et al. 

(2016) [14] investigated the effects of various control strategies on WT performance and power 

output using BEM theory in conjunction with optimization algorithms. The study showed the 

potential of BEM-based techniques for improving WT control settings to maximize energy capture 

while considering different restrictions. The findings gave important information about operating 

and designing WT for increased performance. Cheng et al. (2020) [15] examine the impact of 

blade twist distribution on the aerodynamic performance of a WT using BEM. They study the 

impact of various blade twist configurations on power generation and load. The outcomes showed 

that BEM-based techniques could correctly predict performance trends and the ideal twist 

distribution for increased energy extraction. BEM-based methods are computationally efficient 

and generally offer good estimates of the aeroelastic behavior of flexible blades [16], nevertheless, 

BEM theory is based on the one-dimensional momentum equilibrium and neglects the 3D effects 

which is vital to capture the entire aerodynamic phenomena accurately. Consequently, BEM 

approaches are still being improved and honed by researchers, to account for all complex unsteady, 



and 3D aerodynamic effects frequently by integrating corrections and combining them with 

additional advanced computational tools to improve the accuracy of WT analysis and design [17]. 

One alternative to BEM in evaluating the blade structural response to fluid aerodynamics is a high-

fidelity Fluid-Structure Interaction (FSI) model composed of a finite volume computational fluid 

dynamics (CFD) solver and a finite element method (FEM) solver, which can consider the 

coupling effect of aerodynamic and structural field, thus overcoming the limitations of the BEM 

method [18]. Therefore, over last decade there has been surge in the usage of CFD to understand 

the FSI of the air and blade [19-21]. The developments in CFD and FSI for the application of WT 

blades is well documented [22, 23]. However, computational FSI is not cheap and has its own 

share of difficulties, like the results are over dependent on the grid/mesh size, and the type of 

turbulence model [21]. This is in addition to the large requirement of computing power needed, 

especially when working on a large wind farm. Thus, FSI simulations’ accuracy comes with 

mounting computational costs and time, particularly for complex model and flow physics seen in 

WT blades [21]. This leads to a compromise between accuracy and cost of computing.  

A well-known approach to overcome this shortcoming is the use of machine learning (ML) based 

surrogate models (SMs) [24]. For instance, Zhou at al [25] combined delayed proper orthogonal 

decomposition (d-POD) with long short-term memory (LSTM) network to predict the unsteady 

wind turbine wake velocity. Likewise, Wilson and Wakes [26] used a SM (linear regression, 

random forest) in combination with CFD simulation to study and predict the wake effect in an 

offshore wind farm. Richmond, and Sobey [27] used five different ML algorithms along with the 

CFD approach to predict the flow field around wind turbine. Bagalkot et al [28] employed Gradient 

Boosting Regressor coupled with CFD simulations to predict the force distribution over a 5MW 

wind turbine blade. Morato, et al [29], developed a Kriging based framework to evaluate the 

reliability of the support structure of the NREL 5MW WT model. To the best of our knowledge 

there are only handful of studies that employ ML based SMs to understand the response of rotor 

blade to air flow around it. None, of the studies, uses structural response (such as stress, 

displacement etc.) obtained from the SM-FSI simulation to estimate the reliability of the rotor 

blades.  

The main objective of this study is to formulate and validate a 2-step methodology, leveraging the 

Kriging algorithm, for conducting an exhaustive reliability analysis of the rotor blades of the IEA-

15MW [30] offshore reference WT. This entails utilizing the Kriging algorithm as a SM for FSI 

simulations and adaptively training it during reliability analysis, aiming to establish it as a 

computationally efficient and accurate alternative to conventional Monte Carlo Sampling (MCS) 

methods. This study seeks to not only enhance the computational efficacy and precision in 

reliability analysis but also to bridge a notable research gap concerning the IEA-15MW reference 

turbine. The novelty of this research is that it employs Kriging algorithm not only as a SM for FSI 

simulation but also, by adaptively training it during reliability analysis, the model can be used as 

an alternative to MCS methods, thus converging faster with minimal drop in accuracy.  Moreover, 

the application of Kriging algorithm as a SM for predicting blade deflection exhibits the potential 

for substantial computational time savings (400 times faster) compared to conventional FSI 

simulations.  

The subsequent sections of the paper are organized as follows: Section 2 comprehensively outlines 

the proposed methodology for conducting reliability analysis on the WT rotor blades. The 

operationalization of this methodology is vividly exemplified through a case study, expounded in 

Section 3. Section 4 extends the discourse by shedding light on potential future avenues of the 



proposed methodology. Ultimately, Section 5 encapsulates the paper, drawing together significant 

findings and conclusions of this research. 

2. Methodology 

2.1 General 

The flowchart of the proposed two-step methodology for evaluating the reliability of WT rotor 

blades is depicted in Figure 1. In the first step, a Kriging-based SM is trained using the dataset 

obtained from FSI simulations. The simulation was conducted for eight distinct wind speeds, 

specifically 3 m/s, 9 m/s, 11 m/s, 12.5 m/s, 15 m/s, 17.5 m/s, 21 m/s, and 25 m/s. Specifically, the 

simulation outcomes corresponding to wind speeds of 12.5 m/s and 17.5 m/s, were earmarked as 

test datasets, while the rest of dataset was used for training the Kriging model. To optimize the 

performance of the Kriging model, Bayesian optimization is employed to select the most suitable 

hyperparameters. The model's accuracy is then evaluated on the test dataset. This model is the used 

to estimate the deflection of the rotor blade caused by aerodynamic loads. 

 

 
Figure 1: Schematic of the proposed methodology for performing reliability analysis of the rotor blade 



Moving to the second step, the optimized Kriging model is utilized to predict blade tip deflection 

for one million samples of wind speed generated using the Weibull distribution [31]. Then, a limit 

state function for the variable blade tip deflection is formulated. The Probability of Failure (PoF) 

is initially estimated using the Monte Carlo Simulation (MCS) method. However, since MCS 

suffers from limitations such as high computational cost, slow convergence rate, and non-

optimized sampling efficiency, we address these issues by employing the Adaptive Kriging Monte 

Carlo Sampling (AKMCS) approach. AKMCS adaptively updates the surrogate model and 

concentrates sampling efforts in critical regions. These enhancements make AKMCS a more 

efficient and effective method for uncertainty quantification and reliability analysis compared to 

traditional MCS. In the following subsections, we will provide a detailed explanation of each step 

of the methodology. 

 

2.2 FSI Modeling 

FSI methods for analyzing and solving fluid-structure interactions are categorized into two main 

types: the direct solution method and the load transfer method [32]. The direct solution method, 

exemplified by the Arbitrary Lagrangian-Eulerian (ALE) method, solves the FSI problem as a 

coupled system, simultaneously addressing the fluid and structure equations. This approach 

accounts for the interactions between the fluid and structure at each time step, resulting in precise 

predictions of their mutual influence. However, this method comes with drawbacks, including high 

computational cost and time consumption, particularly for large-scale and transient simulations. 

In contrast, the load transfer method treats the fluid and structure as separate entities, managing 

their interactions through a load transfer process (as depicted in Fig. 1). In this method, the fluid 

and structure domains are solved independently, and information related to forces and 

displacements is exchanged iteratively at the fluid-structure interface. This approach offers 

computational efficiency compared to the direct solution method, making it suitable for handling 

larger and more complex FSI simulations.  

The main aim in the load transfer FSI modeling is to consider the coupling effect of fluid and solid 

by solving ,the equation of fluid region (Eq. 1 & 2) and structural region (Eq. 3) and finally to 

discover the interaction characteristics between the two.  The equations governing the behavior of 

the fluid region are expressed in terms of the Navier-Stokes equations and can be written as: 

 
∂uf

∂t
+  (uf ·  ∇)uf =  −

1

ρf∇pf
+  νf∇f

2u +  ff     Eq. 1 

 

∇  ·  uf =  0      Eq. 2 

 

where uf is the fluid velocity vector, t is time, ρf is the fluid density, pf is the fluid pressure, 

νf is the fluid kinematic viscosity and ff represents external force terms acting on the fluid such as 

body forces (e.g., gravity), surface forces (e.g., pressure or shear forces applied to the fluid 

boundary. Likewise, the equations for solid mechanics describe the structural behavior and can be 

written as: 

 

𝛻 ·  𝑢𝑠 =
𝜌𝑠𝑑𝑠

2𝑢

𝑑𝑡2
=  𝛻 ·  𝑇𝑠 +  𝑓𝑠      Eq. 3 

 

where us is the solid displacement vector, ρs is the solid density, t is time, Ts is the stress tensor for 

the solid, fs represents any external forces acting on the solid. To couple the fluid and solid 



domains, interface conditions are imposed. These conditions ensure the conservation of fluid and 

structural parameters termed kinematic and dynamic conditions. The former condition enforces 

the equality of velocities at the fluid-solid interface and expressed as: 

uf = us                                 Eq. 4 

 

While the dynamic condition ensures that the fluid and solid forces at the interface are balanced, 

the stress or pressure at the interface between the fluid and the surface relates to each other. Thus, 

the coupling effect occurring in the contact region of the fluid and the solid must abide by the 

conservation of the fluid and structural parameters as shown in Eq. 4.  

 

2.3 Kriging Model 

Kriging model, also known as Gaussian process regression, is a stochastic interpolation technique, 

that has emerged as valuable tools in reliability analysis for engineering systems [33]. A Kriging 

model aims to construct a SM that captures the relationship between the input variables and the 

output. The model assumes that the output is a realization of a Gaussian process, defined by a 

mean function and a covariance function. The mean function represents the deterministic trend of 

the output. It is typically assumed to be a constant or a linear function of the input variables. The 

mean function can be expressed as [34]: 

μ(x) = α₀ x0 + α ₁x₁ + α ₂x₂ + ... + α ₚxₚ    Eq. 5 

where μ(x) is the mean function, α₀, α₁, α₂, ..., αₚ are the regression coefficients, and x₁, x₂, ..., xₚ 

are the input variables. The covariance function characterizes the spatial correlation between 

different points in the input space. It is usually defined based on the distance between the input 

points. Although there are many available covariance functions (also called kernel), the most 

commonly used one is the squared exponential function, given by: 

k(x, x') = σ² exp(- ||x - x'||² / (2l²))     Eq. 6 

where k(x, x') is the covariance function between input points x and x', σ² is the variance parameter, 

l is the length scale parameter, and ||x - x'||² represents the squared Euclidean distance between x 

and x'. Based on the mean function and covariance function, the SM can be expressed as: 

Y(x) = μ(x) + Z(x)     Eq. 7 

where Y(x) is the output variable, μ(x) is the mean function, and Z(x) represents the random 

component, assumed to follow a Gaussian process with zero mean and covariance function k(x, 

x'). Using a training dataset with known input-output pairs, the regression coefficients (α) and 

hyperparameters (σ², l) are estimated through suitable optimization techniques. Once the suitable 

set of hyper-parameters are obtained, the optimized model is then used to predict the response 

variable. 

2.4 Statistical Modeling for Reliability Estimation 

The goal of reliability analysis is to assess a component’s/system's failure probability while 

considering different sources of uncertainties. This is achieved by formulating a limit state function 

(also called as G function) by expressing the relationship between the input variables (e.g., loads, 



material properties) and the system's response (e.g., stress, deflection). Mathematically, the G 

function can be defined as [35]: 

      G (R, S) = R – S         Eq. 8 

where R represents the system capacity variable (attributed to strength properties mostly) and S is 

the demand variable (attributed to loading). To estimate the reliability using the G function, a 

common approach is to determine the failure probability, denoted as Pf, which is the probability 

that G (R, S) ≤ 0. Generally, evaluating G function requires analysis of sophisticated, 

computationally demanding numerical models, making the estimation of Pf a challenging task. The 

MCS method is the most widely used and established method for the reliability analysis [29]. This 

technique is probably the best option for reliability problems with explicit limit state functions 

which are ‘easy’ or ‘cheap’ to evaluate. However, it is computationally demanding, especially for 

problems with small Pf and time-consuming models. Consequently, researchers have resorted to 

various variance minimization techniques such as quasi MCS, importance sampling or subset 

simulations when higher accuracy is needed near the failure region. However, even these 

techniques are computationally demanding. Another faster approach for reliability analysis is 

analytical approaches such as First Order Reliability Method (FORM) or Second Order Reliability 

Method (SORM) which approximate the G function near the most probable point of failure [35]. 

Nevertheless, These methods are prone to large errors, especially when the G function is non-

linear. In recent years several SM (such as Support Vector Machine [36], Polynomial Chaos 

Expansion [37], Kriging [29]) have been coupled with random simulation techniques (such as 

MCS) to significantly increase the efficiency of reliability analysis with minimal drop in the 

accuracy. In our proposed methodology we couple Adaptive Kriging model with MCS to estimate 

the Pf and the reliability index. In the subsequent section we demonstrate the applicability of the 

proposed methodology via a detailed case study. 

3. Illustrative Case Study 

3.1 Wind Turbine Rotor Blade CAD Model 

In this case study we use the 15MW IEA Wind reference WT model jointly designed by National 

Renewable Energy Laboratory (NREL), University of Maine (UMaine) and the Technical 

University of Denmark (DTU). The reference wind turbine is a three-bladed horizontal-axis 

turbine, and its specific details can be found in the work by Gaertner et al. [30]. A synopsis of the 

main parameters of the reference WT is presented in Table 1.  

Table 1: Blade Properties 

Description Value Units 

Power Rating 15 MW 

Blade Length 117 m 

Rotor Diameter 240 m 

Root Diameter 5.20 m 

Root Cylinder Length 2.34 m 

Maximum Chord 5.77 m 

Max Chord Position (Spanwise) 27.2 m 

Tip Prebend 4.00 m 

Precone 4.00 Degrees 

Cut-in Wind Speed 3.00 m/s 



Cut-out Wind Speed 25.0 m/s 

Rated wind Speed 10.88 m/s 

Minimum rotor speed 5 rpm 

Maximum rotor speed 7.55 rpm 

Rotor orientation Upwind  

Control Variable Speed and Pitch  

Number of blades 3  

Figure 2 illustrates the external profile of the rotor blade, highlighting the locations of various 

airfoil sections and the prebend. The blade has a length of 117 meters, a root diameter of 5.2 

meters, and a maximum chord of 5.77 meters at approximately 20% span from the root. 

 
Figure 2: Outer profile of a single wind turbine blade, with clear indications of various airfoil sections 

3.2 FSI Modeling 

After creating the CAD model of the rotor blade, the first step is to perform the load transfer FSI 

modeling which involves performing CFD and FEA simulations. The next sub-section presents 

the details of the CFD flow modeling method, including the computational domain, computational 

mesh, input parameters, and simulation methodology. 

3.2.1 CFD Modelling of Fluid Region: 

The CFD simulations were carried out using ANSYS CFX version 2020 R2. Since the WT rotor 

is symmetrical about its center of rotation, hence, to reduce simulation time, a single blade replaced 

the three blades in a 120° domain segment with periodic faces. The schematic of the computational 

domain along with the boundary conditions is illustrated in Figure 3. The blade's position is five 

blade lengths from the domain inlet and ten blade lengths from the outlet, while the top wall is six 

blade lengths from the blade's tip. The blockage ratio of the computational model (the ratio of the 



frontal area of the blade to the total domain inlet area) is approximately 0.005 (0.5%), which is 

sufficiently low to prevent any artificial acceleration. The blade is considered as a stationary non-

slip wall, and a rotation frame is created around the blade (as shown in Figure 3) to account for the 

rotor's rotational speed. This approach avoids the need for a moving mesh and allows for steady-

state simulation, reducing computational time. 

The general flow regime for the current WT is between 3m/s and 25 m/s, with a preferred 

operational velocity around 11 m/s, which is the close to the rated wind speed of 10.59m/s [30]. 

For all cases, a fixed rotational velocity of 5 rpm is applied during the simulations. Figure. 4 

presents the unstructured mesh used in the CFD modelling at different critical locations. Figure 

4(B) shows the mesh distribution around the blade face while the inflation layers applied to the 

blade surfaces to appropriately resolve the boundary layer flow as illustrated in Figure 4 (c). Fifteen 

prismatic inflation layers are used, with an expansion rate of 1.2. The first layer’s size is calculated 

and used so that the y+ value is less than one for the blade surface, as represented in Figure. 5.  

 
Figure 3: CFD domain and boundary conditions 

 
Figure 4: CFD mesh distribution over the simulation domain 



 
Figure 5: y+ distribution on the blade. 

To determine the appropriate size of the mesh, a mesh sensitivity analysis was carried out for the 

wind speed of 8 m/s, blade rotation of 5.7 rpm, and 0 o pitch. For the sensitivity analysis the growth 

rate (1.15) and max size (6.5m) was fixed, and only the minimum face size was reduced from 1m 

to 0.001m. The tip velocity of the blade was used as a parameter to check the mesh sensitivity as 

shown in Table 2. As highlighted in the table, the total element count increased with the increase of mesh 

density, allowing for a more detailed and accurate flow field representation. The analysis 

demonstrated that reducing the minimum face size led to changes in tip speed, with diminishing 

percentage variations, suggesting that a minimum face size of around 0.001 meters could 

adequately capture flow details while maintaining computational efficiency. This sensitivity 

analysis guides the present study in selecting an appropriate mesh size for accurate and efficient 

wind turbine performance modeling. 

Table 2: Mesh sensitivity analysis for CFD study 

Minimum Face Size (m) 
Total Elements 

(Millions) 
Tip Speed (m/s) 

Percentage Change 

(%) 

1 1.8 49.006 - 

0.5 2.5 56.89 16.08 

0.1 3.5 61.05 7.31 

0.05 4.5 68.29 11.85 

0.0025 5.8 69.85 2.28 

0.001 6.2 70.23 0.22 

 

A shear-stress transport (SST) turbulence model is used for this study, which has been used 

extensively in modelling flow over wind turbine. SST is a robust two-equation model, which has 

the benefit of swapping from a k-ε turbulence model (well matched for far field) to a k-ω 

turbulence model (appropriate for boundary layer) [6]. The frozen rotor option of CFX was used, 

which is a steady-state method and uses the rotating reference frame to save the computational 



resources by converting transient turbo-machinery flow into a steady state. The frozen rotor option 

passes the true flow downstream and vice-versa to capture the downstream wake affect generated 

by the rotating blade. Despite the low flow speed, there is a high level of turbulence, and abrupt 

pressure changes occur over short distances. Therefore, the compressible flow option will be 

utilized for the present study. Moreover, to evaluate the convergence of the CFD analysis in this 

study, two criteria are employed: residual values and pressure distribution values. The residual 

serves as a widely used criterion for determining convergence, and a convergence limit of 10-4 

was established. Additionally, as the pressure on the blade plays a crucial role in estimating stresses 

for FEA simulations, the CFD simulations were continuously executed until the average pressure 

on the blade surface reached a relatively constant value. Once the pressure profile was generated 

along the blade length, the next step in the FSI modeling was to transfer it to the FEA model to 

generate the stress and deflection profile of the blade the FEA model to generate the blade's stress 

and deflection profile. The details of the FEA modelling such as internal blade geometry, blade 

material properties, composite layups, mesh and boundary conditions are described in the next 

subsection. 

3.2.2 FEA Modeling 

This study used ANSYS Static Structural version 2020 R2 to conduct Finite Element Analysis 

(FEA) simulations. The geometry of the IEA Wind 15-MW Wind Turbine (WT) blade was 

constructed based on aerodynamic shape information, including airfoil type and location, web 

location along the span, web thickness, skin thickness, twist, and spar cap thickness, as provided 

by Gaertner et al. [30]. Table 3 presents a summary of the location and geometric properties of 

different components. The blade's internal and external geometry was created, comprising skin, 

two webs, and two spar caps, as depicted in Figure 6(A). Figure 6(B) illustrates the leading edge 

(LE) web and trailing edge (TE) web, while Figure 6(C) displays the pressure side (PS) and suction 

side (SS) spar caps. While the original blade and its internal supporting structures consist of 

multiple components, this study focused on three major components: blade skin, blade webs, and 

spar caps, as shown in Figure 6. 

Table 3: Location wise thickness of different components of the blade. 

Airfoil Section % Span Web Thickness (m) Spar Cap Thickness (m) Skin Thickness (m) 

SNL-FFA-W3-500 15 0.040 0.053 0.056 

FFA-W3-360 24.51 0.036 0.0838 0.0485 

FFA-W3-330blend 32.88 0.032 0.096 0.042 

FFA-W3-301 43.91 0.027 0.0957 0.033 

FFA-W3-270blend 53.76 0.023 0.0875 0.0256 

FFA-W3-241 63.82 0.018 0.0776 0.017 

FFA-W3-211 80.11 0.012 0.0434 0.007 

 

Table 4 presents the material properties assigned to each component in this study, along with the 

original composite material property obtained from the data sheet provided by Gaertner et al. [30]. 

The leading edge and trailing edge webs, as do the spar caps, have the same thickness. While 

composite layers are utilized to form each component, a single material is assigned to each 

component for simplicity in this study. Specifically, glass traix is used for the skin, medium density 

foam is used for the webs, and Carbon UD for the spar caps. The material properties listed in Table 

4 are employed in the FEA simulations, and their respective dimensions are derived from the data 

presented in [30]. 



The blade structure is meshed using a hybrid meshing technique, combining tetrahedral and 

hexahedral elements. The mesh distribution on the blade skin, webs, and spar caps is illustrated in 

Figure 7. Figure 7(B) specifically demonstrates the mesh distribution on the spar caps and webs. 

Following a mesh sensitivity analysis, specific mesh parameters were selected, including a 

minimum face size of 0.001m, a growth rate of 1.15, and a maximum size of 0.1 m, resulting in a 

total of 750,000 elements generated for the model. The WT blade is subjected to various types of 

loads, and for this study, three specific loads are considered. Firstly, the aerodynamic load, i.e., 

pressure loads, is imported from the CFD simulations. Secondly, gravity loads are accounted for, 

considering the blade's weight. Lastly, centrifugal loads resulting from the rotation of the blades 

are also incorporated. Both gravity and centrifugal loads are applied as boundary conditions in the 

FEA simulator. To simulate the fixed support at the blade's interface with the hub, a fixed support 

boundary condition is applied at the beginning of the blade. This ensures the appropriate modeling 

of the blade's connection with the hub, providing accurate and realistic results for the subsequent 

analyses. 

 
Figure 6: CAD model of components of wind turbine blade used for FEA modeling 



Table 4: Material properties for blade components 

Material Properties Medium_Density_Foam Carbon UD Glass Traix 

Density [kg/m^3] 130 1220 1940 

Young Modulus E_1 [MPa] 129.2 114500 44600 

Young Modulus E_2 [MPa] 129.2 8390 17000 

Young Modulus E_3 [MPa] 129.2 8390 16700 

Shear Modulus G_1 [MPa] 48.946 5990 3270 

Shear Modulus G_2 [MPa] 48.946 5990 3480 

Shear Modulus G_3 [MPa] 48.946 5990 3500 

Poisson ratio nu_1 0.32 0.27 0.262 

Poisson ratio nu_2 0.32 0.27 0.35 

Poisson ratio nu_3 0.32 0.27 0.264 

    

 

 

Figure 7: FEA mesh distribution for the blade components 

Overall, the modeling approach and load considerations in this study have been meticulously 

selected and implemented to accurately capture the complex structural behavior of the wind turbine 

blade. The combination of CFD and FEA simulations allows for a comprehensive analysis of the 

blade's response to the different types of loads it experiences during operation. The results of the 

FSI modeling are discussed in the next sub-section. 

 

3.2.3 FSI Modeling Results 

From the results perspective, we focus on two crucial parameters, namely von Mises stress and 

deflection, for analyzing the wind turbine blade. To enhance clarity and avoid overwhelming the 

readers with excessive data, we present the results at nine carefully selected locations (L1 to L9) 

along the blade length, as depicted in Figure 2. These locations also indicate the change in the 

airfoil geometry and hence the location of supports. This approach allows for a more targeted and 

informative presentation of the findings, facilitating a comprehensive understanding of the blade's 

structural performance. The simulation was conducted for eight distinct wind speeds, specifically 



3 m/s, 9 m/s, 11 m/s, 12.5 m/s, 15 m/s, 17.5 m/s, 21 m/s, and 25 m/s. The outcomes of the 

simulation are graphically depicted in Figure 8. 

  
Figure 8: FSI Simulation results for Deflection (Left) and Von Mises stress (Right) along the blade length 

Two noteworthy observations can be deduced from the FSI simulation outcomes depicted in Figure 

8. Firstly, there is a noticeable increase in deflection at a specific location with the augmentation 

of the free stream velocity. This phenomenon can be attributed to the concurrent increase in 

pressure force, directly influenced by the velocity escalation. Similarly, an analogous observation 

can be drawn for von Mises stress, wherein the stress at a given location rises in tandem with the 

augmentation of the free stream velocity. Secondly, a distinct trend emerges where in deflection 

progressively augments as we traverse away from the hub, culminating in the maximum deflection 

being encountered at the blade tip. This behavior is akin to that of a cantilever structure. Notably, 

this trend is not mirrored in the von Mises stresses, a characteristic arising from the blade's inherent 

twist. 

The outcomes of the FSI simulations play a pivotal role in the subsequent section, where they are 

employed to construct a SM for the FSI simulator. This strategic utilization of simulation results 

aids in significantly reducing computational time, a critical consideration for efficient analysis. 

3.3 Surrogate Model Development 

3.3.1 Data Analysis 

The complete dataset comprises seventy-two rows, resulting from the multiplication of nine 

distinct locations by eight varying wind speeds. Each row is characterized by four columns: 

Location on Blade, Wind Speed, Von Mises stress, and Deflection. Initial data analysis of the FSI 

outcomes entails comprehensively exploring parameter distributions and interrelationships. These 

graphical tools provide insights into the intricate connections among the diverse parameters, 

offering a foundational understanding of the dataset's underlying structure and dynamics. First, we 

generate a pair-plot matrix and subsequently constructing a correlation matrix. A pair plot is 

essential in data analysis due to its ability to reveal intricate patterns and relationships within a 

multidimensional dataset. As a powerful graphical tool, a pair plot enables the simultaneous 

visualization of multiple variables in a matrix-like arrangement as depicted in Figure 9. This 

holistic approach facilitates the identification of potential associations, trends, and correlations 



between different variables. The results from the pair-plot matrix indicates how different 

parameters are related to each other. The most interesting relationship is exhibited in the bottom 

left scatter plot (indicating relationship between deflection, wind speed and location). For higher 

wind speeds the deflection is larger and the deflection increases as we move from blade root (L1) 

to blade tip (L9) as expected. The histogram for wind speed (shown in top left) has a uniform 

distribution indicating equal probability of occurrence of the eight wind speeds. The other 

histograms along the diagonal doesn’t follow any pattern.  

 
Figure 9: Pair plot matrix of different variables  



Subsequently, we construct the Pearson correlation matrix to quantify the linear associations 

between variable pairs, revealing vital insights into their strength and directional relationships. 

Illustrated in Figure 10, the Pearson correlation matrix underscores the positive correlation 

between deflection, blade location, and wind speed. This suggests that deflection increases with 

greater wind speeds and at positions farther from the blade's root. Conversely, deflection  

 
Figure 10: Pearson Correlation Matrix of different variables 

 
 

        Figure 11: Box Plot indicating 5-point summary for Deflection (Left) and von Mises stress (Right) 



demonstrates a weak negative correlation with von Mises stress. In addition to these analyses, 

addressing potential outliers within the dataset is imperative. Hence, we employ box plots for 

deflection and von Mises stress, as presented in Figure 11, depicting the five-point summary—

encompassing minimum, maximum, and quartiles. This examination underscores the absence of 

outliers in the dataset, a crucial prerequisite before employing it for the training and testing of 

machine learning models. 

3.3.2 Kriging Model Development and Results 

Following the completion of data analysis, the simulation results are partitioned into distinct 

training and testing datasets. Specifically, the simulation outcomes corresponding to wind speeds 

of 12.5 m/s and 17.5 m/s, comprising 18 data points, are earmarked as test data. The chosen wind 

speeds represent distinct, operationally relevant scenarios, ensuring a comprehensive and robust 

evaluation of the Kriging model across varied conditions. These speeds were selected based on 

their ability to provide a diverse and representative dataset, ensuring the model is validated under 

both moderate and high operational wind conditions, which are crucial for assessing structural 

reliability and safety. The remaining dataset, encompassing 54 data points, is utilized for model 

training via k-fold cross-validation. This strategic data partitioning approach yields advantages by 

iteratively alternating between training and testing subsets, enhancing model performance metrics' 

reliability and generalization. Ensuring the appropriateness of the chosen k value in relation to the 

dataset size is crucial; for our dataset, a value of 10 was selected to maintain representation 

adequacy, particularly beneficial for smaller datasets. Subsequently, leveraging blade location, 

wind speed, and von Mises stress as input parameters, along with blade deflection as the output 

measure, we initially train the Kriging model with default hyperparameters. However, Kriging 

models encompass distinct hyperparameters (as detailed in Table 5) necessitating a meticulous 

selection process by analysts to optimize predictive accuracy. Bayesian Optimization, chosen for 

its heightened efficacy and expedited convergence relative to Grid Search and Random Search, 

comprehensively explores the hyperparameter space to determine the optimal Kriging model. Over 

a span of 30 iterations, the 25th iteration yields the minimal Mean Squared Error (MSE), as 

indicated by red-highlighted values in Table 5.  

A performance comparison between the non-optimized and optimized Kriging models is presented 

in Figure 12 and Table 6. The discernible outcomes affirm the superior performance of the latter 

model, attributed to the incorporation of optimized hyperparameters albeit with a prolonged 

training phase. Subsequently, the optimized model is applied to predict deflection for two distinct 

test datasets. Model performance, compared with FSI simulation results, is depicted in Figure 13. 

The discernment from Figure 13 and evaluation metrics underscores the anticipated superiority of 

the model's performance on the training set. Furthermore, the model exhibits superior performance 

on test_data_2 (i.e., wind speed of 17.5 m/s) in comparison to test_data_1 (wind speed of 12.5 

m/s), a finding corroborated by the metrics in Table 5 and Figure 13. Notably, the higher R2 values 

for both test datasets substantiate the Kriging model's viability as a surrogate for computational-

intensive FSI simulations. This surrogate model is harnessed in next step to predict blade tip 

deflection across the entire wind speed spectrum. Additionally, we employ cubic spline 

interpolation to construct an envelope for predicting blade deflection. This envelope spans wind 

speeds from 0 m/s to 30 m/s, with intervals of 0.5 m/s (we have to discretizing the input space in 

order to save time), and covers the entire length of the blade, as depicted in Figure 14. It is 

important to note that predicting blade deflection for a single wind speed through FSI simulations 

requires approximately 10 minutes, contingent upon mesh refinements. Consequently, for the 



entire range of wind speeds spanning from 0 to 30 m/s in intervals of 0.5 m/s, the cumulative time 

required is approximately 7 hours. However, using the optimized Kriging model, the blade 

deflection for same wind interval is obtained in about 1minute. Thus, showcasing that developed 

Kriging model is about 400 times faster than the FSI simulations. 

Table 5: Hyperparameters search space for Kriging Model 

 

Hyper Parameter Name Possible Value 

Basis Function Zero, Constant, Linear 

Kernel Function Nonisotropic Squared Exponential, Isotropic Squared Exponential, 

Nonisotropic Rational Quadratic, Isotropic Rational Quadratic, 

Nonisotropic Matern 5/2, Isotropic Matern 5/2, 

Nonisotropic Matern 3/2, Isotropic Matern 3/2, 

Nonisotropic Exponential, Isotropic Exponential 

Kernel Scale real values in the range [0.001,1]*max(max(X) – min(X))  

where X is the predictor data. 

Optimized Value = 3.868 

Sigma real values in the range [0.0001, max (0.001,10*std(Y))],  

where Y is the response variable. 

Optimized Value = 1.665 

Standardize True, False 

 

 

Figure 12: Performance of the non-optimized (Left) vs optimized Kriging (Right) model 



Table 6: Comparison of Kriging Model 

Evaluation 

Metrics 

Non-Optimized 

Kriging Model 

Optimized Kriging 

Model (Validation) 

Optimized Kriging 

Model (Test) 

RMSE 0.422 0.203     0.124 (test_set_1) 

  0.066 (test_set_2) 

R2 0.94               0.999    0.989 (test_set_1) 

   0.997 (test_set_2) 

Training Time 1.369 26.67 N. A 

 

 

 

 

Figure 13: FSI vs. KM prediction of deflection on training (left) and testing (right) dataset 

3.4 Reliability Analysis Results 

The initial step in conducting reliability analysis involves the selection of an appropriate 

distribution for the capacity and demand variables. In the context of WT rotor blade loads, which 

are directly proportional to wind speed, it is essential to opt for an accurate wind speed distribution 

to effectively represent these loads. Within the literature concerning wind resource potential 

assessments, various probability distributions, including Rayleigh, Gamma, Nakagami, 

Generalized Extreme Value, and Weibull, have been considered [39]. Given that the Weibull 

distribution is widely utilized for characterizing wind speed probability distributions and extreme 

load distributions due to its capacity to capture attributes like skewness and extended tails, this 

study follows suit by employing the Weibull distribution to model wind speed [31]. In our case 

study, we have selected the Havoygavlen wind park site in Northern Norway, where the Weibull 

distribution is defined by parameters 1.96 (shape) and 9.4 (scale) [39]. 

Subsequently, a million wind speed samples are generated from the Weibull distribution and input 

into the optimized Kriging model (obtained in previous step) to derive blade tip deflection 

outcomes (refer to Fig. 1). Following this, a kernel density estimate of blade tip deflection is 

acquired, and a normal distribution is fitted to the projected values. As illustrated in Fig. 15, the 

fitted normal distribution, characterized by a mean of 4.193 [4.190 - 4.195] and a standard 



deviation of 1.302 [1.300 – 1.304], demonstrates a reasonable fit. The values enclosed within the 

square brackets denote the 95% confidence interval (CI) for both parameters. This fitted normal 

distribution is subsequently employed as the demand distribution (referred to as variable S in 

Equation 8) for the purpose of reliability analysis. 

 

Figure 14: Interpolated surface that can be used for predicting blade deflection  

 
Figure 15: PDF (Left) and CDF (Right) of fitted normal distribution and associated KDE 



In the subsequent phase, the selection of a representative probability distribution for the capacity 

variable (R) becomes pivotal. The maximum out-of-plane blade tip deflection of a particular wind 

turbine is subject to fluctuations influenced by diverse factors, encompassing turbine design, 

environmental conditions, and operational parameters. For the sake of simplicity, we adopt a 

normal distribution with a mean of 12.5 and a standard deviation of 3 (the latter indicating a higher 

degree of uncertainty due to limited data availability). This distribution is deemed suitable for the 

resistance variable, denoting allowable blade tip flap-wise deflection. However, it is prudent to 

consult wind energy experts, undertake statistical analysis of available data, and account for the 

blade's resistance within the framework of physical behavior and engineering principles. 

After that, we employ MCS, wherein one million samples are generated from the R and S 

distributions (illustrated in Figure 16). Subsequently, utilizing the limit state function as defined 

in Eq. 8, the Pf is computed. Figure 17 displays the convergence plot of Pf alongside the 

corresponding values. However, owing to extended computation time, gradual convergence, and 

suboptimal sampling strategy, we implement Adaptive Kriging Monte Carlo Simulation 

(AKMCS) for the reliability analysis. AKMCS is designed to enhance the efficiency of the MCS 

process by dynamically refining the Kriging surrogate model as additional simulation runs are 

executed. This optimization revolves around the judicious selection of new sample points, 

leveraging insights from the surrogate model concerning uncertainty. The focus of this sampling 

strategy centers on regions characterized by elevated uncertainty or requiring precise estimation, 

notably in proximity to the limit state function (depicted in Figure 17). Consequently, it leads to 

an enhanced sample efficiency compared to conventional MCS. Moreover, this sampling approach 

leads to accelerated convergence (requiring only 21 samples for AKMCS, as opposed to 1 million 

samples for MCS as shown in Figure 18) while maintaining a negligible reduction in the precision 

of the estimated probability of failure (Pf) and reliability index (β), as indicated by the coefficients 

of variation (CoV) values presented in Table 7. Subsequently, the estimated reliability index (β) 

derived through AKMCS is juxtaposed with the predefined threshold β, triggering an inspection 

when the threshold is exceeded. 

 
Figure 16: Load and Resistance Distributions (Left) along with generated samples via MCS 

(Right) 



 
Figure 17: Samples generated using AKMCS strategy 

 

 
Figure 18: Comparing failure probability convergence for MCS (Left) and AKMCS 

(Right) 



Table 7: Comparison of MCS and AKMCS 

Parameter MCS AKMCS 

Probability of failure (Pf) 5.47e-03 5.18e-03 

Reliability Factor (β) 2.544 2.5636 

Coefficient of Variation (CoV) 0.0135 0.0438 

Number of Samples 1 million 21 

Pf _CI [5.326e-03, 5.615e-03] [4.735e-03, 5.624e-03] 

β_CI [2.535, 2.553] [2.534, 2.594] 

 

4. Future Direction: Pioneering the Digital Twin Concept 

The promising outcomes of this research pave the way for an exciting avenue of future exploration 

- integrating the proposed methodology into the creation of WT digital twins. The concept of 

digital twins involves the development of virtual replicas of physical assets, allowing real-time 

monitoring, analysis, and predictive maintenance. By leveraging the capabilities of the combined 

FSI simulations and the efficient Kriging model, the potential for building accurate and dynamic 

digital twins for wind turbines emerges. 

The envisaged digital twin would embody the intricate interplay between aerodynamics, structural 

dynamics, and reliability parameters, providing an insightful glimpse into the operational behavior 

of wind turbines. Real-time monitoring of deflection, stress distribution, and reliability metrics 

could be seamlessly integrated into the digital twin framework, facilitating continuous health 

assessment and performance optimization. The Kriging model's rapid prediction capabilities align 

well with the dynamic nature of digital twins, ensuring prompt updates and responsiveness to 

changing operating conditions. 

Moreover, successfully adapting this methodology into the digital twin realm could transcend the 

domain of WT reliability analysis. The holistic approach, encompassing data-driven SM and 

advanced statistical techniques, could potentially find applications in diverse fields such as 

aerospace, civil engineering, and automotive industries. The utilization of digital twins for 

predictive maintenance, operational optimization, and risk mitigation holds substantial promise, 

and this research opens a pathway towards its realization. Amidst the ongoing growth and 

innovation in the wind energy sector, exploring the integration of the proposed methodology into 

digital twin frameworks is a promising avenue. Such an endeavor holds the potential to 

substantially bolster operational efficiency, reliability, and sustainability, making it a compelling 

subject warranting rigorous research investigation. 

 

5. Conclusions 

In this paper, we proposed a methodology that couples FSI simulation, Kriging algorithm, and 

AKMCS to perform reliability analysis of the 15MW IEA reference HAWT rotor blades. Central 

to this approach is optimizing a Kriging model, which is trained and tested using the dataset 

derived from the FSI simulations. In the context of FSI simulations, the load transfer method is 



employed, with independent resolution of the fluid and structure domains utilizing ANSYS CFX 

and ANSYS Structural software. The pressure profiles derived from Computational Fluid 

Dynamics (CFD) simulations are seamlessly transferred to the Finite Element Analysis (FEA) 

model, subsequently providing Von-Mises Stress and displacement profiles along the entire blade 

length. Employing diverse data analysis techniques including pair plot matrix, Pearson correlation 

matrix, and box plots, we comprehensively analyze the FSI dataset. Pearson correlation matrix 

underscores the positive correlation between deflection and blade location and wind speed while 

deflection demonstrated a weak negative correlation with Von-Mises Stress. The box plots 

underscored the absence of outliers in the dataset, which is crucial prerequisite before employing 

dataset for the training and testing of Kriging models. 

The dataset is further stratified into training and test sets, with the K-fold cross-validation approach 

adopted during the training of the Kriging model. This model, initially trained using default 

hyperparameters, is subsequently fine-tuned using Bayesian Optimization to enhance its 

performance. Significantly, the optimized Kriging model functions as a surrogate for 

computationally intensive FSI simulations, enabling blade deflection prediction at a remarkable 

speed, surpassing FSI simulations by a factor of 400 while maintaining exceptional accuracy. 

Leveraging this optimized surrogate model, we project flap-wise blade tip deflection across a 

spectrum of one million wind speeds generated from the Weibull distribution. Subsequently, a 

limit state function is formulated. Thereby, applying statistical modeling techniques, notably 

Monte Carlo Simulation (MCS) and AKMCS, we ascertain the reliability of the rotor blades. 

Remarkably, AKMCS demonstrates rapid convergence, demanding only 21 samples, in stark 

contrast to the resource-intensive requirement of 1 million samples for conventional MCS. This 

remarkable acceleration in convergence is achieved without compromising the precision of the 

estimated probability of failure (Pf) and reliability index (β). 

The significant implications of this research extend beyond its immediate application. The 

promising results of our study lay the foundation for integrating this methodology into the creation 

of digital twins for WTs. This holistic approach, enriched with data-driven surrogate modeling and 

advanced statistical techniques, holds the promise of applications across diverse sectors like 

aerospace, civil engineering, and automotive industries. 
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