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Abstract

With the exponential growth of the production of digital images, human subjective perceptive
quality measurement becomes infeasible when necessary. Maintaining perceptual image
quality has also become essential with the overwhelming growth of digital platforms that
uses user-generated content such as images, videos, audio, etc. Objective machine image
quality measurement tools are the solution at scale. As most of the image content traffic is
without any reference or pristine source, no-reference or blind quality measurement becomes
the approach with robust applications. The image quality assessment research field has
been growing with the challenges that come with the problem. A comparative study on a
few state-of-the-art algorithms trained, validated, and tested across several datasets will be
conducted in this research.

Source code h t t p s : / / g i t h u b . corn/sourav-paul /hc2sa

Keywords: Image Quality Assessment, No-reference Image Quality Assessment, Blind
Image Quality Assessment, Machine Learning, Deep Learning, Transformer, Vision Transformer,
Support Vector Regression
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Chapter 1

Introduction

With the rapid growth of information technology over the last couple of decades, almost
every part of our lives started growing deep ties with some variation of a technological
solution. Some of these solutions have disrupted their previous generation. The substantial
gap between the generation of solutions made it clear the feasibility of using the new
invention over the previous one. As a result, these solutions became the most common
choice in our day-to-day lives.

Digital images and videos have been one of these solutions that replaced the previous
generation of silver-halide(AgX) film photography. From filming to post-production
processing is time-consuming and costly at every step with analog cameras. Digital
cameras made the filming part way easier as well as post-production processing. With the
growth of smartphone usage, digital camera in smartphones accelerated digital photography
on a wide scale of the global population.

User-generated content has become an essential part of the digital age. From tiny tweets
to ultra-high-resolution videos are being produced by users all over the world in almost all
major content-sharing platforms. Wi th the convenience of smartphone usage and social
media booming, user-generated images have become one of the most used communication
media. This resulted in image production to a scale that became beyond quality control by
human subjects.

By nature, image acquisition, processing, and transmission are subject to distortions
fairly easily. Depending on the production device, producer, and environment of images
can be easily distorted at the stage of acquisition. Even with a pristine quality image
production, processing stages such as compression can cause distortion as well. Depending
on the transmission methods and bandwidth, the transmitted image data can have further
distortions.

For the platforms tha t prefer having quality control of the provided images, human
subjective quality measurement of the images has become infeasible with the volume of
image production. And the majority of the image data that comes to the systems is without
any reference to their pristine quality. The systems get whatever the user provided without
any indication of quality measurement parameters. An objective image quality measurement
system can resolve the issue of replacing human subjects and can deal with the scale of
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CHAPTER 1. INTRODUCTION

production. In addition, this objective image quality measurement system does the task
blindly, also known as no-reference or without reference to it's pristine quality source image.

There has been a decent amount of research conducted in the field of image quality
assessment. From classical hand-crafted features extraction with support vector regressor
(SVR) to recent day's self-attention with Transformer and/or Vision Transformer. The
approaches have changed with time as newer, more cutting-edge methods were invented.
Image quality assessment datasets have also evolved with time. Initially, most of the
distortions were artificially created with a limited amount of distortion types with a smaller
number of images, then larger, with more distortion types, in-the-wild datasets were
introduced by the research community over time. Most of these researches in the field
were done with one or more datasets for training and validation of the method in these
researches.

In this research, training some of the state-of-the-art image quality assessment models
across datasets, validating, and benchmarking the results will be done. The purpose of this
research is to give the research community and application engineers a solid ground for
extending further research and choosing the right models for applications respectively.

1.1 Motivation

In March 2023, smartphone users reached over 6.92 billion', and they are increasing every
day. These increasing numbers indicate the major convenience and connected world with it.
And the major part of these connections is user-generated images making them easy to
express, and 1.83 trillion2 images are being taken every year.

With the incremental volume of production of images, subjective quality control becomes
infeasible even for a small portion of the samples. Platforms can overrun almost right
after accepting user-generated images. Even though the most modern digital cameras,
smartphone cameras come with out-of-the-box tools to take a good photo, put a filter on,
and make it look great, there could be distortions that might easily be overseen by an
individual producer of the source image. On the other hand, after the post-production
of pristine-quality source images, they can be distorted over the transmission media and
methods, and the recipient's media consumption specifications.

The impact of distorted images comes in a variety of outcomes. Let's consider a few
cases where image and video perceptual quality are essential. On top of the list, are news
portals, TV channels, digital advertising, and media content streaming services. News
portals without image and video quality control may lose the credibility of the news itself.
TV channels without media content visual quality control may lose the audience of the
contents. Targeted digital advertising with a bad image and video perceptual quality may
lose the targeted audience and create a negative user experience regarding the quality of
the advertised product itself. Media content streaming services may lose their premium
users due to the poor quality of the streamed content.

1 https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#part-1
2https:/ /photutorial.com/photos-statistics
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1.2. RESEARCH OBJECTIVE

As images tend to be subject to degradation in their acquisition, processing, and
transmission stages, only one point of quality control might not resolve the issue at
it's core. For pristine source image quality to be maintained throughout the life-cycle of the
image, solutions must be placed at the production of the image in camera firmware, the
processing stage of compressing at the serialization stage of the data, and both transmission
and receiving point of the image data if it 's subject to transport.

Solutions to these problems can be mitigated with objective perceptual quality assessment
systems on the points of quality degradation. Objective image quality assessment can be
achieved with a machine-learning solution and be placed on those points. Building the
image quality measurement on machine learning tools makes it feasible to create, extend,
update, and deploy at possible degradation points. A decent amount of research has been
conducted in this field. The trends of related research have changed with time. Most of
the initial research is related to hand-crafted feature extraction in regard to natural scene
statistics(NSS) of images using some variety of support vector regression(SVR). Then related
research took a turn in consideration with the powerful convolutional neural network(CNN)
approaches. Then Vision-Transformer(ViT) came into the picture with the self-attention
mechanism for images, and research trends in image quality assessment moved a bit toward
that . All these approaches have high-performing machine-learning algorithms and available
datasets at the time of invention.

Wi th the evaluation of the research approaches and available datasets at the time of
research, there is a lack of comparative studies of the permuted performance of cross-dataset
cross-algorithm. This research approaches to train, validate, and benchmark high-performing
algorithms across datasets with various distortion types.

1.2 Research Objective

As high-quality perceptual images are essential to the majority of digital platforms, and
human subjective quality control's being infeasible at scale, objective machine solutions are
the direction to begin with. Research fields on machine learning solutions that analyze the
objective quality assessment of perceptual images are large enough pools. This research
will narrow down the scope toward a comparative study of machine learning algorithms for
objective perceptual image quality assessment across datasets.

Depending on the availability of the source or reference images or features, samples
can be seperated in three categories. Full-reference (FR), no-reference or blind (NR/B),
and reduced-reference (RR), and resulting image quality assessment (IQA) approaches
are full-reference images quality assessment (FRIQA), no-reference or blind image quality
assessment (NR/BIQA), and reduced-reference image quality assessment (RRIQA). Due to
larger scope of NR/BIQA, this research stay in the search scope of NR/BIQA.

A comparative research on NR/BIQA will require a collection of existing algorithms
and datasets. The existing machine learning algorithms that objectively do the NR/BIQA
task can be found from the publications from the research community on the field. This
research will choose from the variety of approaches such as hand-crafted feature extraction,
convolution neural networks, and transformers implemented state-of-the-art algorithms.

3



CHAPTER 1. INTRODUCTION

While choosing from the publicly available datasets for IQA, the research will be scoped
towards finding the image quality datasets with robust distortion types, in-the-wild/natural
distortions, higher number of samples.

This research targets to make a comparison among the algorithms across the image datasets.
This study of comparison will help the research community choose from the existing
algorithms and datasets, as well as help study further when new algorithms and new
datasets are created.

Research Objective

How do the state-of-the-art no reference or blind image quality assessment machine learning
algorithms perform across various image quality datasets?

1.3 Method

There are several steps that need to be taken from the start to the end of the research.
The method of comparing algorithms across datasets will need research on image quality
datasets and their specifications, and algorithms and their specifications.

• Identifying the research objective

• Literature reviews and case studies

• Collect the existing implementations from the related works

• Take note of the relevant parameters from the results

• Analyze the results

• Comparison report with standard co-relation coefficients (Pearson, Spearman's, etc)

1.4 Deliverables

The tangible outcome of the research will include the thesis article, the machine learning
algorithms in Python hosted on Github, and image quality dataset references.

1. 5 Report Outline

Chapter 2 will deal with the analysis and study of related works. Chapter 3 will go through
planning and designing methods. Chapter 4 will discuss implementations and Chapter 5
will deal with the results of the implementation and evaluation of the results. Chapter 6
will contain a technical discussion of the thesis overall. And chapter 7 will conclude the
thesis with the thesis achievements and future scopes of the topics.
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Chapter 2

Background

As images have become one of the most used representations and communications media
of information with the growth and ease of digital image production [Bovik and Wang
2006]. Digital image processing and communication also evolved [Bovik 2005] to improve
the appearance of images. By the nature of image data, they are subject to distortion
during any of the stages from acquisition to transmission to display [Bovik and Wang 2006].

Image Quality Assessment

Subjective (Human) Objective (Machine)

Figure 2.1: Image quality assessment by assessors

2.1 Subjective Image Quality Assessment

Subjective image quality assessment is involved human decisions on quality measurements
of perceptual images. This becomes extremely complicated as a different subject might have
a different opinion on the same image with the same distortions. Also, with the incremental
amount of images in the world, it becomes infeasible soon to keep up with subjective quality
measurements of images [Bovik and Wang 2006; Hussein AL-Qinani 2019].

2.2 Objective Image Quality Assessment

Objective quality measurement is the feasible way to ensure the quality of the visual
representation of information when the data volume is high. Classification of objective
image quality assessment relates to the availability of the original image [Bovik and Wang
2006].

2.2.1 Full-reference Image Quality Assessment

In the full-reference image quality assessment process, the machine is provided with degraded
images with distortions and the subsequent pristine distortion-free images as reference.

5



CHAPTER 2. BACKGROUND

Objective Image Quality Assessment

Full-reference (FRIQA) No-reference (NRIQA) or Blind (BIQA) Reduced-reference (RRIQA)

Figure 2.2: Classification of objective image quality assessment.

The system learns from the difference between the pair of images with distortion and
distortion-free reference. A few top-down and bottom-up approaches such as implementing
a human visual system with structural similarity index (SSIM), structural dissimilarity
metric (DSSIM), mean structural similarity index metric (MSSIM), mean square error
(MSE), peak signal to noise ratio (PSNR), peak mean square error (PMSE), maximum
difference (MD), average difference (AD) [Hussein AL-Qinani 2019; Bovik and Wang 2006].

2.2.2 No-reference or Blind Image Quality Assessment

The availability of reference images might not always be expected. In this case, the
machine learns from the image itself. Feature extraction from degraded images could be
done in various ways. Such as learning natural scene statistics [Bovik and Wang 2006],
saliency-guided and other CNN-based approaches, self-attention, etc 3.

2.2.3 Reduced-reference Image Quality Assessment

It could be also a case where there are original images but no way on the quality measurement
side to get the whole image but some features of the original images can be transmitted.
These are not the original image but are reduced to some part of the original image features
that help measure the quality of the images [Bovik and Wang 2006].

2.3 Objective No-reference or Blind Image Quality Assessment

Due to the unavailability of the reference image in almost all the perceptual image-sharing
platforms, no-reference image quality measurement involves learning about known distortion
types such as white noise, Gaussian blur, fast-fading, JPEG compression, JPEG2000
compression, and many more. The image quality measurements could target one of these
specific types of distortions or could be general-purpose [Bovik and Wang 2006].

Distortion-specific BIQA

j j j j j
White noise Gaussian blur Fast-fading JPEG compression JPEG2000 compression

Global contrast decrements Additive pink Gaussian noise

General-purpose BIQA

Figure 2.3: Distortion-specific and general-purpose BIQA
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2.4. RESEARCH TOWARDS NR/B IMAGE QUALITY ASSESSMENT

.•'

_J

Figure 2.4: Different types of distortions. JPEG compression (top-left), Gaussian blur
(top-right), Poisson/White noise (bottom-left), DeltaE Gamut Mapping (bottom-right)

2.4 Research Towards N R / B Image Quality Assessment

To solve this and similar problems, various research has been conducted in the machine
learning domain of objective image quality assessment. To get more elaborate knowledge
based on the domain, a thorough study of existing literature will be done in this research.
This research intends to use the results of previous studies in the relevant domain. The
research will go through studies done on image quality assessment and will do a result
analysis of different datasets. Historical progress in research related to blind image quality
assessment can be divided into a few categories [Ma et al. 2022] from an approach standpoint.

Handcrafted feature extraction usually studies the natural scene statistics, extracts
feature, and learn image quality from a knowledge-driven process [Bovik and Wang 2006]. In
CNN-based solutions, sometimes external knowledge injection is needed, in some other cases
global average or maximum pooling to measure quality [Ma et al. 2022]. In Transformer

7



CHAPTER 2. BACKGROUND

Image Quality Assessment Methods

j
Hand-crafted feature extraction CNN (vanilla pooling strategies) Learnable attention Channel attention

Figure 2.5: Blind image quality assessment methods

based solutions, spatial attention, spatial saliency prediction, channel attention, etc in the
core of the approach [Yang et al. 2019; Zhu et al. 2021b; Zhang et al. 2019; Fu et al. 2019].

Support Vector Regress ion(SVR)

Support vector regression is an extended implementation of classification with support
vector machines(SVMs). SVMs are built on supervised learning approaches for classification,
regression, and outlier detection problems. SVMs are effective in high-dimensional spaces.
It uses a subset(support vectors) of the training point in the decision function, resulting in
low memory usage. Different kernel functions can be specified for the decision function,
custom kernels can be specified. The core idea of SVMs is to find a maximum marginal
hyperplane(MMH) that best divides the datasets into classes.

ClassA
ClassB

Support vectors

x-axis

Figure 2.6: Support Vector Machines

The model produced by support vector classification relies only on a subset of the training
data because of the cost function for building the model. It does not care about the training
points that lie beyond the margin. So, the model generated by the SVR only relies on the
subset of the training data because the cost function avoids the sample whose prediction
is close to it's target. There are several implementations of SVR such as epsilon-SVR,
nu-SVR, and linear-SVR.

8



2.4. RESEARCH TOWARDS NR/B IMAGE QUALITY ASSESSMENT

SVMs are a powerful tool but their resource requirements such as computing and storage
increase rapidly with the number of training vectors. The core of an SVM is a quadratic
computation problem, splitting support vectors from the rest of the training data. The
quadratic problem solver with LibSVM [Buitinck et al. 2013] scales between O ( n ) O ( n ) ,
where n is the number of samples in the training dataset.

For linear use cases, linear implementation with LibLinear [Buitinck et al. 2013] is
significantly more efficient than the LibSVM-based counterpart. And linear implementation
can scale linearly to millions of samples and or features. The choices of penalties and loss
functions make it more flexible toward supporting a larger number of samples. It 's also
possible to support both dense and sparse input [Buitinck et al. 2013].

Convolutional Neural Network(CNN)

Due to the nature of computational complexities of high-dimensional image data, traditional
artificial neural networks(ANN) tend to struggle towards achieving optimal solutions. Simply
increasing the number of neurons with larger weights results in overfitting [O'Shea and
Nash 2015].

CNNs are designed primarily to solve image analysis problems, so the architecture of
dealing with specific data types was essential. The neurons in the CNN layers are organized
into three dimensions, the special dimensionality of the input height and weight, and the
third dimension is activation volume. The neurons within any given layer will only be
connected to a small portion of the layer ahead of it. The input volume of 64x64x3 will
lead to a final output layer comprised of a dimensionality of lxlxn, where n is the number
of classes [O'Shea and Nash 2015].

CNNs are built on three types of layers. They are the convolutions layers, pooling layers,
and fully-connected layers. All these layers stacked together form a CNN architecture.

convolution
w/ReLu pooling fully-connected

0

y 9
input

output

fully-connected
w/ ReLu

Figure 2.7: A simple 5-layer CNN architecture[O'Shea and Nash 2015]

The input layer holds the pixel values of the image. The convolutional layer determines
the output of neurons that are connected to the local region of the input through the

9



CHAPTER 2. BACKGROUND

calculation of the scalar product between their weights and the region connected to the input
volume. The rectified linear unit(ReLu) is applied at each element as an activation function
such as sigmoid to the result of the activation generated by the previous layer. After that
the pooling layer simply performs a downsampling along the spatial dimensionality of the
given input, reducing the number of parameters with the activation even further. In the
next step, the fully-connected layers try to generate class scores from the activations and
make use of them for classification. ReLu might be used among these layers to improve
performance [Gua et al. 2017; O'Shea and Nash 2015].

A convolution is a mathematical operation that helps to derive the distribution of a sum
of two random variables from the distributions of the two summands. The convolution
is obtained by summing a series of products of the probability mass function of the two
variables when the variables are discrete and random. If they are continuous, integration of
the product of their probability density function is applied [Taboga 2021].

Convolutional layers are essential to CNNs. The layers' parameters focus on the use of
learnable kernels. The kernels are smaller in spatial dimensionality compared to the whole
image. They are spread along the entirety of the depth of the input. When input data hits
a convolutional layer, the layer convolves each filter across the whole spatial dimensionality
of the input to produce a 2D activation map. These activation maps can be visualized.
Gliding through the input, the scalar product is calculated for each value in the kernel.
The activations imply the network learning the kernels that trigger when they see a specific
feature at a given spatial position on the input [Li et al. 2020; Gua et al. 2017; O'Shea and
Nash 2015].

Input Vector

0 0 0 0 0 0 Pooled Vector Kernel Destination Pixel
0 I 2 I I 2

0 0 0 4 0 0
0 I I I I I

0 I 2 0 0 0 8
I 0 0 0 0 0

0 I I 0 0
0 0 I I I 0

0 I I I I I

Figure 2.8: A convolutional layer [O'Shea and Nash 2015]

The pooling layers target to decrease the dimensionality of the representation gradually
which decreases the amount of parameters and computational complexities of the model.
They operate on each activation map and scale the dimensionality with a max function.
Overlapping-pooling layers are utilized alongside max-pooling. The fully connected layers
contain neurons that are connected directly to the neurons in the two nearest layers only
[Li et al. 2020; Gua et al. 2017; O'Shea and Nash 2015].

Transformer and Vision Transformer

A transformer is a type of deep learning neural network model that approaches it's adoption
of self-attention techniques differently. It's sequence-to-sequence architecture transforms a

10



2.4. RESEARCH TOWARDS NR/B IMAGE QUALITY ASSESSMENT

given sequence of elements, such as words in a sentence into another sequence. It's excellent
at natural language processing tasks such as translation, language modeling, etc overcoming
the shortage of recurrent neural networks(RNNs), rated recurrent neural network(GR), and
long short-term memory(LSTM) [Vaswani et al. 2017]. With the growth of self-attention
mechanisms, machine learning tasks related to image processing are also introduced with
transformers related to computer vision [Parmar et al.; Zhang et al. 2021; Arnab et al. 2021;
Bao et al. 2022; Fan et al. 2021].

Output
Probabilities

Softmax

Linear

Nx

Add &Norm

Feed
Forward

Add &Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Positional
Encoding

Masked
Multi-Head

Attention

Nx

E

Output
Embedding

Positional
Encoding

nput
Embedding

Inputs Outputs
(shifted right)

Figure 2.9: Building blocks of a Transformer [Vaswani et al. 2017]

With the goal of decreasing sequential computation, many models were introduced
to utilize modern parallel processing systems for all input and output. Self-attention
mechanism relates to different positions of a single sequence to compute the representation
of a sequence. Encoder-decoder is an essential part of highly efficient neural sequence
transducer models.
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Vision Transformer (ViT)

Class
Bird
Ball
Car

MLP
Head

Transformer Encoder

Patch + Position
Embedding

* Extra learnable
[class] embedding Linear Projection of Flattened Patches I

, Transformer Encoder
I A
I L x +
I
I MLP
I
I Norm
I
I +
I

Multi-Head
I Attention
I
I
I Norm

I
I Embedded
I Patches

Figure 2.10: Vision Transformer [Dosovitskiy et al. 2021; Vaswani et al. 2017]

In the proposed Vision Transformer (ViT) [Dosovitskiy et al. 2021] implementation, images
are split into fixed-size patches, linearly embed each of them, add position embeddings, and
the feed the resulting sequence of vectors to standard Transformer encoder.
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Chapter 3

Related Work

As introduced in the background 1 section, related work in the no-reference or blind image
quality assessment could be divided in four [Ma et al. 2022] approaches with the evaluation
of the research in the field.

Hand-crafted feature extraction

Traditional BIQA methods with handcrafted quality-aware feature extraction and learning
the image quality in a knowledge-driven process were the beginning of modern objective
image quality assessment-related research [Bovik and Wang 2006] [Ma et al. 2022]. Natural
scene statistics are extracted from mean subtracted contrast normalized operation [Mittal
et al. 2012b] [Ma et al. 2022] and DCT coefficient [Xu et al. 2016] [Ma et al. 2022], and
perceptual quality is predicted with support vector regression (SVR).

Image compression algorithm categories such as block-based and wavelet create distinct
distortions in digital images. Compression algorithms like J P E G , MPEG-1, MPEG-2,
and H.26x are block-based. These algorithms usually use block partitioning of images
before applying further processing steps. J P E G compression specifically partitions the
target image in an 8x8 block and then applies a local discrete cosine transform (DCT) to
each pixel of those blocks with further processing steps. The common distortions due to
these processes are interblock blurring within blocks and blocking artifacts around block
boundaries [Fig ??]. Both of these distortions can be explained either in the spacial domain
[Wang et al. 2002] [Bovik and Wang 2006] or in the frequency domain [Wang et al. 2000]
[Bovik and Wang 2006].

To extract these distortion features with an objective model, blocking artifacts are
measured in vertically and horizontally. The power spectrum of any of the directions can
be measured with a Fourier transform method such as N-point discrete Fourier transform
(DFT). In a real-world implementation, this can be computed with a fast Fourier Transform
and the overall power spectrum can be estimated [Bovik and Wang 2006][Fig 3.2].

Handcrafted features are defined by the observation of natural images with the absence,
and the presence of distortions. These shallow methods can't represent the complex
human visual system. Even though these traditional methods accurately predict quality
measurements for datasets with singular distortion and artificial distortions such as TID2013,
LIVE [Ponomarenko et al. 2015b] [Sheikh et al. 2006a] [Ma et al. 2022] but they are not

13



CHAPTER 3. RELATED WORK

Figure 3.1: Original image (left) and after applying JPEG compression to the original
image (right)

0.8

0.6

0.2

0

Original image
JPEG compressed image

0 0.1 0.2 0.3 0.4 0.5
Frequency (/IN)

Figure 3.2: Power spectra of original and JPEG compressed image [Bovik and Wang 2006]
that shows energy peaks on feature frequencies

efficient on the more wild datasets such as KonlQ, LIVEC, PaQ-2-PiQ [Hosu et al. 2020]
[Ghadiyaram and and 2016] [Ying et al. 2020] [Ma et al. 2022].

Convolution neural network based

The powerful feature representation of convolutional neural networks became trendy due
to the nature of high-level quality feature extraction. Adding plain CNN architecture to
BIQA tools was the first feasibility test by researchers [Ma et al. 2022].

[Bosse et al. 2018] used CNN to extract features from distorted patches. Feature vector
regression was applied to the patchwise quality estimate which is aggregated to a global
image quality estimate. Optional regression of the feature vector is applied to patchwise
weight estimates which allow for pooling by weighted average patch aggregation.
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[Li et al. 2016] proposed a 31-layered deep CNN architecture to obtain a quality score for
each patch and average them to obtain a global quality score. Multi-layer perceptron (MPL)
layer, global average pooling (GAP) layer, and dropout layers are used in the proposed
architecture. Rectified linear unit (ReLU) was used as an activation function instead of
sigmoid or tanh neurons.

[Kang et al. 2014] proposed a framework that uses CNN to perform a contrast normalization
and then sample the non-overlapping patches from it. It also estimates the quality score for
each patch and averages the patch scores to estimate a quality score for the whole image.
Similar to BRISQUE and CORNIA, it applies contrast normalization but in a simple and
local manner. These locally normalized image patches are fed into a convolutional layer
with 50 filters tha t generates a feature map and are applied pooling to reduce the filter
responses to a lower dimension. NR-IQA/BIQA tasks were observed to be having image
distortion which is most of the time locally homogeneous and the same level of distortion is
distributed over the whole patch. ReLU was used in the fully connected layers, but linear
neurons with identity transform are used in the convolutional and pooling layers to keep
the negative outputs. The importance of the number of kernels, kernel size, patch size, and
sampling stride is also part of the research.

Due to the unavailability of larger samples, these works tend to have over-fitting problems.
To make the objective models learn better feature representation for NR-IQA/BIQA, later
researchers started to change network architecture to incorporate external knowledge into
the BIQA models [Ma et al. 2022].

[Lin and Wang 2018] proposed a CNN-based BIQA method with a hallucination-guided
quality regression network. The model consists of three parts, the quality-aware generative
network, the IQA-discriminative network, and the hallucination-guided quality regression
network.

[Pan et al. 2018] used a BIQA model consisting of a fully convolutional neural network
(FCCN) and a pooling network. The FCNN is responsible for generative quality mapping
and the pooling network is responsible for quality scoring. U-Net, an extension of FCNN, was
used as the base of the generative network. The hierarchical representation in subsampling
layers with corresponding features in the upsampling layer which was brought from U-Net,
can consider both high-level and low-level degradations for IQA. Batch normalization and
leaky rectified linear unit (LReLU) are used after all convolutional layers. The pooling
network is consisted of two fully connected layers with 50% dropout after each of them to
prevent overfitting. It ends up with a squared Euclidean loss layer.

[Su et al. 2020] proposed a self-adaptive hyper network architecture for BIQA in the
wild. The model has three major components (a) A foundational network tha t extracts
logical features, (b) a target network that predicts image quality, and (c) a hyper network
that produces a respective collection of self-adaptive parameters for the target network.

There were significant overall improvements with CNN-based methods over the traditional
handcrafted methods. Global average pooling or global maximum pooling was the next
logical step toward BIQA research with CNNs. But images tend to have local-variant
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distortions and corresponding quality-aware responses throughout the arbitrary positions
showing an unequal pat tern, and the strategies above are incapable of dealing with such
unequal distribution [Ma et al. 2022].

Learnable attention based

Dealing with the unequal pattern of quality-aware results along with the arbitrary positions
on an image, learnable attention-based methods started to seem like the next best steps
towards improving upon the existing BIQA research [Ma et al. 2022].

[Yang et al. 2019] proposed an SGDNet where visual saliency is learned and placed for
measuring the weight of the quality-aware features in a more feasible way in a data-driven
manner. SGDNet is built on an end-to-end multi-task learning framework with two sub-
tasks (a) visual saliency prediction and (b) image quality prediction and both are connected
with a shared feature extractor. The saliency prediction sub-task is more generic due to
the nature of being independent of distortions. Saliency information is highly correlated
with image quality according to the related works on the subject and it was fully utilized
in this proposal with more informative labels with saliency maps and quality scores. The
output of sub-task (a) is transparent to regression sub-task (b) by assisting with a spatial
mask for a more perceptually-consistent feature combination.

[Gu et al. 2019] proposed a spatial attention module alongside the main branch, local
quality, and local weight that is optimized collaboratively with the proposed attention-based
pooling network(APNet). To generalize the purpose of this research, it focuses on the
pooling stage and proposes an attention-based pooling network for BIQA. The goal of the
learnable pooling is to represent human visual attention in a data-driven manner. Image
quality prediction tasks can be conducted by fine-tuning a pre-trained classification network
with global average pooling that appends the local quality estimation layer to obtain an
overall quality score. The pooling can be improved with saliency prediction or generic
object detection which is usually learned on natural distortion-free images. APNet attempts
to learn an attention-based pooling strategy that assigns a positive weight to each location.
The weight can be explained as the contribution or importance of location in combining
the local quality estimations together. APNet consists of two branches (a) a local quality
map, and (b) an attention weight map. A IIsoft II attention model [] is used to compute the
attention weights.

[Dosovitskiy et al. 2021] [Fan et al. 2021] [Liu et al. 2021] papers related to vision transformer.

[You and Korhonen 2020] proposed a Transformer based BIQA method using ResNet50
[He et al. 2016] as a feature projector, and two transformer encoders to learn spatial
dependencies in a global manner. The proposed method is called Transformer in Image
Quality (TRIQ) assessment. Inspired by Vision Transformer(ViT), the proposed architecture
uses a shallow Transformer encoder on top of a feature map extracted by a convolutional
neural network. To handle the arbitrary resolution of images, an adaptive positional
embedding is implemented in the Transformer encoder. Gaussian error linear unit (GELU)
was used as the activation function as per the suggestions from ViT [] and BERT [].

[Ke et al. 2021] proposed a multi-scale image quality (MUSIQ) assessment method with
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Transformer to process native resolution images with varying sizes and aspect ratios. The
proposed method can capture image quality at different granularities due to muti-scale
image representation. It consists of a novel hash-based 2D spatial embedding and a scale
embedding in the multi-scale representation. MUSIQ is constructed to take input of images
as multi-scale representation including native resolution image and aspect ratio preserved
(ARP) resized variants. A patch encoding module embeds each image is split into fixed-sized
patches. To handle images with varying aspect ratios and record the 2D construct of images,
the spatial embedding is encoded by hashing the patch position in a grid of learnable
embeddings. Scale embedding is used to record scale information. The Transformer encoder
uses the input tokens and carries out a multi-head self-attention. And finally, to predict the
image quality, MUSIQ follows a common approach in Transformers to add a token to the
sequence to represent the whole multi-scale input and use the corresponding Transformer
output as the final representation.

[Zhu et al. 2021a] proposed a saliency-guided Transformer network combined with local
embedding (TranSLA) for BIQA. TranSLA combines divergent levels of information for
a wider representation. HVS tends to focus more on the region of interest (ROI) when
assessing image quality as the research says. Backing on tha t information, TranSLA
integrates saliency prediction with Transformer to guide the model to highlight the ROI
when grouping the global information. Local embeddings are imported with a gradient map
for Transformer. Due to the gradient map concentrating on obtaining structured features
in detail, it can be complemented to provide local information for Transformer, resulting
in local and non-local information can be used. A boosting interaction module (BIM) is
employed to speed up the aggregation of information of all tokens and enhance feature
aggregation. Better interactions of patch tokens with the class tokens are forced by the BMI.

These Transformer based BIQA approaches have proven to effectively assign several types
of attention to quality-aware responses in different positions and getting benefited from the
quality prediction accuracy towards the heterogeneously distorted images. This results in
such spatial attention learning approaches bound to limited improvement when it comes to
homogeneous distorted images with pure CNN strategies [Ma et al. 2022].

Channel attention based

Recent research provided evidence that each channel of CNN-extracted features can
contribute heterogeneously to the final result and learning channel-wise attention generally
tend to boost the performance in DNN architecture in several computer vision tasks [Ma
et al. 2022].

Squeeze-and-Excitation networks (SENet) architecture by [?] proposed a way for explicitly
modeling interdependencies among channels to adaptively recalibrate channel-wise feature
response. It is demonstrated that by stacking these SE blocks together, SENet architecture
can be generalized pretty well even with challenging datasets. Dual graph CNN architecture
in both spatial and channel domains by [Zhang et al. 2019] to boost the performance of
semantic segmentation. It models the global content of the input feature by modeling two
orthogonal graphs in a single setup. The first component models the spatial relationship
between pixels in the image. The second component models interdependencies along the
channel dimensions of the network's feature maps. And it's done by projecting the feature in
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a new and lower-dimensional space where all the pairwise interactions can be modeled before
reprojection into the original space. A Self-attention based scene segmentation approach by
[Fu et al. 2019] records rich contextual dependencies with Dual Attention Network (DANet)
to adaptively integrate local features with their global dependencies. Two types of attention
modules are appended on top of dilated fully connected neural networks (FCN) which model
the semantic interdependencies in spatial and channel dimensions respectively. The position
attention module chooses and groups the feature at each position by a weighted sum of
the features at all positions. Similar features would be related to each other regardless
of their distances. In the meantime, the channel attention module selectively emphasizes
interdependent channel maps by integrating associated features among all channel maps.
Then the outputs of the two attention modules are summed to further improve feature
representation which contributes to more precise segmentation results.

[Ma et al. 2022] explored the feasibility of incorporating an attention mechanism in a
channel-wise manner for BIQA. With a systematic study of the interactions between
channel-wise and spatial-wise attention, an adaptive spatial and channel attention merging
transformer is developed for aggregating both spatial-wise and channel-wise attention
information.

3.1 Image Quality Datasets

Due to image quality assessment as a machine learning task being critical and popular
among the research communities, there have been several datasets introduced over time.
Most of these image quality datasets come with pristine images, distorted images with
different distortion types and levels, labeling of several kinds such as mean opinion scores
(MOS) by human subjects, and different quality measurement parameters. Distortion types
of the images in the datasets vary from 5 to 425 types and subtypes of distortions.

Table 3.1: State-of-the-art image quality datasets

Image Quality Assessment Datasets
Dataset Name Pristine Distorted Human Distortion Types

Images Images Judgements
LIVE 1 [Sheikh 29 456 X JPEG, JP2K
et al. 2003]
LIVE 2 [Sheikh 29 981 25,000 JPEG, JP2K,
et al. 20065] Gaussian Blur,

White noise, Fast-
fading

CLIVE 1,164 X Natural
[Ghadiyaram
and Bovik 2015]
TID2013 25 3,000 524,000 24 distortions
[Ponomarenko [Ponomarenko et al.
et al. 2015a] 2015a]

18
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Continuation of Table 3.1
Dataset Name Pristine Distorted Human

Images Images
[Ma 4,744 94,880Waterloo

et al. 2017]

KonIQ lOK [Hosu
et al. 2020]
KADID 10k [Lin 81
et al. 2019]
KADIS 700k 140,000
[at Universitat Kon anz
CSIQ/CID-IQ 23
[Liu et al.]

PIPAL
et al. 2020]

[Jinjin 250

PieAPP
[Prashnani et al.
2018]
BAPPS
et al.]

10,073

10,125

700,000

800

29,000

Distortion Types
Judgements
X

X

JPEG, JP2K, White
Gaussian no1Se,
Gaussian blur at 5
levels of distortions
Natural

X

X

25 distortions in 5
levels
5 random distortions

5,000

1.13m

JPEG, JP2K,
Poisson no1Se,
Gaussian blur, SGCK
gamut and DeltaE
gamut mapping
40 distortions [Jinjin
et al. 2020](288x288

patch)
200
(256x256
patch)

[Zhang 187,700 375,400 484,300
(64x64
patch)

End of Table Image Quality Assessment Datasets 3.1

20,280 2.3m 75 distortions
[Prashnani et al.
2018]
425

3.2 Image Quality Assessment Algorithms

With the growth of image quality assessment datasets, and machine learning techniques,
objective image quality assessment has become popular among the communities of researchers.
There have been several major breakthroughs in the field. From the analysis of related
works ?? in this research, it's clear that blind image quality assessment has evolved over
the last decades from hand-crafted feature extraction to convolutional neural networks to
self-attention-based methods.

Table 3.2: State-of-the-art image quality algorithms

Image Quality Assessment Algorithms
Algorithm Name Type Technique
BRISQUE [Mittal et al. Hand-crafted Feature Support Vector
2012a] Extraction Regression
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Continuation of Table 3.2
Algorithm Name
SENet [Hu et al. 2018]

KonCept512 [Hosu et al.
2020]

2019]
SGDNet [Yang et al.

PaQ-2-121Q [Ying et al.
2020]
MANIQA [Yang et al.
2022]
HyperIQA [Su
2020]
TRIQ [You and
Korhonen 2020]
MUSIQ [Ke et al. 2021]
TranSLA [Zhu et al.
2021b]
APNet [Gu et al. 2019]

ASCAMF [Ma et al.
2022]

Type
CNN

CNN

CNN

CNN

Self-attention

et al. CNN

Transformer

Technique
Squeeze-and-
Excitation
X

X

X

ViT

Self-adaptive

ViT

Transformer ViT
Transformer ViT

Learnable Attention
Transformer
Channel-attention ViT
Transformer

End of Table Image Quality Assessment Algorithms 3.2

ViT

3.2.1 BRISQUE (NR/B-IQA in the Spatial Domain)

The most recent implementation of BRISQUE [Mittal et al. 2012a] uses the TID2008 image
quality dataset and a Support Vector Machine library LibSVM to train a model to learn
distortion features. The support vector regressor predicts the image quality score from 0
to 100. The higher the value the poorest the quality. Quality score prediction is run with
KonIQ lOK [Hosu et al. 2020] dataset.

BRISQUE [Mittal et al. 2012a] seem to deviate from expected result ?? when tested
with KonIQ-lOK [Hosu et al. 2020]. Images with flat color surfaces seem to be evaluating
inaccurately.

3.2.2 HyperIQA (Self-adaptive Hyper Network)

[Su et al. 2020] proposed a self-adaptive hyper network architecture to assess image quality
without having a pristine reference image in the wild. The authors separated the quality
assessment process into three stages, (1) content understanding, (2) perception rule learning,
and (3) quality predicting. When the extraction of image semantics is done, rules of
perception are established adaptively with a hyper network, and then adopted with a
quality prediction network. In this model, image quality is supposed to be estimated in
a self-adaptive manner and it generalizes in a robust collection of images captured in the wild.
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Figure 3.3: BRISQUE results in different scenarios

The proposed method aims to develop a quality assessment network that adaptively
predicts image quality according to the image content without having knowledge of the
pristine source image. The proposed network consists of three parts, (1) a backbone network
that extracts semantic features, (2) a target network that predicts image quality, and (3) a
hyper network that generates a series of self-adaptive parameters for the target network.
Image quality prediction approaches with convolutional neural networks usually receive

an input image and directly map it to a quality score. These types of prediction models
imply that the same kind of quality features are extracted for predicting diverse images. In
practice, as image contents vary, using the same rule for predicting varied images, quality is
not thorough to cover their different exhibited structures. As the image content varies, the
way of perceived image quality varies accordingly. In this study [Su et al. 2020], the image
quality assessment model becomes self-adaptive as it extracts different quality features in
accordance with different image contents.

In the proposed hyper network, the authors defined the input of the hyper network as a
function of semantic feature extraction from the input image. The function of the hyper
network is to learn the mapping from the input image content and establish the rules on
how to judge image quality. By introducing an intermediate variable, basic image quality
steps are divided into three previously mentioned steps. The backbone network is used to
extract semantic features from images, the hyper network is used for learning the image
quality perception rule, and the quality prediction target network is used to obtain a final
quality score. The designation makes the network more flexible toward extracting quality
influential features when facing content-varying images with varying distortions.
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Figure 3.4: HyperlQA network architecture [Su et al. 2020]

The semantic feature extraction network in the study [Su et al. 2020] mainly focuses
on understanding image content and outputs two different streams of features for quality
measurement. The generated features are directly fed into the hyper network for generating
weights and the multi-scale content feature stream is used as the input of the target
network. The multi-scale content features are used due to the semantic features that are
extracted from the last layer barely representing the holistic image content. The extraction
of multi-scale features is done through a local distortion-aware module to capture the
local distortions in the captured images in the wild. The designated local distortion-aware
module is built with a series of operations including diving multi-scale feature maps into
non-overlapping patches, stacking the patches along the channel dimension, running a lx l
convolution, and globally pooling them into vectors. ResNet50 [?] which is pre-trained
on ImageNet[] was used as the backbone network to initialize the network. Extracted
multi-scale features conv2 10, conv3 12, and conv4 18 layers are the input of the local
distortion-aware module.

The hyper network that is designated for learning perception rules that are built with three
lx l convolutional layers and a few weight-generating branches. Fully connected layers are
used as the basic target network components, two kinds of network parameters such as
fully-connected layer weight, and fully-connected layer biases should be generated. Weights
for the fully-connected layers are generated from the convolution followed by the reshaping
operation of the extracted features, while fully connected later biases are generated by
simple average pooling and full connection, as biases have significantly lower amounts
of parameters. The weights that are generated in these layers are the representation of
the learned rules of quality prediction and will be used as instructions for the target network.

The multi-scale features extracted with semantic extraction network being content-aware,
the target network for the quality prediction can do the mapping of the learned features to
a quality score. A simple network is used for the quality prediction. The target network is
built with fore fully connected layers that receive the multi-scale content feature vectors as
input and propagate through the specific weights determining layers to get final quality
scores. A sigmoid function is used as an activation function.
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3.2.3 KonCept (Pooling-based Convolutional Neural network)

At the time of crowd-sourcing and creating the image quality dataset KonIQ-10K [Hosu
et al. 2020], the authors proposed a novel deep learning method, KonCept512 [Hosu et al.
2020] with the appropriate approaches in mind. The proposed method was built on top
of a few considerations, (1) the input images size for the network, such as down-sized
versions of the original image or crops, (2) the variety of choices for the base architecture,
(3) minimized loss function, and (4) the aggregation strategy in case of multiple predictions.
The architecture proposed by the authors is an end-to-end approach. An input image will

Mean
opinion
score

Distribution
of scores

Figure 3.5: KonCept512 network architecture [Hosu et al. 2020]

pass through a few convolutional layers without the final fully-connected layers, followed
by a global average pooling layer (GAP). The layers are connected to four fully-connected
layers with 4,048, 1,024, and 256 units, and an output layer has either one output unit to
predict MOS or five units to predict distributed MOS ratings. The three fully-connected
layers use ReLU as an activation function and are connected to a dropout layer with rates
of 0.25, 0.25, and 0.5 to avoid over-fitting. Soft-max activation is used in the final prediction
layer.

The proposed method seeks to minimize the associated loss function which refers to
the cost of a wrong prediction by the algorithms. The authors evaluated five loss functions.
For MOS prediction mean absolute error (MAE) loss, and mean squared error (MSE) loss
were used. For distributed rating prediction, cross-entropy loss, Huber loss, and earth
mover's distance (EMD) loss were used.

While predicting MOS, the input image is fed into the proposed system. Then both
the MAE and MSE are calculated. The MSE is differentiable at the origin that can generate
smoother gradients in case of small errors than the MAE. And it also punishes the larger
deviations from the ground truth efficiently.

To predict the distribution of ratings five-point ACR for subjective quality assessment of the
dataset was used. For image classification tasks, a cross-entropy loss is standard. The same
loss definition is for this regression task. Huber loss for a scalar prediction error controls the
degree of influence given to larger prediction errors. The Earth Mover's Distance (EMD)
loss enhanced results compared to cross-entropy. The used loss is established as the root
mean squared difference between the predicted and ground truth better distributions of
scores.

3.2.4 M A N I Q A (Multi-dimension Attention Network)

The multi-dimension attention network proposed by [Yang et al. 2022], tries to solve the
existing image distortion as well as the GAN-based image distortions.
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Figure 3.6: MANIQA network architecture [Yang et al. 2022]

The feature extraction is done with ViT (Vision Transformer) [Dosovitskiy et al. 2021].
The transposed attention block (TAB) and the scale Swin transformer block (SSTB) were
proposed to enhance the global and local interactions. These two blocks apply attention
mechanisms across the channel and spatial dimensions, resulting in increasing interactions
among different regions of the images locally and globally. A two-branch structure for
patch-weighted quality prediction is used to determine the final score depending on the
weight of ht each patch's score.

The goal of the authors for the proposed method was to establish a model that can
deal with multi-dimensional information from extracted image features. To utilize the
information from the channel and the spatial dimensions, the three core components were
proposed inside the main architecture, (1) transposed attention block (TAB), (2) scale
Swin transformer block (SSTB), and (3) a two-branch structure for patch-weighted quality
prediction.

24



3.2. IMAGE QUALITY ASSESSMENT ALGORITHMS

Q
C x HW

Transposed Attention

R
SoftMax

Map

C x C

HW x C
C x HW HW x C

C x HW C x HW HW x C

D Feature Map

HW
I I

® Reshape

Channel-dimension Self Attention

Matrix Multiplication

Element-wise Addition

Figure 3.7: MANIQA transposed attention block [Yang et al. 2022]

Self-attention layer is an essential part of any Transformer[Vaswani et al. 2017] block.
The key-query dot-product interaction establishes the global connection among the patches
in spatial dimension in most of the self-attention implementations but they tend to ignore
the valuable information among different channels. To counteract this issue, the proposed
transposed attention block implements self-attention across channels instead of the spatial
dimension to calculate cross-variance across channels to generate map encoding in the global
context in a more implicit manner. From the joined features generated by the proposed
transposed attention block query, key, and value projections are established with three
independent linear projections to encode point-wise cross-channel context. The query and
key projections are reshaped so that the consecutive dot-product interaction creates a
transposed attention map. The layer normalization and multi-layer perception are removed
from the original Transformer. The features from the initial four layers of ViT contain
different information in channels about the input image. The transposed attention block
restructures the channels' weights in regard to the importance of the perceptual quality
score.
The scale Swin transformer block consists of Swin Transformer Layers (STL) [Liu et al.
2021]. The SSTB encodes the features through two layers of STL. A convolutional layer
is applied before the residual connection. The convolutional layer with spatially invariant
filters can enhance the translational equivariance. The scale factor makes the training
stable with the residual connection.

For the final quality prediction block, a dual branch structure for patch-weighted was
proposed by the authors. This module has a scoring and weighting branch. Those branches
predict each patch's score and weight with 2 independent linear projections. Due to images
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Figure 3.8: MANIQA scale swin transformer block [Yang et al. 2022]
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Figure 3.9: MANIQA dual branch patch-weighted quality prediction [Yang et al. 2022]

containing feature information in different regions, the final patch score of distorted images
is calculated by multiplicating each patch's score and weight. And then the final score is
calculated by summing up the final patch scores.
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Chapter 4

Design

4.1 Design Planning Outline

The experiments will need several image-quality datasets and algorithms from published
related literature. From the curated list in the related works section, the research will
be scoped down to a few of the choices with appropriate reasoning. After establishing a
curated list of datasets and algorithms, the curated algorithms will be trained, validated,
and tested on the curated datasets. Standard performance matrices will be calculated in
the experiment. Finally, these will be visually represented in various charts, graphs, and
tables.

4.2 Curated Image Quality Datasets

While choosing from a pool of image quality assessment datasets, a few considerations
might help reduce the number of choices. The number of samples for training, validating,
and testing is the general criteria for any image analysis study, so it goes the same for
image quality assessment.

Then domain-specific task like image quality assessment comes with their own requirements.
As the image quality is assessed against the distortion present in the image, classifying
image distortion types and detecting them seems the most intuitive to go. But in the wild,
distorted images contain a combination of distortions with an arbitrary ratio of distortions
across the image. The image datasets that contain images with natural distortions are most
compatible for no-reference image quality assessment. The number of quality ratings and
the number of human subjects to give those quality ratings are also important to reduce
bias as much as possible. Keeping these factors in mind, this research is scoped down to two
datasets, LIVE in the wild [Ghadiyaram and Bovik 2015], and KonlQ 10K [Hosu et al. 2020].
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Table 4.1: Curated image quality datasets

Curated Image Quality Assessment Datasets
Dataset Name Pristine Distorted Quality

Images Images Ratings
1,164 350,000CLIVE

[Ghadiyaram
and Bovik 2015]
KonIQ lOK [Hosu
et al. 2020]

10,073 1,200,000

Human
Subjects
8,100

Distortion
Types
Natural

1,459 Natural

End of Table Curated Image Quality Assessment Datasets 4.1

4.3 Curated Image Quality Assessment Algorithms

While choosing from a collection of image quality assessment algorithms, a few considerations
might be in place to reduce the choices. The available algorithms with well enough
descriptive publications and source code availability are the primary curating criteria for this
comparative study. The secondary specification is to explore the choices of approaches. The
approaches include classical hand-crafted feature extraction, the most popular convolutional
neural networks, and the most recent self-attention-based transformers.

Keeping these factors in mind, this research narrows down to four algorithms from the
pool of choices. For the hand-crafted feature extraction approaches, BRISQUE [Mittal
et al. 2012a] was chosen. For the convolutional neural network approach, HyperIQA [Su
et al. 2020], and KonCept [Hosu et al. 2020] were chosen. For the self-attention-based
transformers approach, MANIQA [Yang et al. 2022] was chosen.

Table 4.2: Curated image quality algorithms

Curated Image Quality Assessment Algorithms
Algorithm Name Type Technique
HyperIQA [Su et al. CNN Self-adaptive
2020]
KonCept [Hosu et al. CNN X

2020]
MANIQA [Yang et al. Self-attention ViT
2022]

End of Table Curated Image Quality Assessment Algorithms 4.2

4.4 Source Code

All the source code for this experimental setup is hosted on GitHub and is subject to be
updated in the future. The source code is hosted at h t t p s : / /g i thub . com/ sourav-paul/
hc2sa. The default branch is "main".
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4.5 Thain, Validation, Test Tools

All necessary datasets are locally hosted in the development environment setup. All the
algorithms are customized to use the datasets hosted in the development environment. The
used tools, software, hardware, etc are listed below.

1. Language, Tools, and Software

(a) Python
(b) Amazon Web Service
(c) Jupyter Notebook
(d) SageMaker
(e) Google Slides
(f) Google Sheets

2. Hardware

(a) CPU, up to 64 cores
(b) RAM, up to 112 Gigabytes
(c) GPU, up to 4 x Nvidia Tesla T4 16 Gigabytes

4.6 Performance Matrices

In the field of quality of experience measurement, the mean opinion score is a standard
way of predefining a scale of measurement. In image quality assessment, the mean opinion
score plays the same role. Pearson's correlation coefficient and Spearman's rank correlation
coefficient are the final tools to determine correlations between the ground truth MOS and
predicted MOS.

4.6.1 Mean Opinion Score (MOS)

Mean opinion score (MOS) is a measurement tool used in the domain of quality of experience
representing the overall quality of a stimulus or system. A predefined scale is used and
assigned by a subject while their opinion of the performance of a system's quality is
measured. Then the arithmetical mean is calculated over all the values assigned by the
subjects. Usually, it's a subjective quality evaluation test but can also be estimated with an
algorithm. MOS is usually used to measure video, audio, and audiovisual quality evaluation.

Table 4.3: MOS in Image Quality Assessment

MOS in Image Quality Assessment
Image Name
100.bmp
101.bmp
102.bmp
103.bmp

Ground Truth MOS, x Predicted MOS, y
32.5611
66.3595
44.695
39.2346

29.468
69.112
42.53
45.866
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Continuation of Table 4.3
Image Name Ground Truth MOS, x Predicted MOS, y
104.bmp 9.2291 15.762
105.bmp 41.3314 51.017
106.bmp 68.9221 67.1764

End of Table MOS in Image Quality Assessment 4.3

4.6.2 Correlation Coefficient

Correlation coefficients are the numerical representation of some kind of statistical relationship
between two variables and their strength. The variables might also be columns of two
datasets of observation or samples, or two multivariate random variables with known
distribution.

There are several types of correlation coefficients that exist in the field of statistical
analysis with their own range of usability and characteristics. Pearson correlation coefficient
and Spearman's rank correlation coefficient are two vastly used among them.

Positive Correlation

0

No correlation

0.4

Figure 4.1: Different Types of Correlation

4.6.3 Pearson (Linear) Correlation Coefficient (PLCC)

Pearson correlation coefficient or Pearson's R is one of the most used correlation coefficients.
Pearson's R is a measure of linear correlation between two sets of data. It represents
the ratio between the covariance of the two variables and the product of their standard
deviations. It ends up essentially being a normalized measurement of the covariance, and
the result is always between -1 to 1. Due to covariance itself, the measurements only reflect
a linear correlation of variables and ignore other types of relationships or correlations.

r (4.1)

4.6.4 Spearman's Rank (Order) Correlation Coefficient (SROCC)

Spearman's rank correlation coefficient is a non-parametric measure of rank correlation
that implies the statistical dependence between the ranking of two variables. It justifies
how well the relationship between two variables can be established with a monotonic
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function. While Pearson's correlation assesses linear relationships, Spearman's correlation
assesses monotonic relationships but linear or not. The Spearman correlation between two
variables will be high when observations have a similar rank between two variables, and
low when observations have a dissimilar rank between the two variables. It's suitable for
both continuous and discrete ordinal variables.

d?
p 1 -

n ( n - 1) (4.2)

4.6.5 MOS, PLCC, SROCC in Image Quality Assessment

As the image quality assessment is a supervised regression task, the datasets come with
a mean opinion score (MOS) assigned to each image in the dataset which is calculated
from a collection of human subjects' individual scores. After the machine learning model is
trained with the image and MOS pairs, it will predict a MOS as a result. The collection of
these ground truth MOS and predicted MOS can be plotted and the correlation can be
calculated with PLCC, and SROCC formulas.

80

60

0
40

20

0
20 30 40 50 60

Ground Truth MOS, x

Figure 4.2: Positive Correlation in Image Quality Assessement

4.7 Implementation

The cross-analysis among state-of-the-art algorithms and datasets require both code and
data ready to train, test, and validate.

HyperIQA lmplemetation

The proposed method of image quality assessment by [Su et al. 2020] comes with open-source
implementation in Python. PyTorch was the choice of machine learning framework by the
authors along with other relevant libraries. While the original source code comes with pure
Python implementation, the training interface code was converted to Jupyter Notebook
format was brought in to keep the development environment reusable and easy to configure.
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The original implementation comes prepared with the KonIQ-IOK [Hosu et al. 2020]
dataset . But additional redirection toward the local copy of the dataset was needed for
this experiment. For the LIVE-in-the-wild [Ghadiyaram and Bovik 2015] dataset , some
preparation was needed to make the acceptable to the implementation. A copy of the
image and MOS pair for CLIVE [Ghadiyaram and Bovik 2015] needed to be placed And
additional redirection toward the local copy of the dataset was needed to be placed in the
original implementation code.

Training, validation, and test process are done two times using both of the datasets
[Hosu et al. 2020; Ghadiyaram and Bovik 2015] separately. The training job in the original
experiment was done with a high number of epochs (160), but due to time and resource
constraints, this experiment uses 5% to 10% of the original number of epochs. And it
applies to both of the training jobs of the separate datasets. In addition, the original
training job runs multiple rounds of epochs.

Finally, PLCC, and SROCC results from every better-performing epoch are logged. The
output represents the per-epoch correlation between the ground truth MOS and predicted
MOS. These results will be summarized in the result section of this paper and will be
discussed in regard to the research objective in the discussion section.

KonCept 512 Im plemetation

The proposed method of image quality assessment by [Hosu et al. 2020] comes with open-
source implementation in Python. Kerns-Utilities (Kutils) was the choice of machine learning
framework by the authors along with other relevant libraries. While the original source
code comes with Python implementation with Kutils library, some of the libraries were
incompatible with this experiment's development environments. Instead, an open-source
PyTorch implementation of KonCept512 with the training interface code was converted to
Jupyter Notebook format were brought in to keep the development environment reusable
and easy to configure. As the original implementation uses ResNet, InceptionResNetV2[]
as backbone networks, the appropriate models were imported and used in the code.

The original implementation comes with the preparation of the KonIQ-IOK [Hosu et al.
2020] dataset. But additional redirection toward the local copy of the dataset was needed
for this experiment. On the other hand, for the LIVE-in-the-wild [Ghadiyaram and Bovik
2015] dataset, some preparation was needed to make the acceptable to the implementation.
A copy of the image and MOS pair for CLIVE [Ghadiyaram and Bovik 2015] needed to
be placed, and some extra code to trim them and add a new row defining as the type of
data entry, such as training, validation, and test set separation to make the original easy to
use. An 82% training, 9% validation, and 9% test data split ratio were maintained. And
additional redirection toward the local copy of the dataset was needed to be placed in the
original implementation code.

Training, validation, and test process are done two times using both of the datasets
[Hosu et al. 2020; Ghadiyaram and Bovik 2015] separately. The training job in the original
experiment was done with a high number of epochs (80), but due to time and resource
constraints, this experiment uses 5% to 10% of the original number of epochs. And it
applies to both of the training jobs of the separate datasets. In addition, due to using two
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varieties of optimizers being used in the same training job, the number of epochs became
twice as many.

In the testing stage, PLCC and SROCC results from every better-performing epoch
are logged. The output represents the per-epoch correlation between the ground truth MOS
and predicted MOS. These results will be summarized in the result section of this paper.

M A N I Q A Implementation

The proposed method of image quality assessment by [Yang et al. 2022] comes with open-
source implementation in Python. PyTorch was the choice of machine learning framework
by the authors along with other relevant libraries. While the original source code comes
with pure Python implementation, the training interface code was converted to Jupyter
Notebook format to keep the development environment reusable and easy to configure.

The original implementation comes with the preparation of the KonIQ-10K [Hosu et al.
2020] dataset. But additional redirection toward the local copy of the dataset was needed for
this experiment. On the other hand, for the LIVE-in-the-wild [Ghadiyaram and Bovik 2015]
dataset, some preparation was needed to make the acceptable to the original implementation.
A copy of the image and MOS pair for CLIVE [Ghadiyaram and Bovik 2015] need to be
placed, and some extra code to trim them and convert them to a regular text file from CSV
to make the original easy to use.

Training, validation, and test process are done two times using both of the datasets
[Hosu et al. 2020; Ghadiyaram and Bovik 2015] separately. The training job in the original
experiment was done with a high number of epochs (300), but due to time and resource
constraints, this experiment uses 5% to 10% of the original number of epochs. And it
applies to both of the training jobs of the separate datasets.

In the testing stage, PLCC and SROCC results from every better-performing epoch
are logged in an output file. The output file represents the per-epoch correlation between
the ground truth MOS and predicted MOS. These results will be summarized in the result
section of this paper.
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Chapter 5

Results

There are some generalized steps in the experimental setup section for each algorithm and
each dataset. All the curated algorithms are modified in a way to be able to train, validate,
and test on both datasets.

5.1 HyperIQA Results

In the design section, the Python source code for HyperIQA [Su et al. 2020] is made ready
to train, validate, and test on the curated datasets.

5.1.1 Trained, Validated, Tested On KonIQ-lOK

KonIQ-lOK [Hosu et al. 2020] dataset is a collection of images with natural distensions
with a list of mean opinion scores. After the algorithm is trained, validated, and tested on
the KonIQ-lOK dataset, a few key performance indicators are collected.

Table 5.1: HyperIQA trained on KonIQ-lOK result PLCC and SROCC

HyperIQA trained on KonIQ-lOK
Round/Epoch Train Test Test PLCC

SROCC SROCC
Round 1 - Epoch 1 0.5454 0.8804 0.9098
Round 1 - Epoch 2 0.9232 0.8885 0.9099
Round 1 - Epoch 3 0.9404 0.8885 0.9151
Round 2 - Epoch 1 0.5226 0.8750 0.8859
Round 2 - Epoch 2 0.9229 0.8827 0.8959
Round 2 - Epoch 3 0.9394 0.8926 0.9045

End of Table 5.2

5.1.2 Trained, Validated, Tested On CLIVE

CLIVE [Ghadiyaram and Bovik 2015] dataset is a collection of images with natural
distensions with a list of mean opinion scores. After the HyperIQA [Su et al. 2020]
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algorithm is trained, validated, and tested on the CLIVE dataset, a few performances
indicating results are collected.

Table 5.2: HyperIQA trained on CLIVE result PLCC and SROCC

HyperIQA trained on CLIVE
Round/Epoch Train Test Test PLCC

SROCC SROCC
Round 1 - Epoch 1 0.7613 0.8134 0.8439
Round 1 - Epoch 2 0.9421 0.8245 0.8603
Round 1 - Epoch 3 0.9610 0.8208 0.8607
Round 2 - Epoch 1 0.7775 0.8334 0.8577
Round 2 - Epoch 2 0.9415 0.8281 0.8480
Round 2 - Epoch 3 0.9586 0.8223 0.8466
Round 3 - Epoch 1 0.7518 0.8386 0.8589
Round 3 - Epoch 2 0.9397 0.8474 0.8648
Round 3 - Epoch 3 0.9560 0.8491 0.8646

End of Table 5.2

5.2 KonCept512 Results

In the design section of this article, the Python source code for KonCept512 [Hosu et al.
2020] is made ready to train, validate, and test on the curated datasets.

5.2.1 Trained, Validated, Tested On KonIQ-lOK

The KonCept512 is ready in the experimental setup to utilize KonIQ-lOK [Hosu et al. 2020]
dataset is a collection of images with natural distensions with a list of mean opinion scores.
After the algorithm is trained, validated, and tested on the KonIQ-lOK dataset, a few key
performance indicators are collected.

Table 5.3: KonCept512 trained on KonIQ-lOK result PLCC

KonCept512 trained on KonIQ-lOK
Round/Epoch
Epoch 1
Epoch 2
Epoch 3
Epoch 4
Epoch 5
Epoch 6
Epoch 7
Epoch 8
Epoch 9
Epoch 10

PLCC
0.8569
0.8661
0.8494
0.8719
0.8314
0.8836
0.8988
0.9076
0.8884
0.9046

End of Table 5.3
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Figure 5.1: result of KonCept512 on koniq 10k
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5.2.2 Trained, Validated, Tested On CLIVE

The KonCept512 is ready in the experimental setup to utilize CLIVE [Ghadiyaram and
Bovik 2015] dataset is a collection of images with natural distensions with a list of mean
opinion scores. After the algorithm is trained, validated, and tested on the CLIVE dataset,
a few performance indicators are collected.

Table 5.4: KonCept512 trained on CLIVE result PLCC

KonCept512 trained on CLIVE
Round/Epoch PLCC
Epoch 1 0.5267
Epoch 2 0.7545
Epoch 3 0.8165
Epoch 4 0.8109
Epoch 5 0.8282
Epoch 6 0.8377
Epoch 7 0.8171
Epoch 8 0.8315
Epoch 9 0.8365
Epoch 10 0.8419

End of Table 5.4
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SRCC: 0.873 I PLCC: 0.91 MAE: 55.519 I RMSE: 56.982

Figure 5.2: result of KonCept512 on dive
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5.3 MANIQA Results

In the experimental setup section, the Python source code for MANIQA [Yang et al. 2022]
is made ready to train, validate, and test on the curated datasets.

5.3.1 Trained, Validated, Tested On KonIQ-lOK

The MANIQA is ready in the design to utilize KonIQ-lOK [Hosu et al. 2020] dataset is a
collection of images with natural distensions with a list of mean opinion scores. After the
algorithm is trained, validated, and tested on the KonlQ-10K dataset, a few key performance
indicators are collected as results.

Table 5.5: MANIQA trained on KONIQ-10K result PLCC and SROCC

MANIQA trained on KonlQ-10K
Round/Epoch Train Test PLCC Train Test

PLCC SROCC SROCC
Epoch 1 0.8224 0.8925 0.8436 0.9186
Epoch 2 0.9163 0.907 0.9369 0.9326
Epoch 3 0.9361 0.9148 0.9542 0.9368
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5.3. MANIQA RESULTS

Round/Epoch Train Test PLCC Train Test
PLCC SROCC SROCC

Epoch 4 0.9488 0.9187 0.9646 0.9381
Epoch 5 0.9572 0.9173 0.9699 0.9381
Epoch 6 0.964 0.9226 0.9745 0.9409
Epoch 7 0.9707 0.9176 0.9789 0.9381
Epoch 8 0.9749 0.9205 0.9818 0.9405
Epoch 9 0.9756 0.9197 0.9825 0.9412
Epoch 10 0.9775 0.9185 0.9834 0.9401

End of Table 5.5

5.3.2 Trained, Validated, Tested On CLIVE

The MANIQA is ready in the design to utilize CLIVE [Ghadiyaram and Bovik 2015] dataset
is a collection of images with natural distensions with a list of mean opinion scores. After
the algorithm is trained, validated, and tested on the CLIVE dataset, a few key performance
indicators are collected as results.

Table 5.6: MANIQA trained on CLIVE result PLCC and SROCC

MANIQA trained on CLIVE
Round/Epoch Train Test Train Test PLCC

SROCC SROCC PLCC
Epoch 1 0.3683 0.8249 0.324 0.847
Epoch 2 0.8108 0.8517 0.8581 0.8701
Epoch 3 0.8781 0.8771 0.9094 0.8881
Epoch 4 0.9236 0.8868 0.9403 0.8993
Epoch 5 0.9472 0.8913 0.9604 0.9045
Epoch 6 0.9437 0.8986 0.9589 0.9056
Epoch 7 0.9624 0.8977 0.9711 0.9099
Epoch 8 0.9711 0.894 0.9779 0.9023
Epoch 9 0.9786 0.9002 0.9833 0.9088
Epoch 10 0.9837 0.9029 0.9878 0.9116

End of Table 5.6
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Chapter 6

Discussion

In this chapter, the results collected from the experiment will be discussed in response to
the research objective. The collected data are plotted and visualized as the experiment
progresses.

6.1 HyperIQA Trained on KonIQ-lOk

HyperlQA [Su et al. 2020] trained, validated, and tested on KonlQ-10K [Hosu et al. 2020]
dataset. There were two rounds of training, validation, and testing were run. All three
rounds had three epochs. From the graph, it's visible that with each round and epoch, the
correlation coefficient gets close to 1 implying the predicted MOS has a positive correlation
to ground truth MOS.
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Figure 6.1: HyperIQA on KonIQ-lOK
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6.2 HyperIQA Trained on CLIVE
HyperlQA [Su et al. 2020] trained, validated, and tested on CLIVE [Ghadiyaram and Bovik
2015] dataset. There were three rounds of training, validation, and testing were run. All
three rounds had three epochs. From the graph, it's visible that with each round and
epoch, the correlation coefficient gets close to 1 implying the predicted MOS has a positive
correlation to ground truth MOS.
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Figure 6.2: HyperIQA on CLIVE
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6.3 KonCept512 Trained on KonIQ-lOk

KonCept512 [Hosu et al. 2020] trained, validated, and tested on KonlQ-10K [Hosu et al.
2020] dataset. There was one round of training, validation, and testing run. They had ten
epochs. From the graph, it's visible that with each epoch, the correlation coefficient gets
close to 1 implying the predicted MOS has a positive correlation to ground truth MOS.
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Figure 6.3: KonCept512 on KonlQ-10K
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6.4 KonCept512 Trained on CLIVE

KonCept512 [Hosu et al. 2020] trained, validated, and tested on CLIVE [Ghadiyaram and
Bovik 2015] dataset. There was one round of training, validation, and testing run. They
had ten epochs. From the graph, it's visible that with each epoch, the correlation coefficient
gets close to 1 implying the predicted MOS has a positive correlation to ground truth MOS.
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Figure 6.4: KonCept512 on CLIVE
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6.5 MANIQA Trained on KonIQ-lOK
MANIQA [Yang et al. 2022] trained, validated, and tested on KonlQ-10K [Hosu et al. 2020]
dataset. There was one round of training, validation, and testing run. They had ten epochs.
From the graph, it's visible that with each epoch, the correlation coefficient gets close to 1
implying the predicted MOS has a positive correlation to ground truth MOS.
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Figure 6.5: MANIQA on KonlQ-10K
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6.6 MANIQA Trained on CLIVE
MANIQA [Yang et al. 2022] trained, validated, and tested on CLIVE [Ghadiyaram and
Bovik 2015] dataset. There was one round of training, validation, and testing run. They
had ten epochs. From the graph, it's visible that with each epoch, the correlation coefficient
gets close to 1 implying the predicted MOS has a positive correlation to ground truth MOS.
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Figure 6.6: MANIQA on CLIVE
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Conclusion

A comparative study of objective perceptual no-reference or blind image quality assessment
was conducted in this research. The purpose was to see how the algorithm performs against
the datasets.

Three state-of-the-art machine learning algorithms were curated. Two image-quality datasets
with natural distortion were curated. The algorithms were trained, validated, and tested
across the datasets. The data were collected and plotted for visualization.

In each resulting case, it is visible tha t the correlation coefficients tend to reach near 1
implying that the predicted mean opinion score (MOS) has a strong positive correlation
with the ground truth mean opinion score (MOS). The state-of-the-art algorithms perform
well with different datasets with natural distortions.

7.1 Future Work

This study opens up the possibility of increasing the number of state-of-the-art algorithms
used in the experiment. More datasets can absolutely be part of any future study on this
topic. With the increased computational resources, more algorithms trained, validated, and
tested across more diverse datasets will help researchers and application engineers choose
among the algorithms and datasets with more reliable data.
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