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A B S T R A C T

Multi-access Edge Computing (MEC) is an emerging technology that allows to reduce the service latency and
traffic congestion and to enable cloud offloading and context awareness. MEC consists in deploying computing
devices, called MEC Hosts (MEHs), close to the user. Given the mobility of the user, several problems rise. The
first problem is to select a MEH to run the service requested by the user. Another problem is to select the path
to steer the traffic from the user to the selected MEH. The paper jointly addresses these two problems. First,
the paper proposes a procedure to create a graph that is able to capture both network-layer and application-
layer performance. Then, the proposed graph is used to apply the Multi-objective Dijkstra Algorithm (MDA), a
technique used for multi-objective optimization problems, in order to find solutions to the addressed problems
by simultaneously considering different performance metrics and constraints. To evaluate the performance of
MDA, the paper implements a testbed based on AdvantEDGE and Kubernetes to migrate a VideoLAN application
between two MEHs. A controller has been realized to integrate MDA with the 5G-MEC system in the testbed.
The results show that MDA is able to perform the migration with a limited impact on the network performance
and user experience. The lack of migration would instead lead to a severe reduction of the user experience.
1. Introduction

Some of the use cases defined for 5G-and-beyond systems [1,2]
require high performance, in terms of latency, reliability, throughput,
etc. [3]. Multi-access Edge Computing (MEC) is one of the fundamental
technologies committed to satisfying these requirements. MEC consists
in the computing platforms located near the users. MEC deployments
in proximity to users often demand additional computing resources
and infrastructure to ensure optimal performance. This additional effort
is largely compensated by the achieved performance (not only low
latency, but also reduction of network congestion and increased data
rate) and the enabling of new advanced services (which can also rely
of context awareness). As described in [4], the main functions of 5G
and MEC architecture interact as shown in Fig. 1.

In particular, the user requests an application to the Application
Function (AF). The MEC may be seen as an AF, and if it is trusted
it may directly interact with the 5G Network Functions (NFs). In the
case of untrusted MEC (as a general untrusted AF), the interaction
MEC-5G system is mediated by the Network Exposure Function (NEF)
that is in charge of securely exposing the network capabilities and
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events to untrusted AFs. A key element of the MEC system level is
the MEC Orchestrator (MEO), which provides centralized functions for
orchestrating the computing resources and operation of the MEC hosts
(MEHs). On one side, the MEO interacts with the different MEHs to
acquire information on the available resources and Apps. On the other
side, MEO interacts with the NEF (or directly with the 5G NFs), to
acquire capability and state information about the 5G Core Network
(CN) services. The MEO uses these data to select the MEH for instanti-
ating a new application request (or migrating a running application) by
considering the performance requirements (e.g., latency, throughput,
packet loss, etc.), the MEH available resources, and the MEH and
network performance.

During the service, through the NEF (or directly interrogating the
5G NFs in case of trusted MEC), the MEO acquires UE-related events of
interest to decide if some actions (e.g. change the access point, modify
the traffic path) on the 5G domain needs to be performed to satisfy
the required QoS. On the MEC infrastructure, the MEO monitors the
performance given by the MEH. Problems in the network domain or in
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Fig. 1. Interaction 5G-MEC functions for supporting services.
the MEC resources can lead the MEO to modify the traffic steering rules
and/or migrate the service to another MEH.

Intuitively, to maintain high performance, a user request should
be served by the nearest MEH that runs the required application.
Empirical studies confirm this intuition [5]. Maintaining application
proximity for mobile users poses significant challenges. Among these,
two fundamental challenges regarding the achievement of a desirable
trade-off between QoS and migration cost are related to the questions:
(1) How are the applications migrated [6,7]? and (2) When/where are
the applications migrated [8]? This paper considers this second ques-
tion by analyzing two important problems: the dynamic selection of the
MEH providing the resources for running the application requested by
a UE (MEH selection) and the computation of the traffic path between
the selected MEH and the UE (traffic path computation). Both problems
aim to maintain the requested QoS as the UE moves. Indeed, a major
challenge in 5G MEC is related to UE mobility. To ensure the desired
QoS parameters, including low latency and minimal packet loss, it may
become necessary to modify the traffic path and, in certain situations,
switch the MEH, leading to what is known as an MEH handover. This
process can be due to the deterioration of performance provided by the
MEH and/or the traffic path leading to the source MEH. In the latter
scenario, performance degradation may arise from handovers between
different base stations or an increase in traffic load along this path.

1.1. Problem definition and contribution

The paper jointly considers the MEH selection problem and the
traffic path computation problem in 5G-MEC systems by defining a
multi-objective optimization problem. The heterogeneity of the 5G-
MEC applications leads to defining new control algorithms aimed to
consider different criteria simultaneously. For example, some appli-
cations require the minimization of the latency, while others require
minimizing packet loss, increasing the security of the data transfer
and of the elements supporting the application, minimizing the energy
consumption, etc.. Hence, to account for most requirements the opti-
mization problems cannot consider a single criterion. The complexity of
the multi-objective optimization problem is obviously higher than the
single criterion one. For example, for the routing problem, algorithms,
such as Dijkstra, allow the computation of the single criterion minimum
cost path in an efficient way. In contrast, different studies have been
focused on finding efficient approaches for solving the complex multi-
objective counterpart [9]. The most common approach is to define
2

an optimization function which is a weighted combination of all cri-
teria. In this manner, the multi-criteria problem can be treated as a
single-criterion problem, i.e. with reduced complexity. However, this
approach implies that the weights need to be established a priori.
Before the problem solution begins, the relative ‘‘importance’’ of the
different criteria needs to be set. The solution is optimal only for
the selected weighting. The heterogeneity of the applications of today
networks does not allow finding a weighting providing good results for
all.

The multi-criteria optimization problem gives a set of Pareto op-
timal solutions (the so-called Pareto front), which can be dynami-
cally selected depending on the requirements of the particular applica-
tion. The MEO determines the most suited solution for the application
needs, analyzing the Pareto front. Then, MEO decides where to locate
(or re-locate) the application and how to steer the traffic. Although
multi-criteria optimization is NP-hard, recent works proposed efficient
algorithms for typical-size networks that work well in practice.

The main contribution can be summarized in the following points.

• To jointly consider the problems of MEH selection and traffic path
computation, the paper proposes a procedure for defining a graph
able to account for both the network-layer and application-layer
performance. In this manner, the two problems are mapped in the
single problem of finding optimized paths between the user and
the MEHs.

• To solve the problems using the defined graph, the paper proposes
the Multi-objective Dijkstra Algorithm (MDA) for computing the
Pareto front of the Multi-Objective Shortest Path (MOSP) model.
Furthermore, the paper shows how the Pareto front is used for
supporting applications with different requirements.

• To evaluate the performance of MDA, the paper implements a
hybrid testbed. The testbed includes simulative, emulative and
experimental parts.

• To integrate the MDA with the 5G-MEC system in the testbed, the
paper realizes a controller to retrieve the input of MDA and to
apply the output of MDA for both network layer and application
layer.

The paper is organized as follows. Section 2 summarizes the MOSP
problem and the MDA algorithm, while Section 3 describes the pro-
posed approach for jointly solving the MEH selection problem and the
traffic path computation problem, using the MDA algorithm. Sections 4
and 5 introduce extensive evaluations in an emulative/experimental
environment. Section 6 presents the related works and summarizes the
novelties of this paper. Finally, Section 7 concludes the paper.
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Table 1
List of used symbols.
Symbols Definition

𝐺 = (𝑉 ,𝐴) Directed graph without parallel arcs, composed by the set V of
nodes and the set A of arcs

𝑁 = |𝑉 | Number of nodes
𝑀 = |𝐴| Number of arcs
𝑑 Number of attributes (e.g. delay, energy consumption, jitter, packet

loss, etc.) considered by the MOSP
𝑐𝑎 Vector of values assumed by the attributes in the arc a,

𝑐𝑎(𝑐𝑎1 , 𝑐𝑎2 ,… , 𝑐𝑎𝑑 )
𝛿+(𝑣) Set of outgoing arcs in 𝑣
𝛿−−(𝑣) Set of incoming arcs in 𝑣
(𝑣1 , 𝑣𝑘)-path, 𝑃(𝑣1 ,𝑣𝑘 ) Set of arcs necessary to reach node 𝑣𝑘 ∈ 𝐺 from node 𝑣1 ∈ 𝐺. It can

be represented by the sequence of traversed nodes, i.e.
𝑃(𝑣1 ,𝑣𝑘 ) = (𝑣1 , 𝑣2 ,… , 𝑣𝑘)

𝐜(𝑣𝑖 ,𝑣𝑖+1 ) Cost vector related to the arc (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐺
𝐜(𝑃(𝑣1 ,𝑣𝑘 )) Cost of the (𝑣1 , 𝑣𝑘)-path. In the case of summable attributes, it can

be calculated as 𝐜(𝑃(𝑣1 ,𝑣𝑘 )) =
∑𝑘−1

𝑖=1 𝐜(𝑣𝑖 ,𝑣𝑖+1 )
𝑃 <𝐷 𝑄 Path P dominates path Q
2. MOSP problem and MDA algorithm

This section summarizes the key definitions and features of the
MOSP problem and of the MDA algorithm.

2.1. MOSP problem

The technical details on the MOSP problem definition and on the
MDA algorithm can be found in [10]. The definitions of the different
symbols used in this summary are shown in Table 1.

The solution of the MOSP problem requires the definition of the
concept dominated-path, 𝑃(𝑣1 ,𝑣𝑘).

Let us consider two paths 𝑃(𝑠,𝑡) and 𝑄(𝑠,𝑡) with the same origin node 𝑠
nd the same destination node 𝑡. Let 𝑐𝑗 (𝑃 ) and 𝑐𝑗 (𝑄) the 𝑗th component

of the cost vector of the two paths. Then 𝑃 <𝐷 𝑄

𝐼𝑓 𝑐𝑗 (𝑃 ) ≤ 𝑐𝑗 (𝑄), ∀𝑗 ∈ [1, 𝑑]

∃𝑖 ∈ [1, 𝑑] ∶ 𝑐𝑖(𝑃 ) < 𝑐𝑖(𝑄)
(1)

It is worth noting that (1) considers only the cost vectors of the two
paths. Hence, in general given two cost vectors, 𝜶 and 𝜷, (1) establishes
the dominance between two cost vectors, i.e. if 𝜶 <𝐷 𝜷.

Given a (𝑠, 𝑡)-path 𝑃 with cost vector 𝐜(𝑃 ), 𝐜(𝑃 ) is called a non-
dominated vector if there is no other (𝑠, 𝑡)-path having a cost vector
dominating 𝐜(𝑃 ). In this case, 𝑃 is denoted as efficient path. There is
no (𝑠, 𝑡)-path in 𝐺 that dominates 𝑃 .

The MOSP problem aims at finding a path optimizing simultane-
ously different attributes, which often are conflicting. An improvement
in one objective can lead to the worsening of at least one other objec-
tive. In this scenario, the solution of the MOSP problem is represented
by the minimum complete set of efficient paths between a node 𝑠 and
every node 𝑣 ∈ 𝑉 . For each node pair (𝑠, 𝑣), this set contains exactly
one efficient path per non-dominated cost vector. This definition refers
to the so-called one-to-all variant. If a target node 𝑡 is given as input,
the one-to-one variant of MOSP aims at finding the minimum complete
set of efficient paths connecting the nodes 𝑠 and 𝑡.

2.2. MDA algorithm

The MDA is a recent label-setting algorithm [10] for solving the
MOSP problem. A more recent paper presents further improvements
aimed at reducing the solving time of the one-to-one version of MOSP
[11]. The performance comparison among various one-to-many MOSP
algorithms demonstrates the superiority of MDA, particularly on graphs
comprising approximately 300,000 nodes and 800,000 links [12]. No-
tably, these graph sizes are often larger than real-world networks. Like
other label-setting algorithms, the MOSP uniquely represents a path 𝑃
as a sequence of node labels. For each node 𝑣, a label is composed by
three values 𝑙 = (𝑣, 𝐜 , 𝑙 ), where:
3

𝑣 𝑙𝑣 𝑝𝑟𝑒𝑑
• 𝑣 is the identity of the node owner of the label
• 𝐜𝑙𝑣 is the cost vector of the (𝑠, 𝑣)-path
• 𝑙𝑝𝑟𝑒𝑑 is the pointer to a label of a predecessor node 𝑢 ∈ 𝛿−(𝑣). This

label refers to the (𝑠, 𝑢)-subpath of the (𝑠, 𝑣)-path.

The defined labels can be compared to each other. The labels com-
parison and the one-to-one correspondence between paths and labels
allow finding the efficient paths analyzing the labels. In other words,
the efficient paths can be found through the list of non-dominated
labels of the nodes. The definition of non-dominated labels is as follows.

Given two labels, 𝑙1(𝑣) and 𝑙2(𝑣) corresponding to two alternative
(𝑠, 𝑣)-paths 𝑃1 and 𝑃2

• 𝑙1(𝑣) dominates 𝑙2(𝑣), indicated as 𝑙1(𝑣) ≤𝐷 𝑙2(𝑣), and both are
non-equivalent if and only if 𝐜𝑙1(𝑣) <𝐷 𝐜𝑙2(𝑣) and 𝐜𝑙1(𝑣) ≠ 𝐜𝑙2(𝑣)

For each node 𝑣, the MOSP commonly leads to having a set of labels,
indicated as 𝐿𝑣, that are non-dominated. To compare a new label 𝑙𝑛𝑒𝑤(𝑣)
with 𝐿𝑣 the following definition is necessary.

• 𝐿𝑣 dominates 𝑙𝑛𝑒𝑤(𝑣) or 𝐿𝑣 ≤𝐷 𝑙𝑛𝑒𝑤(𝑣) iff there is a label 𝑙𝛼 ∈ 𝐿𝑣
s.t. 𝑙𝛼 ≤𝐷 𝑙𝑛𝑒𝑤(𝑣).

The lexicographic order of labels is defined as follows. Let 𝑙1(𝑣) and
𝑙2(𝑣) be two labels corresponding to two alternative (𝑠, 𝑣)-paths. The
label 𝑙1(𝑣) is lexicographically smaller than 𝑙2(𝑣), denoted as 𝑙1(𝑣) <𝑙𝑒𝑥
𝑙2(𝑣), iff 𝐜𝑙1(𝑣) is lexicographically smaller than 𝐜𝑙2(𝑣), and this is true if
𝐜𝑙1,𝑘(𝑣) < 𝐜𝑙2,𝑘(𝑣) for the first index 𝑘 ∈ {1,… , 𝑑} such that 𝐜𝑙1,𝑘(𝑣) ≠ 𝐜𝑙2,𝑘(𝑣).

Algorithm description
In the following, a brief description of the MDA algorithm is pre-

sented. Further details can be found in [10]. The algorithm defines the
following set of lists and vectors:

• 𝐻 : List storing the tentative labels in lexicographical order. The
tentative labels correspond to paths explored during the algorithm
but for which it is not yet decided if they are non-dominated
paths. At any point during the algorithm, 𝐻 stores at most one
label per node, i.e. the size of 𝐻 is bounded 𝑁 .

• 𝐿𝑣: For each node 𝑣 ∈ 𝑉 , a list 𝐿𝑣 contains the non-dominated
labels.

• lastProcessedLabel: This vector contains the pointer to the last
processed label for each arc in the graph.

Algorithm 1 shows the pseudocode of MDA. The initialization phase
sets up the empty list 𝐻 and the 𝑁 empty lists 𝐿𝑣. The 𝐿𝑣 lists
are grouped into a list 𝐿. Then, there is the initialization of the
vector 𝑙𝑎𝑠𝑡𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑎𝑏𝑒𝑙 composed of 𝑀 values equal to zero. Then
the algorithm generates a label for the origin node 𝑠 which is 𝑙𝑠 =
(𝑠, (0,… , 0), 𝑁𝑈𝐿𝐿) and inserts them in the list 𝐻 .
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Algorithm 1 Pseudocode of MDA

1: Input: Graph 𝐺 = (𝑉 ,𝐴) with cost vectors c(𝑣𝑖, 𝑣(𝑖+ 1)) ∈ R𝑑 , Node
𝑠 ∈ 𝑉

2: Output: set 𝐿𝑣 of non-dominated labels ∀𝑣 ∈ 𝑉
3: Priority Queue 𝐻 ← 0
4: for 𝑣 ∈ 𝑉 do
5: Efficient Labels 𝐿𝑣 ← 0
6: end for
7: 𝐿 ←

⋃

𝑣∈𝑉 𝐿𝑣
8: for 𝑎 ∈ 𝐴 do
9: lastProcessedLabel[𝑎] ← 0

10: end for
11: Label 𝑙𝑠 ← [𝑠, (0,⋯ , 0) NULL]
12: 𝐻 ← 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡(𝑙𝑠)
13: while 𝐻 ≠ 0 do
4: 𝑙∗𝑣 ← 𝐻.𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑙𝑒𝑥𝑚𝑖𝑛()
5: 𝑣 ← 𝑙∗𝑣 .𝑛𝑜𝑑𝑒
6: 𝐿𝑣.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑙∗𝑣)
7: 𝑙𝑛𝑒𝑤𝑣 ← nextCandidateLabel(𝑣,lastProcessedLabel,

𝛿−(𝑣), 𝐿)
8: if 𝑙𝑛𝑒𝑤𝑣 ≠ NULL then
9: 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡(𝑙𝑛𝑒𝑤𝑣 )
0: end if
1: for 𝑤 ∈ 𝛿+(𝑣) do
2: 𝐻 ← propagate(𝑙∗𝑣 , 𝑤,𝐻,𝐿)
3: end for
4: end while
5: return 𝐿𝑣 for all 𝑣 ∈ 𝑉

After this phase, the while loop begins and lasts until the list 𝐻 be-
comes empty. An iteration of the while loop starts with the extraction
f the lexicographical smallest label 𝑙∗𝑣 from the list 𝐻 , where 𝑣 is the

node associated with the label. It is worth recalling that in 𝐻 the labels
are lexicographically sorted, then the label 𝑙∗𝑣 is surely non-dominated.
Thus the label can be added to the end of the list of non-dominated
labels of the node 𝑣, i.e. 𝐿𝑣. This is the only way a label is added to
he list 𝐿𝑣, i.e. the label gets permanent. As a consequence, the sets
𝑣 𝑣 ∈ 𝑉 are also lexicographically sorted. Each iteration carries out

wo main tasks. The first is to find the next tentative/candidate label for
ode 𝑣 that can be added to 𝐻 . This task is necessary because only one
abel per node 𝑣 is present in 𝐻 . Hence, when this label is extracted,

new tentative label for 𝑣 must be found (if it exists) and added to
. The search of the new label, 𝑙𝑛𝑒𝑤𝑣 , is performed extending existing

on-dominated labels at the predecessor node 𝑢 ∈ 𝛿−(𝑣) along the arc
u,v). In particular, 𝑙𝑛𝑒𝑤𝑣 must be lexicographically the smallest and the
on-dominated one among the all possible extension, i.e.
𝑛𝑒𝑤
𝑣 = 𝑎𝑟𝑔𝑙𝑒𝑥𝑚𝑖𝑛𝑙,𝑢{𝑙𝑣 = (𝑣, 𝑐𝑙 + 𝑐𝑢𝑣, 𝑙)|𝐿𝑣 ≮𝐷 𝑙𝑣}

here 𝑙 ∈ 𝐿𝑢 and 𝑢 ∈ 𝛿−(𝑣).
This part allows maintaining a single tentative label for each node,

hich represents an important characteristic that differentiates the
DA from the classical label-setting MOSP algorithms, which keep a

et of tentative labels for the same node.
The second task is to propagate the extracted 𝑙∗𝑣 to the successor

odes 𝑤 ∈ 𝛿−(𝑣). Let 𝑙𝑤 = (𝑤, 𝑐𝑙∗𝑣+𝑐𝑣𝑤, 𝑙
∗
𝑣) be such a propagated tentative

abel. If 𝑙𝑤 is dominated by any label in 𝐿𝑤, it is discarded. Otherwise,
f there is no label for 𝑤 in 𝐻 , 𝑙𝑤 is inserted. On the contrary if there is
label, a comparison between 𝑙𝑤 and the label of 𝑤 already present in
is performed. The lexicographically smaller will be in 𝐻 , the other

ill be discarded. The details and the pseudocode of these two tasks
an be found in [10].

The running time performance of MDA is deeply analyzed in [10]
4

ith large synthetic and real-world graph instances. In the one-to-all F
case, the results show that for 𝑑 ⩾ 3 the running time is 𝑂(𝑑 ⋅ (log(𝑁) ⋅
∑

𝑣∈𝑉 |𝐿𝑣|+𝑀 ⋅ (max𝑣∈𝑉 |𝐿𝑣|)2)). To the best of the authors’ knowledge,
DA is the fastest among any MOSP algorithm known so far.

. Proposed multi-layer graph

To jointly address the MEH selection problem and the traffic path
omputation problem, the approach of incorporating information on
he MEH performance at the application layer in a graph is proposed.
n general, the two problems are considered separately. As an exam-
le, the graph considering only the network-layer information is built
aking into account the network topology. Routing algorithms, such
s MDA, can be used to compute the traffic path from the user to
he chosen MEH supporting the requested application. Before starting
he traffic path computation, the MEH needs to be selected. The MEH
election can be done using algorithms such as [13]. The problem
ith this disjoint approach is that the algorithm used for the MEH

election considers only aspects related to the MEH platform, such as
he constraints on the computation and communication capacity. The
oal of the algorithm is to maximize the number of served requests
hile assuring that the service placement cost is within the budget. The
uality of the service experienced by the application user is not taken
nto account. Indeed, bad quality is experienced if there is no traffic
ath between UE and selected MEH able to guarantee the network
erformance required by the application.

The proposed approach is based on the idea of enhancing the
etwork graph by incorporating MEH performance information. For
ach MEH, a node and an arc are introduced to the graph. For each
EH, a node and an arc are introduced to the network graph. The

dded node represents the application layer of the MEH, while the arc
aptures the application layer performance of the MEH in processing
ata exchanged with the network layer. The attributes of this arc reflect
he MEH performance from the perspective of the running application
nd can be obtained through monitoring tools implemented within the
EH.

The remaining part of the graph considers the available alternative
etwork paths between the client and each MEH supporting the re-
uired application. The values of the attributes of each arc of the graph
re estimated on each link of the network. In some cases, such as on the
ireless network interface, the metrics are estimated from the values

eported in some APIs defined by the MEC architecture.
Fig. 2 shows an example of the graph obtained when the user (node

E) asks for a service that can be offered by four different MEHs located
n nodes 5, 6, 7 and 8. In each of these nodes, the MEH is represented
y the extra node in red (i.e. MEH5A, MEH6A, MEH7A and MEH8A). The
dded extra arcs representing the MEH performance at the application
ayer are in red. The UE has three alternative Points of Access (PoAs)
or accessing the network: PoA1, PoA2 and PoA3. The black arcs of
he graph refer to the network layer. The vector of each arc gives
he values of the considered attributes. In the example, the selected
ttributes are respectively the packet loss probability, the jitter and the
atency. However, other attributes can be used, such as security, energy
onsumption, etc.

This graph serves as the input to the MDA, which generates the
areto front of paths from the client to each candidate MEH, con-
idering the application-level performance. The output of the MDA is
tilized to select the MEH and determine the corresponding path.

.1. Metrics

There are different algorithms for finding the entire set of Pareto-
ptimal paths in the graph presented above. These algorithms, such as
DA, are designed for sum and bottleneck-type metrics. In the case of

ottleneck-type metrics, a simple strategy is to prune from the graph
he arcs that do not satisfy the constraints on the bottleneck metric.

or example, if the service requires minimum datarate, the simple
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Fig. 2. An example of an extended graph. The nodes labeled as MEH5A, MEH6A, MEH7A, and MEH8A represent different MEHs, while the nodes PoA1, PoA2, and PoA3 represent
the available PoAs for the user UE. Node 4 is exclusively utilized for traffic routing, while the remaining nodes, apart from traffic routing, fulfill the functions of the MEH. Each
link is associated with a cost vector denoting packet loss probability, jitter, and latency. The black arcs represent network-layer links, while the red arcs indicate internal links
connecting the application layer of the MEH with the network layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
’’pruning’’ of the arcs non-satisfying this constraint can be applied to
the original graph before running the algorithm. Furthermore, infor-
mation on the maximum datarate given by a particular path can be
obtained considering that the maximum datarate offered by a path
corresponds to the lowest datarate observed in its arcs. In [14], the
authors suggest an alternative approach to deal with a bottleneck-type
metric: they suggest converting it into a sum-type by using reciprocals.
For example, in the case of the available datarate, this bottleneck-type
metric can be converted into a sum-type defining the optimal goal as
𝑓 𝑝 =

∑

𝑎∈𝐴𝑝
(1∕𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒(𝑎)), where 𝑝 is a path and 𝐴𝑝 is the set of

arcs of 𝑝. Referring to the presented example, it is important to note
that latency is a sum-type metric, while the other two metrics, namely
packet loss and jitter, require additional assumptions and manipulation.

Regarding packet loss, it is necessary to assume the independence
of the loss process across consecutive arcs and, more generally, across
diverse arcs. The packet loss probability 𝑃𝑙𝑜𝑠𝑠 on a path 𝐿, composed by
two consecutive arcs (𝑠, 𝑢) and (𝑢, 𝑣) with independent packets losses,
can be computed by means of the probability of the complementary
event ‘‘correct packet delivery’’ (CPD), i.e. 𝑃𝑙𝑜𝑠𝑠 = (1 − 𝑃𝐶𝑃𝐷). The
independence of the packet loss on the links (𝑠, 𝑢) and (𝑢, 𝑣) compos-
ing the path 𝐿 leads that the CPD probability on 𝐿 is given by the
product of the CPD probability on both links of the path, i.e. 𝑃𝐶𝑃𝐷𝐿

=
𝑃𝐶𝑃𝐷𝑠,𝑢

𝑃𝐶𝑃𝐷𝑢,𝑣
. Hence, 𝑃𝑙𝑜𝑠𝑠 of the path 𝐿 can be calculated with the

relation 𝑃𝑙𝑜𝑠𝑠𝐿 = 1 − 𝑃𝐶𝑃𝐷𝑠,𝑢
𝑃𝐶𝑃𝐷𝑢,𝑣

.
This result can be easily generalized to a generic (𝑠, 𝑑)-path 𝑃

composed by 𝑘 arcs:

𝑃𝑙𝑜𝑠𝑠𝑃 = 1 −
𝑘−1
∏

𝑖=1
𝑃𝐶𝑃𝐷𝑖

. (2)

The minimization of 𝑃𝑙𝑜𝑠𝑠𝑃 can be found maximizing ∏𝑘−1
𝑖=1 𝑃𝐶𝑃𝐷𝑖

or, in other words, minimizing (−∏𝑘−1
𝑖=1 𝑃𝐶𝑃𝐷𝑖

). Using the logarithms
property: − log(

∏𝑘−1
𝑖=1 𝑃𝐶𝑃𝐷𝑖

) = −
∑𝑘

𝑖=1 log10(𝑃𝐶𝑃𝐷𝑖
). Hence, in the case of

the packet loss attribute, the sum-type metric for the arc 𝑖 is represented
by − log10 𝑃𝐶𝑃𝐷𝑖

. Using this metric for each link of the graph, the
MDA will find the path with the minimum value of −∑𝑘

𝑖=1 log10(𝑃𝐶𝑃𝐷𝑖
),

which corresponds to the path with the minimum 𝑃𝑙𝑜𝑠𝑠.
Two important assumptions are required when considering jitter.

Firstly, it is assumed that jitter is defined as the variance of latency.
Secondly, the latency in each link is modeled as a Gaussian random
5

process, and the processes associated with different links are assumed
to be independent. These assumptions enable the estimation of jitter
as the variance of the Gaussian model of latency in each link. Fur-
thermore, by assuming the independence of the processes modeling
latency in diverse arcs, the jitter can be transformed into a sum-type
metric. Indeed, these assumptions lead to calculating the jitter of a path
𝐿, composed by two consecutive independent arcs (𝑠, 𝑢) and (𝑢, 𝑣), by
means of the sum of the jitter of each arc:

𝑗𝑖𝑡𝑡𝑒𝑟𝐿 = 𝑗𝑖𝑡𝑡𝑒𝑟𝑠,𝑢 + 𝑗𝑖𝑡𝑡𝑒𝑟𝑢,𝑣. (3)

3.2. Graph without MEH state information

This case refers to the disjoint approach, wherein the selection of
the MEH is determined using dedicated algorithms, while the MDA
is solely utilized for defining the traffic path between the user and
the chosen MEH. Referring to the example of Fig. 2, MDA receives as
input the subgraph 𝐺 = (𝑉 ,𝐴) derived from the graph in the figure
after removing all the red arcs and red nodes, which correspond to the
application layer information.

Let us assume that the dedicated algorithm has selected the MEH
in node 8. In this scenario, the MDA will output the set of all non-
dominated paths between the UE and 8. In general, it provides all
non-dominated paths between UE and any node of the graph. In each
node, the labels related to the alternative non-dominated paths are
lexicographically ordered. The output is presented in Table 2: each row
represents the list of non-dominated labels between the UE and each
node. For sake of clarity, each label includes the node owner, the cost
vector, and the link to the previous node. The link is represented as
a pair, where the first element is the identifier of the previous node
and the second is the identifier of the label in the previous node.
This information is necessary because each node can have multiple
non-dominated labels, and each label may correspond to a different
path. It is worth noting that in the destination node 8, the MDA
provides 6 distinct non-dominated labels. Therefore, selecting one path
from the non-dominated set requires defining a strategy that considers
the application requirements. For example, when the strategy aims to
minimize 𝑃𝑙𝑜𝑠𝑠, the path UE-PoA3-7-8 is selected. On the other hand, if
the goal is to achieve minimum latency with 𝑃𝑙𝑜𝑠𝑠 ≤ 0.01, the available
paths are UE-PoA3-4-5-8 (with lower 𝑃𝑙𝑜𝑠𝑠) and UE-PoA3-6-8 (with
lower jitter).
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Table 2
Output of the MDA algorithm for the example ‘‘Graph without MEH State Information’’.
Node Non-dominated Labels

UE [UE, [0, 0, 0], [’NULL’, ’NULL’]]
PoA1 [UE, [0.0, 1, 10], [UE, 1]]
PoA2 [PoA2, [0.0, 3, 12], [PoA3, 1]], [PoA2, [0.0017, 2, 5], [UE, 1]]
PoA3 [PoA3, [0.0, 2, 10], [UE, 1]]
4 [4, [0.0, 4, 15], [PoA2, 1]], [4, [0.0017, 3, 8], [PoA2, 2]]]
5 [5, [0.0, 6, 19], [4, 1]], [5, [0.0017, 5, 12], [4, 2]], [5, [0.002, 2, 15], [PoA1, 1]]
6 [6, [0.0005, 3, 14], [PoA3, 1]], [6, [0.9002, 4, 11], [4, 2]]
7 [7, [0.001, 40, 11], [PoA3, 1]]
8 [8, [0.001, 44, 21], [7, 1]], [8, [0.0017, 6, 15], [5, 2]], [8, [0.002, 3, 18], [5, 3]],

[8, [0.0026, 4, 15], [6, 1]], [8, [0.9004, 5, 12], [6, 2]]
Table 3
Output of the MDA algorithm for the example ‘‘Graph without MEH State Information’’ with the constraints
𝑃𝑙𝑜𝑠𝑠 ≤ 0.002 and 𝑗𝑖𝑡𝑡𝑒𝑟 ≤ 40 ms.
Node Non-dominated Labels

UE [UE, [0, 0, 0], [’NULL’, ’NULL’]]
PoA1 [UE, [0.0, 1, 10], [UE, 1]]
PoA2 [PoA2, [0.0, 3, 12], [PoA3, 1]], [PoA2, [0.0017, 2, 5], [UE, 1]]
PoA3 [PoA3, [0.0, 2, 10], [UE, 1]]
4 [4, [0.0, 4, 15], [PoA2, 1]], [4, [0.0017, 3, 8], [PoA2, 2]]], [4, [0.002, 2, 15], [PoA1, 1]]
5 [5, [0.0, 6, 19], [4, 1]], [5, [0.0017, 5, 12], [4, 2]], [5, [0.002, 4, 19], [4, 3]]
6 [6, [0.0005, 3, 14], [PoA3, 1]]
7 [7, [0.001, 40, 11], [PoA3, 1]]
8 [8, [0.0017, 6, 15], [5, 2]], [8, [0.002, 5, 22], [5, 3]]
Fig. 3. Best (𝑈𝐸, 8)-path with minimum 𝑃𝑙𝑜𝑠𝑠 chosen among the set of Table 3.
The upper bounds of some attributes, such as 𝑃𝑙𝑜𝑠𝑠 or jitter, can
be directly considered in the MDA. The label-setting procedure can be
modified by eliminating labels that do not meet the constraints on the
upper bounds. For instance, let us consider the case of an application
that requires 𝑃𝑙𝑜𝑠𝑠 ≤ 0.002 and 𝑗𝑖𝑡𝑡𝑒𝑟 ≤ 40 ms. The modified MDA gives
the output shown in Table 3. This revised output contains a reduced
number of non-dominated labels due to the inclusion of upper bounds
on 𝑃𝑙𝑜𝑠𝑠 and jitter. The path with the minimum 𝑃𝑙𝑜𝑠𝑠 obtained from this
table is shown in Fig. 3. Furthermore, among this set, for instance, the
path with the minimum latency is UE-PoA2-4-5-8.

3.3. Graph with MEH state information

In the second scenario, the MDA is employed on the entire graph
depicted in Fig. 2, which includes the information regarding the per-
formance of MEHs at the application layer. The output of the MDA
consists of the collection of all non-dominated paths between the user
(represented by node UE) and the MEHs that can support the desired
application, namely nodes MEH5A, MEH6A, MEH7A, and MEH8A. For
each candidate MEH, the cost vector is derived by augmenting the
non-dominated set, as presented in Table 3, with the additional costs
associated with the application layer performance (represented by the
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red links in Fig. 2). The outcomes of this process are illustrated in
Table 4.

Depending on the specific application requirements, the selection
of the MEH considers various parameters. For instance, in the case of
an application prioritizing minimum 𝑃𝑙𝑜𝑠𝑠, the chosen MEH is MEH6A.
The (𝑈𝐸,𝑀𝐸𝐻6𝐴)-path selected from the non-dominated set provided
by MDA is depicted in Fig. 4. In the scenario where the application
prioritizes minimum latency while also favoring low 𝑃𝑙𝑜𝑠𝑠, the selected
MEH remains MEH6A.

4. Experimental performance evaluation

This section thoroughly presents the experimental setup of the
testbed. This emphasis is motivated by the need to ensure transparency
and reproducibility of our work. Moreover, the experimental setup is
instrumental in elucidating the pivotal role of the proposed controller,
which stands as one of the key contributions of this paper. To evaluate
the developed MDA-based controller, a hybrid (simulative-emulative-
experimental) testbed based on AdvantEDGE has been implemented.

AdvantEDGE platform provides an emulated and experimental en-
vironment with edge-enabling technologies [15]. The platform runs on
Docker and K8s, and provides experimentation with MEC deployment
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Table 4
Cost and non-dominated paths for each MEH - Case ‘‘Graph with MEH State Information’’ with the constraints
𝑃𝑙𝑜𝑠𝑠 ≤ 0.002 and 𝑗𝑖𝑡𝑡𝑒𝑟 ≤ 40 ms.
MEH Non-dominated Labels to achieve the network layer of the MEH

MEH5A [5, [0.3, 6, 34], [4, 1]], [5, [0.3017, 5, 27], [4, 2]], [5, [0.302, 4, 34], [4, 3]]
MEH6A [6, [0.1005, 3, 24], [PoA3, 1]]
MEH7A [7, [0.101, 40, 26], [PoA3, 1]]
MEH8A [8, [0.3017, 6, 30], [5, 2]], [8, [0.302, 5, 37], [5, 3]]
Fig. 4. The (𝑈𝐸,𝑀𝐸𝐻6𝐴)-path derived from the graph shown in Fig. 2, while adhering to the constraints 𝑃𝑙𝑜𝑠𝑠 ≤ 0.002 and 𝑗𝑖𝑡𝑡𝑒𝑟 ≤ 40 ms. The path with lowest 𝑃𝑙𝑜𝑠𝑠 is chosen
from the set of non-dominated paths shown in Table 4.
models along with their applications and services. The emulation plat-
form supports several standardized APIs and edge services standardized
by the ETSI MEC, including ETSI MEC 013 Location [16], ETSI MEC
012 Radio Network Information [17], ETSI MEC 028 WLAN Informa-
tion [18], ETSI MEC 011 Edge Platform Application Enablement [19],
and ETSI MEC 021 Application Mobility [20]. AdvantEDGE allows
the mobility of the UEs within the network by using its own APIs
to evaluate the impact on the application performance. The platform
allows for configuring the network layer performance in the 5G-MEC
architecture through the AdvantEDGE API, which includes settings for
latency, jitter, throughput, and packet loss for each link in the emulated
network scenario. The platform allows mobility events, UE movement
and mapping of the geo-location of each element. The UE movement
can be monitored and visualized by using the Geospatial Subsystem.
Furthermore, AdvantEDGE supports the inclusion of MEHs that are not
emulated but running on separate devices.

To address performance at the application layer, the scenario incor-
porates MEHs capable of running and migrating applications as needed.
These MEHs form a unified cluster of K8s nodes. Transport-related data
is obtained from the AdvantEDGE platform, while application-related
information is acquired from the MEC. Interaction with AdvantEDGE
allows for the retrieval of transport information, primarily utilizing the
location API [16]. During the experimentation phase, the location API
is leveraged to track the physical location of UEs within the network,
acquiring the necessary graph information as input for MDA. In the
presented experiments, the VLC application [21] is utilized, where the
VLC client operates on the UE, while the VLC server is hosted on an
MEH.

Fig. 5 shows the physical testbed with logical connectivity of the
involved elements. The testbed is composed of 3 GIGABYTE(32/512)
Intel i7 NUCs. NUC1 is responsible for running the emulated network
scenario implemented with AdvantEDGE, as well as hosting the VLC
client of the UE. The AdvantEDGE platform is installed on a single
K8s node running Ubuntu 20.04.4 LTS Operating System (OS). Ac-
cess to the AdvantEDGE platform GUI is achieved through the IP
address 192.168.64.68, enabling the configuration and deployment of
the emulated network scenario.

NUC2 is designated as the MEH responsible for the initial deploy-
ment of the MEC App, specifically the VLC server. Conversely, NUC3
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serves as an alternative MEH to which the MEC App can migrate. The
choice between NUC2 and NUC3 as the migration destination depends
on the geographical position of the UE. In the scenario configuration,
the external MEC App is associated with the MEH by using the IP
address and the port number of the related NUC2 and NUC3. This
enables AdvantEDGE to provide support for conducting experiments
involving external nodes and applications.

4.1. Migrating the MEC App

The K8s cluster, shown in Fig. 6, comprises a master node and
one or more worker nodes. The master node has the control plane
functions necessary to coordinate and orchestrate the activities of the
worker nodes of the cluster. It plays a crucial role in managing the
overall cluster state, scheduling pods, and exposing the API for cluster
interactions. The main components of a master node, shown in the
figure, are the following:

• The Kube API Server acts as the central control point for interact-
ing with the K8s cluster. It exposes the K8s API, allowing users,
administrators, and other components to communicate with the
cluster.

• The Controller Manager is responsible for maintaining the desired
state of the cluster. It continuously monitors the cluster resources
and ensures that the current state matches the desired state
defined in the cluster configuration.

• The Scheduler is responsible for assigning pods to nodes in the
cluster based on resource requirements, node constraints, and
other policies.

• The etcd is a distributed key–value store used by K8s to store
the cluster configuration data, including information about nodes,
pods, services, and other objects.

• Kube-proxy is a component that runs on each node of the K8s
cluster and is responsible for implementing the necessary net-
work routing for services based on instructions received from the
control plane. Specifically, when a pod is migrated, Kube-proxy
updates the network configuration of local node to ensure that
client traffic destined for the service virtual IP address is correctly
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Fig. 5. The testbed.
routed to the appropriate pods backing the service. A service is a
method used in K8s for exposing a network application that runs
as one or more pods.

The worker node is responsible for running the actual workloads,
including containers and pods. It contributes to the overall execution
and management of workloads in the K8s cluster, allowing applications
to run and scale efficiently across the distributed environment. To
achieve this goal, a worker node implements the following functions
shown in the figure:

• Kubelet is an agent that receives instructions from the master
node, schedules pods onto the node, and monitors their health
and resource usage. It is responsible for managing the state of the
node and ensuring that the containers and pods on the node are
running as expected.

• The Container Runtime is responsible for running and manag-
ing containers. It provides the environment for running appli-
cation containers and manages their lifecycle, including image
management, container creation, starting, stopping, and resource
isolation. An example of a container runtime is containerd.

• Kube-proxy enables the communication between services and
pods within the cluster. It manages network routing, load balanc-
ing, and service discovery, allowing applications to communicate
with each other and access services seamlessly.

• The Pod is the fundamental unit of deployment in K8s. Pods
encapsulate one or more containers and share the same net-
work namespace, storage volumes, and scheduling constraints.
The worker node ensures that the containers within the pods
are running and handles their lifecycle, resource allocation, and
networking.

Referring to this general architecture of a K8s cluster, the NUC2
implements both control plane functions of a master node and data
plane functions of a worker node, while NUC3 is only a worker node.
8

To enable manual pod migration in K8s, additional elements and
configurations need to be incorporated into the cluster. By default, K8s
does not support manual pod migration between nodes initiated by the
operator. However, it offers built-in mechanisms for pod migration in
specific scenarios, such as node draining or when constrained by other
factors. In this case, an extended version of K8s is utilized, as referenced
in [22], which incorporates the essential features and functionalities
needed for smooth and efficient pod migration operations.

In this architecture, the MEC App is implemented in a Docker
container and deployed using a pod referred to as video pod that
supports the VLC server application. The runtime migration is imple-
mented by using the extended K8s version, allowing the runtime pod
migration to use the CRIU tool. CRIU enables the checkpointing and
live migration of running containers from one node to another within
a K8s cluster. When a pod migration is initiated, CRIU captures the state
of the running containers, including their memory, file system, and
network connections. This captured state is subsequently transferred to
the target node, where it is used to restore the containers, ensuring un-
interrupted execution. In the testbed, an important aspect is preserving
the state of the VLC server by retaining the last transmitted frame of
the video stream for each individual user.

Fig. 7 shows the details of the architecture responsible for the
video pod migration. NUC2 and NUC3 implement the extended K8s
version necessary for application migration. This extended version of
K8s (in specific the pod migration API server) is an element
that provides support to the kubectl-migrate and kubectl-
checkpoint commands [22], which have been integrated into
kubectl, the command-line interface (CLI) tool used to interact with
the K8s cluster. It acts as a control plane client and allows users to
manage and control various aspects of the cluster. The pod migra-
tion API server facilitates information exchange between the pod
migration controller, UE App (i.e., the VLC client), and the K8s
nodes. It directs the pod migration from NUC2 to NUC3 and vice versa.



Computer Networks 240 (2024) 110168

9

P.V. Wadatkar et al.

Fig. 6. K8s cluster and components.

Fig. 7. Architecture for video pod migration in the experimental testbed.
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During the experiments, the controller developed for testing MDA
runs on NUC1 and interacts with AdvantEDGE. The controller utilizes
the APIs of ETSI MEC specifications provided by the platform to acquire
UE and network information. This acquired information is utilized by
the MDA to determine the need for triggering the migration of the
MEC App. When migration becomes necessary, the developed controller
sends a request to the Kube API Server, which initiates the migra-
tion by sending the request to the pod migration controller.
This controller generates two essential commands, namely kubectl-
checkpoint and kubectl-migrate, for the migration process.

he kubectl-checkpoint command is responsible for creating a
heckpoint of the running container and saving its state as files on
he respective nodes. Conversely, the kubectl-migrate command
acilitates the migration of the application within the nodes.

The pod migration controller is a component that facilitates
he migration of pods from one node to another within a K8s cluster. It
anages the process of moving pods while ensuring minimal disruption

o the running applications. It is worth noting that this element is not
irectly connected to the Controller Manager, which primarily manages
he deployment and health of nodes and pods. The pod migration
ontroller used in this architecture includes Customized Resource
efinition (CRD) and a custom controller to monitor the pod migration
ithin the K8s cluster. The CRD mechanism supports user-defined
ata types in K8s and allows the design of the required state, which
ill be transferred to the target node by the pod migration con-
roller. When the migration is triggered, this controller orchestrates

he migration process by following a set of steps:

• Designate a specific pod migration controller that will assume the
responsibility of overseeing the entire pod migration process.

• Identify the pod to be migrated.
• Prepare the target node by ensuring that it has the necessary

resources and dependencies to accommodate the migrated pod.
This may involve allocating resources, setting up networking, and
preparing the environment.

• Capture the state of the pod on the source node, including its net-
work connections, attached volumes, and other relevant informa-
tion (in the considered framework, this is done by checkpointing
the application). This state information is crucial for preserving
the pod functionality during the migration.

• Transfer the captured state from the source node to the target
node through the network connecting the two NUCs. This step
ensures that the pod state is replicated on the target node.

• Initiate the restoration process on the target node. Once the
state transfer is complete. The controller ensures that the pod
containers are started, network connections are established, and
any necessary dependencies are met. The pod resumes execution
on the target node, seamlessly continuing its tasks.

• Update the Kube API server, reflecting the changes in the pod
location and status.

The source node updates its state by removing the migrated pod
nd reclaiming any previously allocated resources. The Kube API
erver maintains the logs of each step in the application migration
rocess, including the time of the migration request and its completion.
t also manages the synchronization between the nodes to ensure proper
oordination throughout the migration process.

A shared NFS folder, /var/lib/kubectl/migrate, is created
and utilized to facilitate the sharing of recorded checkpoint information
acquired in the MEH where the MEC App is running. In the testbed,
NUC2 is configured as the NFS server, while the NUC3 worker node
cts as the NFS client.

The successful migration of the MEC App depends on the coordina-
ion and interaction of these components, as well as the compatibility
nd appropriate configuration of the extended K8s version. The use
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f CRIU and the integration of the extended K8s version enable the
checkpointing and migration of running containers, ensuring a smooth
transition of the MEC App between nodes within the K8s cluster.

The implementation of MEC and MDA may require a high level of
technical expertise and resources. However, in our testbed we do not
require any customization of the MEC architecture but the developed
controller, which can be seen as part of the MEO, allows to easily
integrate MEC and MDA and hides the MDA complexity. The controller
collects the system information by exploiting the standard MEC APIs.
This information includes data such as UE location, Radio Signal-to-
Noise Indicator (RSNI), link performance, and other telemetry data.
The information is then delivered to the MDA, which consequently
computes a solution. The controller then applies the MDA solution in
the system. Additionally, in general ETSI simplifies the implementation
of MEC by giving the option of reusing elements of Network Function
Virtualization (NFV) to implement the MEC architecture [23].

4.2. Network scenario

The design of the network scenario is motivated by the impera-
tive need to conduct a functional experimental evaluation of the pro-
posed controller proof-of-concept. The chosen scenario is intentionally
crafted to encompass a dynamic environment with multiple handovers
and mec-app migrations. This deliberate scenario construction aims to
stress-test the capabilities and responsiveness of the proposed controller
under conditions simulating real-world challenges in contemporary
wireless networks.

Fig. 8 shows the starting point of the network scenario as depicted
in the AdvantEDGE GUI. The scenario consists of a single UE (ue1)
ocated in zone1, while zone2 and zone3 contain the emulated MEHs
edge1 and edge2 respectively. In the testbed, edge1 is deployed in
NUC2, whereas edge2 is deployed in NUC3. Each zone is equipped
with a different network access technology: zone1–WiFi, zone2–5G,
and zone3–4G. Depending on its location, the ue1 can establish a
connection to the MEHs through one of the two PoAs available within
each zone. The MEHs are represented by blue boxes in the figure, while
the brown boxes indicate the locations of the application elements.
In this particular scenario, the application elements consist of the
Video Pod (mec-app) running in MEH edge1, and the VLC client
(vlc1) running on ue1. The physical UE is depicted as a green box,
while the antennas represent the PoAs. In the figure, Operator1 is
the ISP, which provides the IP connectivity through the three access
technologies and the IP services supported by the MEC architecture.

The AdvantEDGE platform facilitates the assignment of physical
locations for each element depicted in the scenario. The three distinct
networking technologies of the PoAs are geographically mapped in
different locations, as illustrated in Fig. 9. The geographical setting
represents the area surrounding the Arno River in Pisa. The WiFi PoAs
have a coverage radius of 200 m (indicated in red), while the 5G PoAs
span 500 m (in orange) and the 4G PoAs extend up to 1000 m (in
purple). The blue line in the figure indicates the path followed by ue1
for the experimental analysis.

4.3. Applying MDA

The graph of the considered network scenario is shown in Fig. 10.
In this case as well, the attributes assigned to each link are the packet
loss probability, jitter, and latency. The links connecting op1 with the
various zones are assumed to operate at a datarate of 2 Mbps. The
black links and wireless connections between the PoAs and ue1 within
the coverage range have a datarate of 100 Mbps. Furthermore, the
datarate for the connection between the application layer of the MEH
and the corresponding network layer of the supporting node is 1 Gbps,
as indicated by the red link in the figure.

During the experimental sessions, the GIS API (getGeoDataBy
Name) is utilized to acquire information regarding the physical position
of ue1, which is necessary for calculating the distance between ue1
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Fig. 8. Network scenario described by the AdvantEDGE GUI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Map of the scenario considered in the experimental analysis with AdvantEDGE platform. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. Graph depicting the network scenario being analyzed, with each link accompanied by a vector representing the metrics of packet loss probability, jitter, and latency.
The blue links operate at a datarate of 2 Mbps, while the black links and wireless connections between the PoAs and ue1 within the coverage range operate at a datarate of 100
Mbps. The red links connecting the application layer of the MEH and the corresponding network layer have a datarate of 1 Gbps. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
and the various PoAs. This information is employed to determine the set
of PoAs capable of providing connectivity to ue1. Given the distance
between the PoAs and the UE, AdvantEDGE lacks the capability to
dynamically compute the datarate of the corresponding wireless links.
However, it does provide information regarding the available PoAs,
i.e., PoAs that have the UE within their coverage range. When a PoA
is available, the datarate is set to the value manually configured by
the user during the setup of the network scenario. The Sandbox API
(sendEvent) of AdvantEDGE enables the capability to change the PoA to
which ue1 is connected (i.e. performing the PoA handover), allowing
for PoA handover, during runtime. The data required for constructing
the graph, including nodes, arcs and their attribute values, can be
obtained at runtime by using the APIs of the MEC architecture. To
simplify the experimental tests, the attribute values of the arcs are
assumed to remain constant throughout the experiments. Therefore,
these values have been manually configured in AdvantEDGE.

The test is based on the application of MDA to the dynamic graph
generated by using AdvantEDGE information. It is worth noting that
the attributes of the link are assumed constant, but the mobility of ue1
varies the alternative links available to the ue1 to reach the available
MEHs. Depending on ue1 location, the MDA output gives the selected
MEH and the serving PoA of ue1, which establish the traffic path in
the considered scenario.

Table 5 presents the performance parameters of the available paths
from the UE to the MEH for all available PoAs and MEHs. The values
presented in the table indicate the performance obtained from the
MDA output when the UE is located within the coverage range of the
respective PoA. The table highlights that the dominant solution is to
connect to 5G-1 and utilize MEH edge1. Consequently, when the UE
is near location 1 and within the coverage range of 5G-1, 5G-1 and
edge1 are selected. If 5G-1 is not within range, then the predominant
solution is 4G-2 with the utilization of MEH edge2.

It is worth noting that AdvantEDGE does not consider the control
plane procedures for executing handovers between PoAs of the same
technology or between different technologies (i.e. multi-Radio Access
Technology (multi-RAT) handover). As a result, the delay and certain
performance issues (such as packet loss or increased jitter) induced by
these procedures are neglected.

4.4. Test execution

The simulation involves the interaction of multiple components:
AdvantEDGE, the developed controller with MDA, and K8s. The logic
12
of the developed controller is described by the flow chart shown in
Fig. 11.

The figure illustrates the initial configuration of the network sce-
nario in AdvantEDGE, including the placement of PoAs, zones, MEH,
and the performance parameters of the links. Additionally, the settings
for the initial position, speed, and application-related parameters of
ue1 are required. Subsequently, the movement of ue1 is initiated
using the automation feature in the AdvantEDGE GUI, allowing ue1
to access its application. In this specific case, the VLC client begins
displaying the video stream provided by the mec-app (i.e., the VLC
server) hosted in edge1. All this information is loaded by using the
AdvantEDGE-specific API known as Sandbox API. The test is prepared
for execution once the developed controller subscribes to the ETSI-
specific MEC (013) location service API. This subscription is essential
for obtaining real-time data necessary to generate the network graph,
which serves as input to the MDA algorithm. Specifically, the location
of ue1 is monitored every second, enabling the application of the MDA.

In general, the output of the MDA determines the MEH that will
support the UE service mec-app and the path to connect ue1 with
the selected MEH. The first aspect may require the migration of the
mec-app, while the second aspect can modify the path. Due to the
simplified network configuration in AdvantEDGE, the traffic path can
only be modified through a PoA handover. As previously mentioned, a
PoA handover entails the migration of the mec-app and vice versa,
as indicated by the values in Table 5. Therefore, the flow chart in
Fig. 11 solely includes the control for the required PoA handover, as
this change also involves the migration of the mec-app. In general,
two separate controls, one for the PoA (or path in the general case)
and one for the MEH, are necessary to account for the other cases: i)
no PoA handover and no App migration, and (ii) PoA handover but no
App migration.

In the case where the MDA triggers a PoA handover, two actions are
required. First, the PoA handover is posted through the Sandbox API of
AdvantEDGE. This action is necessary to establish the new traffic path
between ue1 and the mec-app.

Secondly, if the new path leads to a different MEH, the mec-app
migration request is sent to the pod migration controller via
Kube API server. Upon receiving this request, the pod migration
controller creates and assigns a dedicated video controller pod for
the migration process. The video controller pod verifies the information
of the mec-app pod, including the pod name and its running status.
Once the mec-app pod name is obtained, the pod migration con-
troller migrates the pod to the designated MEH using the kubectl
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Table 5
Performance parameters of the path for the experimental tests as a function of the PoA and MEH.
edge1-UE WiFi-1 4G-1 5G-1 WiFI-2 4G-2 5G-2

PLoss (%) 0 0 0 1 0.0079 1
Jitter (ms) 9 12 9 12 11 13
Latency (ms) 22 35 21 22 27 26
Min. Data Rate (Mbps) 2 2 100 2 2 100

edge2-UE WiFi-1 4G-1 5G-1 WiFI-2 4G-2 5G-2

PLoss (%) 0 0 0 1 0.0079 0.1
Jitter (ms) 9 10 11 12 9 15
Latency (ms) 22 23 33 22 22 38
Min. Data Rate (Mbps) 2 100 2 2 100 2
p
e
a
c

Fig. 11. Flow chart depicting the logic of the developed controller for the network
cenario under consideration. The migration is triggered by the PoA handover, as
ndicated by the MDA results presented in Table 5.
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Table 6
Features of transmitted video - Audio and video bitrate refer to the average values.

Codec Video bitrate Audio bitrate Width Height

H.264 3060 kbps 256 kpbs 1920 px 1080 px

commands. A new name is assigned to the migrated mec-app pod
based on the MEH selected by the MDA output. Subsequently, the
video controller pod verifies the updated information of the new mec-
app pod, such as its running status, and relays this information to
the pod migration controller. Finally, the pod migration
controller deletes the associated video controller pod and checks
the status of the mec-app pod in the new MEH using K8s.

The verification process may encounter errors due to various rea-
sons, such as the non-existence or non-running state of the mec-app
pod in the new MEH, or the absence of the current application state
in the shared NFS folder, among others. In such cases, the strategy
involves sending a new request to the pod migration controller
to attempt another migration of the same mec-app.

On the contrary, if the control confirms the successful completion of
the pod migration, the mec-app service is resumed. It is important to
note that the information regarding the restart of the mec-app service
is limited to the VLC server, as K8s cannot verify if vlc1 maintains the
service session. During the experimental tests, it is observed that when
the mec-app restarts, the vlc1 application maintains the session, and
user experiences minimal service degradation.

5. Experimental results

Experimental tests are conducted on the same testbed, exploring
two distinct network scenarios. These scenarios primarily differ in the
presence or absence of the MEH edge2, while MEH edge1 is always
present. In the first scenario, the aim is to assess the benefits of service
migration between the two MEHs when such migration becomes nec-
essary to maintain the desired service quality. In the second scenario,
the focus shifts towards observing the degradation in QoS when the
service relies only on MEH edge1. In this case, the mobility of ue1
leads to the PoA handover to maintain the network connection, but
the traffic path from the new PoA to MEH edge1 does not satisfy the
QoS requirements.

In both cases, as detailed in Section 4.1, a videostreaming service is
considered, implemented by means of a VLC server supported by a pod
of the K8s framework. The VLC server streams the video by using the
MPEG Transport Stream (MPEG TS) protocol, defined in the ISO/IEC
standard 13818-1 [24], over TCP. The video shows ‘‘Big Buck Bunny’’
movie and lasts 597𝑠. The main features of the video are summarized
in Table 6.

The traffic generated by the VLC server is delivered to the UE-
app (i.e., the VLC client) through the network emulated by Advant-
EDGE. The playout buffer of the VLC client is set to 1𝑠. On the data
lane, AdvantEDGE adds packet loss, delay jitter, latency and controls
ach packet transmission time (related to the available link data rate)
ccording to the network characteristics set in the scenario. As a
onsequence, the quality of the streamed video might be affected to

arious degrees by the performance of the used network links.
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5.1. Performance parameters

During each test, two different classes of performance parameters
are collected and analyzed. The first class refers to the parameters
obtained from the Grafana dashboard [25] of AdvantEDGE, which are
used to acquire data during the emulation. Grafana retrieves metrics
such as latency, UL/DL throughput, UL/DL packet loss, and handover
events from the InfluxDB database. AdvantEDGE deploys InfluxDB as
a pod, creating a dedicated database for the mentioned metrics for
each scenario deployment. This information remains available during
runtime and until the scenario is redeployed. The data visualized in
Grafana can be exported in csv format at the end of the experiment.

he following parameters are considered:

• Latency is the time a packet takes to be transferred from the
ingress to the egress point of AdvantEDGE. Considering a path
composed of more than one arc, the overall latency is calcu-
lated as the sum of latency values across each arc. AdvantEDGE
generates the packet latency values by using a random variable
following a Gaussian distribution. Referring to the parameters
configured for each link of the AdvantEDGE network scenario, the
mean of the distribution represents the latency parameter, while
the standard deviation corresponds to the jitter. Each second,
Grafana shows the latency obtained by averaging the latency
observed by the packets arriving at the egress point in consecutive
and non-overlapping time windows of 1 ms.

• Throughput is the maximum amount of data that can be trans-
mitted in one second. In AdvantEDGE, the data rate can be
configured for each link in the emulated network scenario. The
reported value is determined by monitoring the throughput of the
designated traffic flow at the egress node of AdvantEDGE. In the
considered analysis, the chosen node is ue1.

The second class refers to the subjective QoE that is observed by the
ser during the service. The considered parameter is the Mean Opinion
core (MOS), which represents the mean of the absolute score given by
he customers according to their satisfaction during the visualization
f the video. As recommended by the ITU-T P800 standard [26], an
bsolute Category Rating (ACR) is used to score the experience by using
five-point category-judgement, from 1 (Bad) to 5 (Excellent).

.2. Results: Scenario with two MEHs

In this scenario, the data rate available between the two NUCs
mplementing the two MEHs is set to 1 Gbps. During the experimental

run, the selection of the PoA and MEH used by ue1 is determined by
the MDA algorithm, which receives input from the MEC APIs of Ad-
vantEDGE. The selection process considers the geographical position of
ue1. Table 5 summarizes the performance parameters of the computed
path by the MDA when ue1 is within the coverage of different PoAs.
Upon observing the table, it can be noted that ue1 connects to either
5G-1 or 4G-2 based on its geographical position. Furthermore, when
ue1 is connected to 5G-1, the MDA recommends utilizing edge2 as
the associated MEH. Instead, if the ue1 is connected to 4G-2, the MDA
suggests utilizing edge1 as the preferred option. Given these particular
MDA results, during the movement of ue1, both the PoA handover
and the MEH service migration occur simultaneously. Fig. 12(a) dis-
plays the end-to-end latency obtained from Grafana, along with the
moving average of this time series using a window of 20 samples. As
explained in the legend, the vertical lines represent the PoA handovers
of ue1 (e.g., 5G-1 or 4G-2), which coincide with the initiation of the
mec-app migration. The figure presents a specific time period of the
experimental test to illustrate the latency between the MEH and UE,
as well as the occurrences of handover events. Table 7 displays the
maximum, minimum, and average latency values calculated over the
14

entire run.
Table 7
MEH-UE latency.

Average Minimum Maximum

36.35 ms 19.32 ms 61.06 ms

Table 8
Statistics on observed mec-app migration time in ms.

95% C.I. Median Min Max 95th percentile

3015.46 ± 134.533 2866.5 1459 6789 3903.7

Fig. 12(b) shows the measured throughput at ue1, along with the
traffic generated by the VLC server and the PoA handover events.
The dashed blue lines represent the traffic generated by the VLC
server, which was measured using Wireshark [27] under ideal network
conditions with no packet loss and high data-rate in each network link.

During the experimental analysis, the ue1 follows the circular track
shown in Fig. 9, with each lap lasting approximately 3 min. Within each
lap, two migrations occur between MEH edge1 and MEH edge2, and
vice versa. The test concludes after observing 100 mec-app migration
events. The collected data is then analyzed to evaluate the performance
of the K8s platform in terms of mec-app migration time. Table 8
presents the statistical parameters for the observed migration times.
It can be observed that approximately 5% of the migrations require
more than 3.9 s, while the minimum values are below 2 s. By setting
the playout buffer of the VLC client to 1 s, the degradation of the video
experienced by the end-user is mitigated.

During the migration of the mec-app, often the videostreaming
service experiences a temporary freeze on a single image until the
migration process is completed and the VLC server is restored. In
particular, in 11 out of the 100 migration events, the freezing phe-
nomenon of the streamed video was not detected by the user. The video
continued to play without any noticeable issues, such as momentary
image freezing caused by the need to refill the playout buffer. This
result can be primarily attributed to the low migration time and to
the size of the playout buffer of the VLC client, which allows for the
absorption of video data loss for a period of 1 s. In the remaining
migration events, a temporary freezing of the video stream for a few
seconds was observed, but the image remained of high quality and free
from artifacts. Fig. 13 presents a sample video image captured during a
service migration. The yellow bar and the play button, highlighted by
the red ellipses at the bottom of the figure, indicate that the VLC client
is buffering the video and the image is temporarily frozen. However, in
the worst case, the video restarts after approximately 5 s. In summary,
the experimental tests result in high-quality video with a MOS score of
4.

During the experiment, the viability of the migration strategy used
in the developed testbed is analyzed. The first viability analysis assesses
whether the application can initiate and function properly on the target
MEH after the migration. The experimental analysis demonstrates that
the developed testbed successfully supports application migration while
preserving the necessary user state, resulting in a migration process that
is nearly transparent to the end user.

The second viability analysis assesses whether the mec-app migra-
tion can be completed within a time period that allows the application
to remain in the target MEH without requiring another migration.
To achieve this objective, the interarrival times between consecutive
service migration commands are analyzed. The ue1 follows a circular
path with a distance of approximately 0.611 km between two MEHs.
Analysis of the data reveals that the migration command is generated
with interarrival times ranging from 85 to 87 s. These values exceed the
maximum observed mec-app migration time, which is approximately
6.8 s, as presented in Table 8. Thus, the migration process is completed
before a new migration is triggered.

The size of the data containing the app state information of the

client at the VLC server is on the order of kilobytes. These data are
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Fig. 12. Performance parameters observed in the scenario with two MEHs. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
rucial for resuming the streaming at the new MEH after the migration,
tarting at the exact point (in the considered experiment, the same
mage and audio) where it was paused in preparation for the migration.

.3. Results: Scenario with one MEH

In this scenario, the VLC service is exclusively provided by the
EH edge1. Referring to Table 5, the quality of the paths associated
15
with the three available PoA options in location 2 is relatively similar,
except for the minimum data rate. Considering this parameter, the
strategy that takes into account the constraint on the minimum data
rate required to support the application suggests using 5G-2 in this
location. MDA can incorporate the constraint on the minimum data
rate requirement by excluding all links from the actual graph that have
a data rate lower than the minimum requirement. However, for the
purpose of comparing the results of this scenario with the previous

ones, the selection of PoA 4G-2 is maintained.
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Fig. 13. Paused image during the mec-app migration.
Figs. 14(a) and 14(b) show the latency and traffic curves, along
with the PoA handover events, for a single run of 200 s. During
this period, three PoA handover events occurred. As observed in the
experiment, when the ue1 is connected to 4G-2, which is further
away from edge1, the latency exhibits significant oscillations with
very high values (around 1 s). Additionally, the figure reveals that
during certain periods, the latency appears to be constant. However,
no packets are arriving at the egress point of AdvantEDGE during these
periods. This phenomenon may be attributed to a link datarate in the
network scenario that is lower than the offered traffic. Consequently,
the K8s framework of AdvantEDGE may experience packet loss in the
network queuing systems, causing the interruption of data acquisition
for latency measurements. Further investigation is required to under-
stand this phenomenon. In these periods, the video quality is severely
degraded, with the VLC client displaying a frozen frame of poor quality,
as depicted in Fig. 15(b). Instead, when the ue1 is connected to 5G-
1, the traffic arrives consistently. AdvantEDGE provides the observed
latency between the MEH and the ue1, which fluctuates based on the
link configuration of the scenario. In such cases, the video resumes
after a brief period, exhibiting good image quality. Referring to the
throughput curves in Fig. 14(b), when ue1 is connected to PoA 4G-2,
the measured throughput (red curve) is bounded by 2 Mbps. However,
there are periods when the offered traffic exceeds this limit, resulting
in the very high latency values observed above. When the ue1 position
allows for the use of PoA 5G-1, the latency returns to the tens of
milliseconds range, and the measured throughput at the VLC client
aligns with the traffic offered by the VLC server.

To illustrate the impact on the observed quality from the user
perspective, Fig. 15 is presented. This figure enables a comparison of
the image quality when the ue1 is located in location 2. As depicted in
Fig. 15(b), the image quality is poor. When comparing this figure with
Fig. 15(a), obtained during the test with two MEHs, the enhancement in
quality observed by the end-user becomes apparent upon the execution
of the mec-app migration.
16
6. Related works and novelties

Numerous recent works analyze various technical challenges of
MEC. Recent surveys, such as [28–30], summarize the results on three
key aspects of the 5G-MEC integrated scenario: security, dependability
and performance. Other surveys, such as [31], review the works related
to resource allocation in 5G-MEC systems.

The related works can be categorized into two primary classes,
although some, like this paper, consider aspects related to both:

• Protocols and Architecture: These works focus on presenting archi-
tecture solutions, introducing new elements and protocols aimed
at reducing service downtime during migration. They also com-
pare VM-based approaches with container-based ones and define
strategies to minimize service downtime. The focus is on the
protocol and architecture for service migration.

• Optimization Algorithms: These works define optimization prob-
lems and algorithms considering specific use-cases, with limited
consideration of the protocols and network architecture necessary
for deploying the proposed solution.

The methodology employed for performance analysis varies across
different works. Some present simulation studies based on ad-hoc mod-
els, while others use emulation tools or adopt an experimental ap-
proach, integrating a proof-of-concept implementation into a simplified
network scenario. This paper utilizes a hybrid (simulative-emulative-
experimental) approach. A summary of the novelties of this paper
compared to related works, along with a comparison with a selected
set of related works, is provided in Section 6.3.

6.1. Protocols and architecture

Focusing on the MEC handover process, Plachy et al. [32] consider
that computational resources in the edge are represented by VMs. Thus,
the MEC handovers are performed through VM migration (and in gen-
eral of edge applications migration). This migration implies a rerouting
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Fig. 14. Performance parameters observed in the scenario with one MEH.
f the traffic to reach the new service location and, in some cases,
n exchanging of traffic between the MEHs. Sharghivand et al. [33]
ropose an Online Service Handoff Mechanism (OSHM) to provide an
fficient path dynamically for transferring VM/container from the cur-
ent serving cloudlet to a nearby cloudlet at the destination of a mobile
ser. Sarrigiannis et al. [34] explore the implementation of application
nd VNF migration within an MEC-enabled 5G framework to improve
esource optimization and accommodate application-specific demands.
pplication migration is triggered when MEC resources are depleted,
17
involving the relocation of VMs to better utilize computing resources.
VNF migration complements this by reconfiguring network components
to address heightened 5G application requirements, especially during
periods of increased network traffic.

The volume of traffic exchanged between the source and target
MEH depends on the type of migrations (stateless or stateful [35])
and proactive strategies aimed at minimizing the time required to
complete the MEC handover. For instance, Machen et al. [35] introduce
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Fig. 15. Comparison of image quality observed with MEH migration and with one MEH.
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a layered framework for migrating active service applications encapsu-
lated in either VMs or containers. This layered approach significantly
reduces service downtime. However, automated orchestration is crucial
to implement mechanisms that deploy applications at optimal locations
and, when necessary, relocate them to meet QoS requirements. Fondo
et al. [36] describe an architecture implemented in an experiment
demonstrating how Open Source MANO (OSM) can automate the relo-
cation of a video processing application aiding drivers in recalling the
latest traffic sign viewed. They propose to add two new components:
the first one maintains the state of applications when deployed at a
new location, and the second one enables OSM to manage the Open
Network Edge Services Software (OpenNESS) edge platform. Wadatkar
et al. [37] present a performance evaluation study of a migration
technique based on Docker and K8s.

The migration of containerized MEC applications is a key research
challenge for supporting low-latency services and for efficient network
resource utilization. The migration is necessary to maintain service
proximity, reducing the distance between the end user and the ap-
plication. Different works propose migration strategies [38,39] and
experimental comparisons of them [7]. However, for migrating MEC
applications, pod migration might be preferred over container migra-
tion due to the orchestration and management functions given by
K8s. Indeed, K8s provide application portability within the cluster that
neglects the complexity of the underlying infrastructure and network
condition configurations by offering services such as load balancing,
service discovery and fault tolerance. K8s has a default behavior of
rescheduling or evicting pods to healthy nodes in the event of a node
failure, ensuring the continuity of applications. However, K8s does not
inherently handle the check-pointing or preservation of the application
state during this process. Consequently, when a pod is replaced by a
new instance, the new pod starts somewhere else and does not retain
any information or state from the previous pod. To cope with this issue,
Schrettenbrunner [40] introduces a migration controller and provides a
prototype implementation that demonstrates the feasibility of the pro-
posed approach. Junior et al. [41] present a pod migration mechanism
in K8s that enables seamless migration of pods between nodes within a
geo-distributed environment. The migration process involves stopping
and check-pointing the pod memory state and system-level resources,
transferring the checkpoint data to the destination node, and restarting
a new pod from the checkpoint. The mechanism implies that the appli-
cation needs to modify how it handles and persists in-memory state to
ensure its preservation during pod migration. Tran et al. [42] proposes
a stateful service migration mechanism that extends the capabilities
of K8s by leveraging the Checkpoint/Restore In Userspace (CRIU)
project [43] and the Container Runtime Interface (CRI) extension [44].
Their work focuses on enhancing fault tolerance and ensuring the high
availability of containerized services by considering both the storage
state and in-memory state during migration.

Shah et al. [45] propose an architecture integrating SDN and MEC,
capitalizing on SDN for end-to-end mobility and QoS. The architecture
was validated through V2X simulations using Mininet-WiFi and Docker
emulators. The work addresses service migration issues between MEC
and introduces DRS for relocating MEC applications with minimal
downtime. Concerning application state migration, Docker volumes
are employed, primarily focusing on local container data storage, po-
tentially lacking orchestration for multi-node sharing capabilities. The
lack of orchestration could lead to extended periods of downtime. The
evolution of this work is presented in [46], where the authors suggest
a centralized network and MEC server resource coordinator, utilizing
SDN orchestration to manage limited resources in highly mobile envi-
ronments like V2X. Fondo et al. [47] explore the implementation of an
SDN solution for dynamically and transparently relocating communica-
tion endpoints using containers within cellular networks. This approach
ensures session continuity and reduced latency, especially in congested
19

network conditions.
6.1.1. Kubernetes role in ETSI-MEC framework
K8s stands out as the primary container orchestration platform in

the contemporary networking landscape. Numerous initiatives are cur-
rently engaged in deploying and evolving K8s to meet the functionali-
ties outlined by the ETSI-MEC framework. CAICT et al. [48] extensively
discuss the capabilities of the EdgeInfra solution, which manages ap-
plications through K8s to enhance Container Network Interfaces (CNIs)
and ensures service isolation in Telecom. They underscore the impor-
tance of clearly defining the requisites for various industry applications,
ideally as K8s templates, to guarantee deterministic 5G capabilities
and resource allocation. Other solutions, like EdgeGallery [49] and
OpenSigma, also leverage K8s as their edge infrastructure. Martínez-
Casanueva, et al. [50] propose an edge computing design based on
K8s and Helm, offering function blocks and APIs as defined by ETSI.
The prototype demonstrates the feasibility of a lightweight MEC plat-
form. ETSI proposes two white papers. The first [51] emphasizes the
importance of application packaging and runtime environments, such
as VMs, Docker containers, or K8s templates within the MEC system.
The other [52] discusses MEC system support for edge-native designs,
with the Edge Multi Cluster Orchestrator (EMCO) of Linux Foundation
proposing the use of K8s clusters for scaling geo-distributed applica-
tions and network functions for telco solutions. Escaleira et al. [53]
demonstrate the efficiency and viability of integrating K8s within the
MEC system, following the ETSI standardized framework. The need for
the rapid development of a fully operational MEC infrastructure by
seamlessly scaling K8s cluster nodes showcases the potential for K8s
to play a pivotal role in MEC architecture. [54] proposes different ex-
isting solutions for function mapping within the ETSI MEC framework,
where K8s may assume the responsibilities of VIM. Slamnik-Krijestorac
et al. [55] conducted a study based on container-based service deploy-
ment and established a benchmark for MANO solutions in the MEC
context. Barrachina et al. [56] propose the MARSAL MEC framework,
which leverages a subset of ETSI MEC/NFV where K8s assumes the role
of VIM. Bolettieri et al. [57] demonstrate a novel slicing architecture
where orchestration and slicing for MEC applications benefit from using
K8s and Helm technologies.

6.2. Optimization algorithms

As concerning the description of algorithms for service placement
and routing, Poularakis et al. [64] focus on joint service placement
and request routing problem in a MEC multi-cell scenario with multiple
constraints, aiming to minimize the load of the centralized cloud. A
robustness-aware VNF placement and request scheduling scheme is
presented in [65], while a model considering the resource allocation for
services, the traffic management of requests, and the path arrangement
for data delivery is presented in [66]. The goal of the model is to inves-
tigate and quantify the relationship between the performance and cost
of the edge-based service provisioning system. Considering the multi-
service-provider MEC system, the joint service placement and request
routing problem has been analyzed in [67]. In this case, the authors
consider that a service provider prefers to use edge servers deployed by
itself instead of others, which not only improves service quality but also
reduces processing costs. The service placement and request scheduling
strategies directly affect the revenue of service providers. A recent evo-
lution of this work proposes to federate geographically proximate edge
servers to form a logically centralized resource pool [68]. However,
the optimization of such systems is challenging. Gohar et al. [69] and
Sarah et al. [70] consider an intermediate entity, slice broker, that
buys virtual resources from infrastructure providers and sells network
slices to slice tenants. In a MEC-cloud scenario, the broker selects
the MEH and datacenters (and the related resource configuration) and
allocates the virtual network functions composing the network slice.
Mason et al. [71,72] consider that the selection of MEH and datacenters

has been already made and they dynamically select the data and
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Table 9
Comparison with selected existing works.

Ref Methodology Contribution Comparative analysis with our work

[45,46] Algorithm and
Architecture. SUMO
Simulation with
Mininet-WiFi and Docker

SDN-MEC integration and
four modules address
mobility, including
performance monitoring,
service classification, and
SDN-assisted traffic
steering.

+ Address diverse service requirements and resource management
effectively
– Lack support for multi-access technology
– Overlook multiple objectives (prioritizing latency and bandwidth)
– Limited applicability of migration and orchestration to customized
MEC environments
– Potential portability issues with Docker volume usage for
transferring application state

[58] Algorithm based on ML Deployment policy based
on k-means clustering and
particle swarm
optimization

+ Utilizes multiple agents for cloudlet deployment and selection
– No consideration for network selection and application migration
– No implementation and experimental analysis

[59] Algorithm. Offline and
Online stage

Edge server placement
considering server
heterogeneity and response
time fairness

+ Considers edge server placement
– No relation to the ETSI-MEC framework
– Addresses server selection during user mobility but overlooks
application migration
– Only simulation analysis, no implementation in a testbed

[60] Algorithm. Mininet-WiFi
and Floodlight SDN
controller

MEC state transfer
optimization by using
FAST framework with
Tabu search algorithm

– No consideration of ETSI MEC APIs
– No consideration for multi RAT, network selection, and handover
– No defined scheme for the execution of application state transfer

[47] Experiment with ONOS
SDN controller and Docker

SDN solution for dynamic
relocation of
communication endpoints

– Migration of containerized applications from edge to core without
edge host selection
– Not aligned with the ETSI MEC framework

[34] Experiment using
Openstack, Linux
container, OSM and OAI

Network and MEC resource
allocation

– No consideration for network handover, multi-objective selection,
MEC path selection, and ETSI-MEC support
– Possible hypervisor dependencies with VM migration

[61] Algorithm. Simulation Resolve scalability for
large MEC network and
Multi-objective
Optimization

– Selection of the shortest dynamic path for the edge server and
router only accounting delay and bandwidth
– The selection process overlooks migration based on simulated
analysis and is not in line with ETSI MEC APIs

[62] Algorithm. SUMO
Simulator and
Reinforcement learning

Development of a robust
controller for CACC
through MEC

+ Addresses placement issue
– No consideration for multi RAT
– Q-learning algorithm overlooks multi-objective path selection
– Simulated application migration lacks practical validation and
decision impact demonstration

[63] Algorithm with COMA
reinforcement learning

Distribute task migration
based on multi-agent
policy

+ Considers a multi-users scenario
– Exclusively designed for task migration, neglects optimal path
selection for MEC, lacks network handover
– No practical validation for task migration
network resources to allocate to each slice in order to maximize the
user experience.

The need of adjusting the service placement and request schedul-
ing is discussed by Farhadi et al. [13], referring to data-intensive
applications, such as video analytics, machine learning (ML) tasks.
The authors show that, due to time-varying demands, the code and
data placement need to be adjusted over time, which raises concerns
about system stability and operation cost. They address these issues
by proposing a two-time-scale framework that jointly optimizes service
(code and data) placement and request scheduling while considering
storage, communication, computation, and budget constraints. Anwar
et al. [61] propose distributed traffic steering by distinguishing between
two distinct types of network elements, namely MEHs and routers. They
establish the equivalence between solving the Shortest Path problem,
which minimizes the cost derived from the sum of latency and the
inverse of available bandwidth, and the Pareto optimal path obtained
through multi-objective minimization of latency and the inverse of
available bandwidth. The proposed approach yields improved results,
incorporating Pareto optimality considerations for minimizing various
criteria.

Rodrigues et al. [58] propose a deployment policy for edge servers
based on k-means clustering and particle swarm optimization to re-
duce operational costs and service delays. On the other hand, Cao
et al. [59] investigate the edge server placement problem, considering
the heterogeneity of servers and the fairness of response time. They
20
propose an approach with both offline and online stages. The work by
Doan et al. [60] focuses on optimizing MEC state transfer, considering
factors such as optimality, latency, and communication awareness. The
goal is to minimize migration costs under various constraints. They
introduce the FAST (Flexible And Low-Latency State Transfer) frame-
work, applicable to large-scale networks, and efficiently implement a
Tabu search algorithm. This algorithm iteratively explores the search
space, avoids revisiting solutions using a Tabu list, and updates solu-
tions while considering constraints and an aspiration criterion. Ayimba
et al. [62] focus on developing a robust controller for Cooperative
Adaptive Cruise Control (CACC) of connected cars through MEC in
cellular networks. This addresses low-latency connection maintenance
and platoon switching. The study introduces a Q-Learning algorithm
for network adaptation and evaluates the performance of the migration
scheme in comparison to a state-of-the-art scheme. Liu et al. [63]
tackle the task migration problem in MEC, introducing a distributed
task migration algorithm using Counterfactual Multi-Agent (COMA)
reinforcement learning. The primary objective of this algorithm is
to minimize the average task completion time while adhering to a
migration energy budget.

6.3. Summary of the novelties

Regarding the architecture aspect, the novelty of this paper lies
in the utilization of the pod migration framework [22] to conduct
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an experimental performance analysis of the proposed MDA. To ac-
complish this, a controller based on the MDA approach is developed,
enabling seamless interaction with the components of the pod migra-
tion framework. This integration facilitates the implementation of the
MDA decision for application migration within the testbed, thereby en-
abling the experimental evaluation of performance at both the network
layer and the application layer.

Regarding the optimization algorithm, the novelty of the study
proposed in this paper is that the proposed multi-objective technique
can take into account more than two metrics simultaneously. The result
is more general because packet loss, bandwidth, latency, and other
performance metrics (e.g. power consumption, security level etc.) can
be considered simultaneously. Furthermore, the proposed scheme for
generating the graph containing information on the performance at
the application layer and at the network layer allows to jointly find
the solutions to both the traffic path computation problem and the
MEH selection problem. Moreover, this paper explores the performance
at the network layer as well as the enhancement of user experience
through the utilization of the proposed scheme in a hybrid testbed with
an ad-hoc controller.

Table 9 offers a comparison analysis of a selected set of works in the
field related to our contribution. The table outlines the methodology of
the study, the contribution, and the pros and cons with respect to our
work. Except for the works in the first row, the others do not adhere
to ETSI-MEC architecture.

7. Conclusions

The paper addressed the joint selection of the MEH and the path
between the UE and the MEH. The paper found the solution to the ad-
dressed problem by using MDA through a proposed procedure to create
a graph that is able to consider both network-layer and application-
layer metrics. The performance of MDA has been evaluated by im-
plementing a hybrid testbed, which is able to migrate a VideoLan
application between two MEHs. The testbed is based on AdvantEDGE,
which is able to simulate the UE mobility and the radio link, to emulate
the network and the MEC APIs, and to experiment the VLC client. More-
over, the testbed includes K8s, which is used to support the migration of
the VLC server pod between two actual MEHs. Finally, the paper added
in the testbed a controller in order to integrate MDA with the 5G-MEC
system. Two evaluations have been performed in the testbed: one with
two MEHs; another one with only one MEH. In the evaluations, two
network performance parameters (latency and throughput) and the user
experience (MOS) have been considered. The results of the scenario
with two MEHs demonstrate that MDA is able to perform the migration
with a limited impact on the network performance and user experience.
Instead, the results of the scenario with only one MEH emphasize that
the absence of migration would result in a significant decline in the
user experience.
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