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A B S T R A C T

This study investigated vibrational resonance (VR) in a Duffing-type oscillator with position-dependent mass
(PDM) distribution defined by spatially varying exponential function. The role of two PDM parameters, the
fixed rest mass 𝑚0 and nonlinear strength 𝑘 on observed resonances was investigated from the analytical and
numerical computation of response amplitude 𝑄, which is a measure of the amplification of a low-frequency
(LF) signal through the introduction and modulation of a high-frequency (HF) signal in a weakly driven
nonlinear system. The method of direct separation of motion was used to analytically compute the response
amplitude, while the numerically computed response amplitude was obtained from the Fourier spectrum of
the output signal. Single resonance peaks with good agreement between the numerically and the analytically
computed responses were observed for the traditional HF-induced VR and the PDM-induced resonances.
The results demonstrated that spatial mass perturbation can play the roles of HF signals typically used in
traditional VR setups. The results of this investigation corroborate earlier reports that stated PDM parameters
can complement the HF signal to control the observed resonance peaks. However, the exponentially varying
PDM parameters did not initiate double or multiple resonances as reported for other mass distributions such
as the regular mass function and the doubly-singular mass function. This study communicates that the nature
of the PDM distribution actually determines the possibility of generating new peaks from observed resonances.
1. Introduction

Nonlinear dynamics include methods of analyzing the behavior
of physical systems that are often presented as differential equations
[1]. The extensive application of nonlinear science to a variety of
fields has attracted attention of researchers in many fields of science.
These include areas like biology, medicine and social sciences. Low-
order systems modeled as nonlinear ordinary differential equations are
known to exhibit a variety of intriguing behaviors resulting in the
emergence of strange attractors and other phenomena, one of which
is resonance [2]. Nonlinearity is essential in most systems, particularly
in experimental conditions. In real systems, nonlinearity can manifest
in a variety of ways, including physical, structural, frictional or geo-
metrical [3]. A source of nonlinearity often overlooked is the reactive
force, particularly in systems with a variable mass due to its tendency to
introduce complexity into simple physical problem with constant mass.

The dynamics of variable-mass systems require a modification to
the well-known Newtonian dynamics of constant-mass systems by ac-
counting for an additional non-conservative generalized force called the
reactive force. This results from the effect of the addition/seperation of

∗ Corresponding author.
E-mail address: U.Diala@derby.ac.uk (U.H. Diala).

a number of particles of a system or a significant mass change over
time. The contribution of the reactive force depends on the nature of
the mass variation. The mass variation could be in form of position,
time or velocity. The reactive force is described theoretically as the
product of functions of mass variation and relative velocity of mass
added or separated from the system. Several forms of mass variation
functions have been studied in systems with variable mass whose
associated reactive force is a nonlinear function of relative velocity
of mass variation [4,5], particularly in semiconductor theory [6,7],
polarons [8] and quantum dots [9,10].

In many real systems encountered in nature and technology, the
variation in mass results from accretion (or ablation) processes which
manifest as addition (or removal) of particles to (or from) a mass as the
particle changes in position, time or velocity [11]. For instance, during
the formation of an iceberg, when snow falls on the surface of a floating
iceberg, it freezes and the mass of the iceberg increases. However, the
heat from the Sun’s rays melt the surface ice thereby decreasing the
mass of the iceberg [12]. In the transportation mechanisms used in
manufacturing industries such as rotors and conveyor belts, loading and
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unloading processes continually alter the mass of products on the con-
veyor belt. Also, the mass of a falling meteorite decreases as it passes
the Earth’s burning atmosphere, whereas the Earth’s mass increases
when the meteorite drops on its surface [12]. Rockets continually burn
fuel to gain thrust which leads to mass decrease over time [13]. The
nonlinearity introduced into the dynamics of a variable mass system
has the potential to affect the system’s dynamics. For instance, the
order of nonlinearity influences the amplitude and phase change in
a lightly damped oscillator with a variable mass [14]. Mass variation
initiates other complex dynamics such as bifurcation, chaos, hysteresis,
multistability and resonance [15].

Resonance is a fundamental phenomenon demonstrated by linear
and nonlinear dynamical systems. Traditionally, a system is consid-
ered to be at resonance if its response amplitude becomes amplified
upon introducing small perturbation with a frequency close to the
system’s natural frequency [16]. The phenomena of resonance, partic-
ularly in nonlinear systems, has been extended to include all forms
of amplification initiated through the modulation of any of the sys-
tem parameters. This definition implies frequency-matching is not a
precondition for nonlinear resonance. Nonlinear resonances is appli-
cable to multiple fields of study including neuroscience, engineering,
optics, ionospheric physics, atomic physics, acoustics and laser physics.
Nonlinear resonance can be initiated by different types of external
forces, leading to various forms such as stochastic resonance [17],
chaotic and ghost resonance [18,19] and vibrational resonance [20].
Vibrational resonance (VR) displays many analogies to the well-known
phenomenon of stochastic resonance, but with a periodic external force
filling the role usually played by noise [21]. Vibrational resonance oc-
curs when a system is subjected to a bi-harmonic excitation consisting
of a small-amplitude LF signal and a large-amplitude HF signal.

Following the pioneering work on VR by Landa and McClintock
[20], the last two decades have seen a great amount of research output
on theoretical and experimental studies on VR in monostable [20,22],
bistable [23] and multistable potentials [24,25]. VR has been examined
in systems modeled as excitable systems [26], coupled oscillators [27],
fractional-order systems [28], electrical systems [29,30] and biological
systems [31–33]. Some fascinating characteristics and possible applica-
tions of VR have been highlighted. A novel ghost vibrational resonance
phenomenon was observed in a system driven by multi-frequency sig-
nals [34]. The application of VR in signal processing is well-established,
and has been suggested for signal transmission, filtering and ampli-
fication [35]. VR has been suggested as a propitious technique for
non-invasive, nascent bearing-fault diagnosis [36–39]. Other physical
applications include information processing [40], nonlinear signal pro-
cessing [40], noisy image perception [41], detection of weak-faults in
rotating machines [42] and synthetic gene networks [43]. These studies
have enormous contributions to our knowledge of the VR phenomenon,
its underlying mechanism, and possible applications.

However, most of these studies assumed the systems possessed a
constant mass, and little attempt have been made to investigate VR
in systems with a variable mass. In a noteworthy study, Roy-Layinde
et al. [44] examined VR in a simple, but general, position-dependent
mass system with a regular mass function consisting of a constant mass
(mass amplitude) and a quadratic spatial nonlinearity. A general theo-
retical framework for dealing with VR in PDM systems was developed
and the variable mass parameters were shown to play essential com-
plementary roles to the high-frequency signal. The approach yielded
similar results in the analysis of VR in a PDM oscillator with doubly
singular mass distribution describing the vibrational inversion mode of
NH3 molecule [45]. However, the mass functions considered in both
literature only admit certain position values with unavoidable singu-
larities, limiting the number of applicable physical systems. Hence, a
mass distribution with large admissibility is suggested. We note that
different mass distributions abound and their effect on observed system
dynamics may vary [46]. Motivated by the remarkable results of the
2

aforementioned studies, we extend the gains by redefining the mass
distribution as an exponential distribution. The exponential function
describes the mass as a regular mass-function on a whole real line with
large number of applications. In this paper, we investigate vibrational
resonance in a Duffing-type PDM system with an exponential mass
function.

2. The model

We consider an archetypical periodically driven nonlinear system
which describes the dynamics of a position-dependent point mass,
defined by exponential mass distribution. The carefully interpreted
generalized Newton’s second law of motion for the classical PDM
systems from analytical mechanics is known to contain an extra non-
conservative generalized force due to the mass variation termed the
reactive force, 𝑅𝑃𝐷𝑀 (𝑥, �̇�; 𝑡). The reactive force is a quadratic func-
tion of velocity and is linearly proportional to the mass gradient;
𝑅𝑃𝐷𝑀 (𝑥, �̇�, 𝑡) = 1

2
𝑑𝑚(𝑥)
𝑑𝑥 [4,5].

The Euler–Lagrange equation which encodes the dynamics of the
variable mass 𝑚(𝑥) is given by
𝑑
𝑑𝑡

( 𝜕𝐿
𝜕�̇�

) − 𝜕𝐿
𝜕𝑥

= 𝜙, (1)

where

𝐿(𝑥, �̇�; 𝑡) = 𝑇 − 𝑉 (𝑥) = 1
2
𝑚(𝑥)�̇�2 − 𝑉 (𝑥) (2)

is the Lagrangian 𝐿(𝑥, �̇�; 𝑡) associated to the Newton’s equation of
motion of the form

𝐹 (𝑥, �̇�; 𝑡) = 𝐹 (𝑥; 𝑡) + 𝑅𝑃𝐷𝑀 (𝑥, �̇�; 𝑡)

= −
𝑑𝑉 (𝑥)
𝑑𝑥

+ 𝜙 (3)

[46–48]. In Eqs. (1), (2) and (3), the overdot indicates differentiation
with respect to time. 𝑇 = 1

2𝑚(𝑥)�̇�
2 is the kinetic energy of the system,

𝑉 (𝑥) is the system potential, and 𝜙(= −𝛼�̇� + 𝐹𝑒𝑥𝑡) is the net dissipative
force consisting of the damping term 𝛼�̇� and the external driving force
𝐹𝑒𝑥𝑡. The Newton’s equation of motion (Eq. (3)) form of the Euler–
Lagrange equation (Eq. (1)) for a PDM system with inertial force
𝐹 (𝑥; 𝑡) = 𝑚(𝑥)�̈� can easily be shown to be

𝑚(𝑥)�̈� + 1
2
𝑚′(𝑥)�̇�2 +

𝑑𝑉 (𝑥)
𝑑𝑥

= 𝜙. (4)

By substituting for 𝜙 in Eq. (4) and dividing through by 𝑚(𝑥), we have

�̈� + 1
2
𝑚′(𝑥)
𝑚(𝑥)

�̇�2 + 𝛼
𝑚(𝑥)

�̇� + 1
𝑚(𝑥)

𝑑𝑉 (𝑥)
𝑑𝑥

=
𝐹𝑒𝑥𝑡
𝑚(𝑥)

. (5)

Eq. (5) is the model of a dissipative particle with position-dependent
variable mass evolving in a potential of the form

𝑉 (𝑥) = 1
2
𝑚(𝑥)𝜔2

0𝑥
2 + 1

4
𝛽𝑥4. (6)

We consider a variable mass with position-dependent mass distribu-
tion of the form

𝑚(𝑥) = 𝑚0𝑒
𝑘𝑥
2 (7)

where 𝑚0 is the particle rest mass (mass at 𝑘 = 0), and 𝑘 is a constant
actor resulting from the particle accretion or ablation process [46]. The
onstants 𝑚0 and 1

𝑘 are expressed in mass and position units, respec-
tively. The mass distribution (Eq. (7)) is referred to as an exponential
mass function. By substituting Eqs. (6) and (7) in Eq. (5), the system
with a variable mass can be modeled as a driven nonlinear dissipative
system of the form

�̈� + 𝑏(𝑥)�̇�2 + 𝑐(𝑥)�̇� + 𝑑(𝑥) = ℎ(𝑥), (8)

where

𝑏(𝑥) = 1
2
𝑚′(𝑥)
𝑚(𝑥)

= 1
4
𝑘𝑚0𝑒

𝑘𝑥
2

𝑚(𝑥)
= 𝑘

4
,

𝑐(𝑥) = 𝛼 = 𝛼𝑒
−𝑘𝑥
2

, (9)

𝑚(𝑥) 𝑚0
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Fig. 1. The PDM system potential structure computed from Eq. (13) for different
parameter values of the variable mass (a) when the fixed rest mass 𝑚0 = 1 and
𝑘 = [0.0 0.01 0.015 0.02] (b) when the nonlinear mass strength 𝑘 = 0.01 and 𝑚0 =
[0.5 1.0 1.5 2.0]. Other parameters are set as 𝜔0 = 1, 𝛽 = 0.1.

𝑑(𝑥) = 1
𝑚(𝑥)

𝑑𝑉 (𝑥)
𝑑𝑥

= 𝜔2
0𝑥 + 𝑘

4
𝜔2
0𝑥

2 +
𝛽𝑒

−𝑘𝑥
2

𝑚0
𝑥3,

ℎ(𝑥) = 𝐹𝑒𝑥𝑡
𝑒
−𝑘𝑥
2

𝑚0
.

If we define the external drive as an additive bi-harmonic signal of
the form 𝐹𝑒𝑥𝑡 = 𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡, comprising of a slow periodic input
signal with frequency 𝜔 and a fast driving signal with high-frequency
𝛺, where (𝛺 ≫ 𝜔), then Eq. (8) describing the PDM system with an
exponential mass function can be written as

�̈� + 𝑘
4
�̇� + 𝛼

𝑚0
𝑒
−𝑘𝑥
2 �̇� + 𝜔2

0𝑥 + 𝑘
4
𝜔2
0𝑥

2 +
𝛽
𝑚0

𝑒
−𝑘𝑥
2 𝑥3

= (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 𝑒
−𝑘𝑥
2

𝑚0
. (10)

Eq. (10) can be considered as a model of bi-harmonically forced steel
beam, plasma ionization and nonlinear electronic circuits with variable
mass.

By choosing the first two terms of the power series of 𝑒
−𝑘𝑥
2 , such

that 𝑒
−𝑘𝑥
2 ≈

(

1 − 𝑘𝑥
2

)

, we obtain an approximate form of Eq. (7), which
is valid for small value of 𝑘 and more amenable to the perturbation
technique of Direct Separation of Motion, given by

�̈� +𝑘
4
�̇�2 + 𝛼

𝑚0

(

1 − 𝑘𝑥
2

)

�̇� + 𝜔0
2𝑥 + 𝑘

4
𝜔0

2𝑥2 (11)

+
𝛽
𝑚0

(

1 − 𝑘𝑥
2

)

𝑥3 = (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(

1 − 𝑘𝑥
2

)

.

Eq. (11) can be expanded as

�̈� + 𝑘
4
�̇�2 + 𝛼

𝑚0
�̇� − 𝛼𝑘

2𝑚0
𝑥�̇� + 𝜔2

0𝑥 + 𝑘
4
𝜔2
0𝑥

2 +
𝛽
𝑚0

𝑥3

−
𝛽𝑘
2𝑚0

𝑥4 = (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(

1 − 𝑘𝑥
2

)

(12)

Hence, the PDM system (Eq. (10)) can be approximated as Eq. (12).
The system’s potential 𝑉 (𝑥) in the presence of an exponentially varying
PDM is thus

𝑉 (𝑥) =
𝜔2
0
2
𝑥2 + 𝑘

12
𝜔2
0𝑥

3 +
𝛽

4𝑚0
𝑥4 −

𝛽𝑘
10𝑚0

𝑥5. (13)

We note that when the mass is constant (𝑘 = 0), the system is reduced to
the well-known Duffing oscillator whose fascinating dynamics exhibits
chaotic behavior, hysteresis, and resonance.
3

The potential of the approximated PDM system with exponentially
varying mass (Eq. (12)) given by Eq. (13), is shown in Fig. 1. The
PDM system has an asymmetric single-well for all positive values of
𝜔2
0. The shape of the potential remains unchanged for four values of

PDM parameters 𝑘 = [0 0.01 0.015 0.02] and 𝑚0 = [0.5 1.0 1.5 2.0], as
shown in Fig. 1(a) and Fig. 1(b), respectively. More importantly, the
effect of the parameter, 𝑘 on the shape of the system’s potential is clear
from Fig. 1(a), especially, when increased from 𝑘 = 0.010 to 𝑘 = 0.020.
Therefore, examining the impact of large values of 𝑘 is immaterial.
The effect of the HF signal on the system potential structure can be
observed from the potential of the slow oscillation, which is considered
the effective potential of the PDM.

3. Methods

Techniques that provide reliable proof for the existence of vibra-
tional resonance in PDM systems were used, particularly independent
analytical and numerical methods. The vibrational resonance phe-
nomenon is examined through a characteristic term called response
factor 𝑄, which provides an insight into how the cooperation between
the parameters of the external driving signals of a nonlinear system
results in amplified output. Usually, a bell-shaped response curve is
indicative of resonance. Traditionally, vibrational resonance (VR) is
achieved by the variation of the response amplitude with respect to
the parameters of the HF signal (𝑔, 𝛺).

3.1. Analytical method

Here, we apply the standard perturbation method of Direct Sepa-
ration of Motion (DSM) which is well described in [49,50], to retrieve
the dynamics of the system with respect to the influence of the external
high-frequency (HF) signal by splitting system’s equation of motion
(12) into slow and fast motions. To apply the DSM method, we assume
the system’s response comprises of a slow component 𝑦(𝑡) and a fast
component 𝑧(𝑡, 𝜏), where 𝜏 is the fast time (𝜏 = 𝛺𝑡) of the HF drive with
frequency 𝛺 (𝛺 ≫ 𝜔). We set out to obtain a pair of integro-differential
equations, which describes the equations of slow oscillations as well as
the fast vibrations and the superposition of their solutions completely
solves the PDM system presented in Eq. (12). Therefore we assume

𝑥(𝑡) = 𝑦(𝑡) + 𝑧(𝑡, 𝜏). (14)

Substituting Eq. (14) into the PDM oscillator of Eq. (12), we can write

�̈� + �̈� + 𝑘
4
(�̇� + �̇�)2 + 𝛼

𝑚0
(�̇� + �̇�) − 𝛼𝑘

2𝑚0
(𝑦 + 𝑧)(�̇� + �̇�) + 𝜔2

0(𝑦 + 𝑧)

+
𝑘𝜔2

0
4

(𝑦 + 𝑧)2 +
𝛽
𝑚0

(𝑦 + 𝑧)3 −
𝛽𝑘
2𝑚0

(𝑦 + 𝑧)4

= (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(1 − 𝑘
2
(𝑦 + 𝑧)). (15)

Eq. (15) can be expanded to give

�̈� +�̈� + 𝑘
4
�̇�2 + 𝑘

4
�̇�2 + 𝑘

2
�̇��̇� + 𝛼

𝑚0
�̇� + 𝛼

𝑚0
�̇�

− 𝛼𝑘
2𝑚0

(𝑦�̇� + 𝑧�̇�) − 𝛼𝑘
2𝑚0

(𝑦�̇� + 𝑧�̇�) + 𝜔2
0𝑦 + 𝜔2

0𝑧 +
𝑘𝑤2

0
4

(𝑦2 + 2𝑦𝑧 + 𝑧2)

+
𝛽
𝑚0

(𝑦3 + 3𝑦2𝑧 + 3𝑦𝑧2 + 𝑧3) −
𝛽𝑘
2𝑚0

(𝑦4 + 4𝑦3𝑧 + 6𝑦2𝑧2 + 4𝑦𝑧3 + 𝑧4)

= (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(1 − 𝑘
2
(𝑦 + 𝑧)). (16)

We note that the 𝑧 component is rapidly oscillating with period 2𝜋,
while the slow component, 𝑦(𝑡) is assumed to be periodic with period
𝑇 = 2𝜋

𝜔 . Hence, we average both sides of Eq. (16) with respect to the
fast time by taking the mean values (denoted by an overline) of the fast
components, which gives

�̈� +�̈� + 𝑘 �̇�2 + 𝑘 �̇�2 + 𝑘 �̇��̇� + 𝛼 �̇� + 𝛼 �̇�

4 4 2 𝑚0 𝑚0
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− 𝛼𝑘
2𝑚0

(𝑦 + 𝑧)�̇� − 𝛼𝑘
2𝑚0

(𝑦 + 𝑧)�̇� + 𝜔2
0𝑦 + 𝜔2

0𝑧 +
𝑘𝑤2

0
4

(𝑦2 + 2𝑦𝑧 + 𝑧2)

+
𝛽
𝑚0

(𝑦3 + 3𝑦2𝑧 + 3𝑦𝑧2 + 𝑧3) −
𝛽𝑘
2𝑚0

(𝑦4 + 4𝑦3𝑧 + 6𝑦2𝑧2 + 4𝑦𝑧3 + 𝑧4)

= (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(1 − 𝑘
2
(𝑦 + 𝑧)). (17)

By factorizing like terms, Eq. (17) becomes

�̈� +𝑘
4
�̇�2 + 𝛼

𝑚0

(

1 − 𝑘𝑧
2

)

�̇� − 𝛼𝑘
2𝑚0

𝑦�̇�

+

(

𝜔2
0 +

𝑘𝜔2
0

2
𝑧 +

3𝛽
𝑚0

𝑧2 −
2𝛽𝑘
𝑚0

𝑧3
)

𝑦 +

(

𝑘𝜔2
0

4
+

3𝛽
𝑚0

𝑧 −
3𝛽𝑘
𝑚0

𝑧2
)

𝑦2

+
(

𝛽
𝑚0

−
2𝛽𝑘𝑧
𝑚0

)

𝑦3 −
(

𝛽𝑘
2𝑚0

)

𝑦4 + �̈� + 𝑘
4
�̇�2

+
(

𝑘
2
�̇� + 𝛼

𝑚0
− 𝛼𝑘

2𝑚0

(

𝑦 + 𝑧
)

)

�̇� + +𝜔2
0𝑧 +

𝑘𝜔2
0

4
𝑧2 +

𝛽
𝑚0

𝑧3 −
𝛽𝑘
2𝑚0

𝑧4

= (𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡) 1
𝑚0

(1 − 𝑘
2
(𝑦 + 𝑧)) (18)

The mean value of 𝑧(𝜏) w.r.t the fast time 𝜏 is given by

�̄� = 1
2𝜋 ∫

2𝜋

0
𝑧𝑑𝜏 = 0, (19)

and 𝑔 cos𝛺𝑡 = 0, so that Eq. (18) becomes

�̈� +𝑘
4
�̇�2 + 𝛼

𝑚0
�̇� − 𝛼𝑘

2𝑚0
𝑦�̇� +

(

𝜔2
0 +

3𝛽
𝑚0

𝑧2 −
2𝛽𝑘
𝑚0

𝑧3
)

𝑦

+

(

𝑘𝜔2
0

4
−

3𝛽𝑘
𝑚0

𝑧2
)

𝑦2 +
(

𝛽
𝑚0

)

𝑦3 +
(

−𝛽𝑘
2𝑚0

)

𝑦4

+
𝑘𝜔2

0
4

𝑧2 +
𝛽
𝑚0

𝑧3 −
𝛽𝑘
2𝑚0

𝑧4 =
𝑓
𝑚0

(

1 − 𝑘
2
𝑦
)

cos𝜔𝑡 (20)

Eq. (20) is the equation of the slow motion of the system which we are
mostly interested in and it is one of the integro-differential equations
we set out to obtain using the DSM. We would use an approximation
method to obtain the mean values in the equation. This is done by
first obtaining the second integro-differential equation, which is the
equation of the fast oscillation 𝑧, by subtracting the equation of slow
component 𝑦 (Eq. (20)) from the equation of the composite system 𝑥
(Eq. (12)). Hence, the system’s equation for the fast oscillation is

�̈� + 𝑘
4
�̇�2 +

(

𝑘
2
�̇� + 𝛼

𝑚0
− 𝛼𝑘

2𝑚0

(

𝑦 + (𝑧 − 𝑧)
)

)

�̇�

+

(

𝜔2
0 −

𝛼𝑘�̇�
2𝑚0

+
𝑘𝜔2

0𝑦
2

+
3𝛽𝑦2

𝑚0
−

2𝛽𝑘𝑦3

𝑚0

)

(𝑧 − 𝑧)

+

(

3𝛽𝑦
𝑚0

−
3𝛽𝑘𝑦2

𝑚0
+

𝑘𝜔2
0

4

)

(𝑧2 − 𝑧2)

−
(

2𝛽𝑘𝑦
𝑚0

−
𝛽
𝑚0

)

(𝑧3 − 𝑧3) −
𝛽𝑘
2𝑚0

(𝑧4 − 𝑧4)

=
𝑔
𝑚0

(

1 − 𝑘
2
(𝑦 + (𝑧 − 𝑧))

)

cos𝛺𝑡 −
𝑓
𝑚0

(𝑘
2
(𝑧 − 𝑧)

)

cos𝜔𝑡 (21)

Next, we obtain the mean values in Eq. (20) by applying the inertial
approximation �̈� ≫ �̇� ≫ 𝑧 ≫ 𝑧2 [51], and assuming the fast component
𝑧 is much faster than the slow component 𝑦 so that the contribution of
the slow component to the fast motion (Eq. (21) becomes negligible,
that is, 𝑦 and �̇� are considered frozen in Eq. (21). Hence Eq. (21) is
reduced to

�̈� =
𝑔
𝑚0

cos𝛺𝑡, (22)

which has a solution

𝑧 =
−𝑔

𝑚0𝛺2
cos𝛺𝑡. (23)

Using Eq. (23), the mean values are obtained as

𝑧 = 𝑧3 = 𝑧5 = 0,
4

Fig. 2. The effective potential of the system computed from Eq. (27) showing the
contribution of fast signal (a) when nonlinear mass strength 𝑘 = 0.01 for four values
of the HF amplitude 𝑔 = (0, 500, 700, and1000) (b) when the HF amplitude 𝑔 = 100 for
four values of the mass nonlinear strength (0.0, 0.01, 0.015, and0.02). Other parameters
are set as 𝜔0 = 1, 𝛽 = 0.1, 𝛺 = 4𝜔,𝜔 = 0.1.

𝑧2 =
𝑔2

2𝑚2
0𝛺

4
, 𝑧4 =

3𝑔4

8𝑚4
0𝛺

8
, �̇�2 =

𝑔2

2𝑚2
0𝛺

2
. (24)

Substituting Eq. (24) in the equation of slow motion (Eq. (20)), gives

�̈� +𝑘
4
�̇�2 + 𝛼

𝑚0
�̇� − 𝛼𝑘

2𝑚0
𝑦�̇� + 𝐶1𝑦 + 𝐶2𝑦

2 + 𝐶3𝑦
3

+ 𝐶4𝑦
4 + 𝐶0 =

𝑓
𝑚0

(

1 − 𝑘
2
𝑦
)

cos𝜔𝑡, (25)

where

𝐶1 =
(

𝜔2
0 +

3𝛽
𝑚0

𝑧2 −
2𝛽𝑘
𝑚0

𝑧3
)

= 𝜔2
0 +

3𝛽𝑔2

2𝑚3
0𝛺

4
,

𝐶2 =

(

𝑘𝜔2
0

4
−

6𝛽𝑘
2𝑚0

𝑧2
)

= 𝑘
4

(

𝜔2
0 −

6𝛽𝑔2

𝑚3
0𝛺

4

)

,

𝐶3 =
(

𝛽
𝑚0

)

, 𝐶4 =
(

−𝛽𝑘
2𝑚0

)

, (26)

𝐶0 =

(

𝑘𝜔2
0

4
𝑧2 +

𝛽
𝑚0

𝑧3 −
𝛽𝑘
2𝑚0

𝑧4
)

=
𝑘𝑔2

8𝑚2
0𝛺

4

(

𝜔2
0 −

3𝛽𝑔2

2𝑚3
0𝛺

4

)

The effective potential of the PDM oscillator is given as

𝑉𝑒𝑓𝑓 (𝑦) = 𝐶0𝑦 +
1
2
𝐶1𝑦

2 +
𝐶2
3
𝑦3 +

𝐶3
4
𝑦4 +

𝐶4
5
𝑦5. (27)

The slow oscillation takes place about the equilibrium point 𝑦∗,
which is one of the four roots of the quartic equation

𝐶4𝑦
∗4 + 𝐶3𝑦

∗3 + 𝐶2𝑦
∗2 + 𝐶1𝑦

∗ + 𝐶0 = 0. (28)

If Eq. (28) has three real roots which are designated 𝑦∗𝑅, 𝑦∗𝑀 and 𝑦∗𝐿,
then for the double-well effective potential, 𝑦∗𝑅 and 𝑦∗𝐿 denote the right-
well and left-well local minima, respectively, while 𝑦∗𝑀 represents the
middle-hump local maximum.

The effect of the HF amplitude 𝑔 on the effective potential is shown
in Fig. 2(a) for four values of 𝑔 = [0, 500, 700, 1000]. The effective poten-
tial remains single-well when the system is bi-harmonically driven, and
this is consistent for all chosen values of the mass nonlinear strength
as shown in Fig. 2(b) for 𝑘 = [0, 0.01, 0.015, 0.02].

Next, we describe the system’s oscillation by the motion around the
equilibrium points by defining a deviation variable 𝑌 = 𝑦 − 𝑦∗ which
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𝑥

is the deviation of the slow motion 𝑦 from the equilibrium points 𝑦∗.
Using 𝑦 = 𝑌 + 𝑦∗ in Eq. (25) yields

𝑌 +𝑘
4
�̇� 2 + 𝛾�̇� − 𝛼𝑘

2𝑚0
𝑌 �̇� + 𝜔2

𝑟𝑌 + 𝜂1𝑌
2 + 𝜂2𝑌

3

+ 𝐶4𝑌
4 + 𝜂3 =

𝑓
𝑚0

(

1 − 𝑘
2
(𝑌 + 𝑦∗)

)

cos𝜔𝑡, (29)

where

𝛾 = 𝛼
𝑚0

(1 −
𝑘𝑦∗

2
),

𝜔2
𝑟 = 𝐶1 + 2𝐶2𝑦

∗ + 3𝐶3𝑦
∗2 + 4𝐶4𝑦

∗3,

𝜂1 = 𝐶2 + 3𝐶3𝑦
∗ + 6𝐶4𝑦

∗2,

𝜂2 = 𝐶3 + 4𝐶4𝑦
∗, (30)

𝜂3 = 𝐶4𝑦
∗4 + 𝐶3𝑦

∗3 + 𝐶2𝑦
∗2 + 𝐶1𝑦

∗ + 𝐶0.

Assuming that |𝑌 | ≪ 1 for 𝑓 ≪ 1 in the long-term limit as 𝑡 → ∞
and discarding higher powers in the deviation 𝑌 in Eq. (29), then the
approximate linear equation of motion can be written as

𝑌 + 𝛾�̇� + 𝜔2
𝑟𝑌 = 𝐹 cos𝜔𝑡, (31)

where 𝜔𝑟 is the resonant frequency and 𝐹 = 𝑓
𝑚0

is the approximate
amplitude. The steady state solution of Eq. (31) is obtained as

𝑌 (𝑡) = 𝐴𝐿 cos(𝜔𝑡 −𝛷), (32)

where

𝐴𝐿 = 𝐹
√

(𝜔2
𝑟 − 𝜔2)2 + 𝛾2𝜔2

, (33)

and

𝛷 = tan−1
(

𝜔2 − 𝜔2
𝑟

𝛾𝜔

)

. (34)

The analytically computed response amplitude is thus given as

𝑄𝑎𝑛𝑎 =
𝐴𝐿
𝑓

= 1

𝑚0

√

(𝜔2
𝑟 − 𝜔2)2 + 𝛾2𝜔2

. (35)

3.2. Numerical method

The response amplitude which characterizes the phenomenon of VR
is computed numerically from the Fourier components of the output
signal. The output signal is obtained by first expressing the system given
by Eq. (12) as a system of coupled autonomous first order ODEs of the
form

̇ = 𝑦 (36)

�̇� = −𝑘
4
�̇�2 − 𝛼𝑒

−𝑘𝑥
2

𝑚0
�̇� − 𝜔2

0𝑥 −
𝜔2
0𝑘
4

𝑥2 −
𝛽𝑒

−𝑘𝑥
2

𝑚0
𝑥3

+
(𝑓 cos𝜔𝑡 + 𝑔 cos𝛺𝑡)𝑒

−𝑘𝑥
2

𝑚0
,

and integrating Eq. (36) over a time interval 𝑇𝑠 = 𝑛𝑇 using the Fourth-
Order Runge–Kutta scheme with a step size of 𝛥𝑡 = 0.01, where 𝑇 (= 2𝜋

𝜔 )
is the period of oscillation of the LF (𝜔) external signal, and 𝑛 (=
1, 2, 3,…) is the number of complete oscillations. The initial conditions
(𝑥(0) = 0, 𝑦(0) = 1) were used, and the first 𝑛 = 100 initial iterates
were discarded as transient solutions. The response amplitude 𝑄 of
the system is computed at the frequency of the slow input signal as
the sum of the Fourier series of the output signal within a periodic
window. Thus, the numerically computed response amplitude 𝑄𝑛𝑢𝑚 and
the phase shift 𝛷 are given by

𝑄 = 𝐴 =

√

𝑄2
𝑠 +𝑄2

𝑐
, (37)
5

𝑛𝑢𝑚 𝐹 𝐹
Fig. 3. Dependence of the response amplitude 𝑄 on the HF amplitude 𝑔 for six values
of the (a) LF term 𝜔 = [1.0, 1.1, 1.2, 1.3, 1.4 and 1.5] when 𝛺 = 20𝜔, (b) HF term
𝛺 = [12𝜔, 15𝜔, 17𝜔, 20𝜔, 22𝜔 and 25𝜔] when 𝜔0 = 1. Other system parameters are:
𝛽 = 1, 𝛼 = 0.5, 𝑓 = 0.1, 𝑘 = 0.01, 𝑚0 = 1.0. Thick broken line represents the response
curve obtained from the analytically computed response amplitude using Eq. (35) while
thin continuous line of the same color represents the corresponding response curve from
the numerically computed response amplitude using Eq. (37).

and

𝛷 = tan−1
(

𝑄𝑠
𝑄𝑐

)

, (38)

respectively. 𝑄𝑠 and 𝑄𝑐 are respectively the Fourier sine and cosine
components of the output signal 𝑥 obtained as the solution of Eq. (36),
and are given as

𝑄𝑠 = 2
𝑛𝑇 ∫

𝑛𝑇

0
𝑥(𝑡) sin𝜔𝑡 𝑑𝑡

𝑄𝑐 = 2
𝑛𝑇 ∫

𝑛𝑇

0
𝑥(𝑡) cos𝜔𝑡 𝑑𝑡. (39)

The numerically calculated response amplitude 𝑄𝑛𝑢𝑚, given by
Eq. (37) is then compared with the analytically computed response
amplitude 𝑄𝑎𝑛𝑎 given by Eq. (35) by superposing response curves that
demonstrate how the HF signal characteristics (𝑔,𝛺) affect the system’s
response 𝑄 in the presence of the PDM parameters (𝑚0, 𝑘). Throughout
our analysis, some system parameters are fixed as follows: 𝛽 = 1,
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Fig. 4. 3-Dimensional variation of response amplitude on HF amplitude 𝑔 and LH 𝜔 for
four values of fixed rest mass (a) 𝑚0 = 0.5, (b) 𝑚0 = 1.0, (c) 𝑚0 = 1.5 and (d) 𝑚0 = 2.0.
Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝛺 = 20𝜔, 𝑓 = 0.1, 𝑘 = 0.01.

𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝑓 = 0.1, 𝑘 = 0.01, while the HF parameters
(𝑔,𝛺) and the PDM (𝑚0, 𝑘) were chosen within regimes that optimizes
the occurrence of the resonance phenomenon.

4. Discussion

First, we present the results obtained for the traditional VR. We
showed that the PDM system with exponential mass (Eq. (12)) under-
goes VR through the dependence of the response amplitude 𝑄 on the
HF amplitude 𝑔 as shown in Fig. 3(a) for six values of the LF parameter
𝜔 = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5], when 𝛺 = 20𝜔. Single resonance response
curves are obtained for all values of the LF parameter.

The contribution of the LF parameter 𝜔 to the observed single
resonance, is shown in Fig. 3(a) through the position of the peaks of
the response curves. Fig. 3(a) shows that as LF increases, the value
of the maximum response amplitude (𝑄𝑚𝑎𝑥) decreases, but the HF
amplitude at maximum response (𝑔𝑣𝑟) increases. Also, the observed
single-peak resonance is consistent at every value of the LF param-
eter for some carefully chosen values of the HF parameter 𝛺, for
𝛺 = [12𝜔, 15𝜔, 17𝜔, 20𝜔, 22𝜔, 25𝜔] at 𝜔 = 1.3 as shown in Fig. 3(b).
Increasing 𝛺 produced no obvious change in the maximum response
amplitude 𝑄𝑚𝑎𝑥, however it increases the HF amplitude at which max-
imum response occurs. In Figs. 3(a) and 3(b), the response curves
produced from the numerically-calculated response amplitude given
by Eq. (37), are presented in thick broken lines while their corre-
sponding analytically-computed responses from Eq. (35) are presented
with thin continuous lines of the same color. Clearly, the approximate
analytical response amplitudes and the numerically-computed response
amplitudes correspond well.

Fig. 4 presents a 3-Dimensional plot of the relationship between
the response amplitude 𝑄, HF amplitude 𝑔 and LF 𝜔 as captured in
Figs. 3(a) and 3(b) for four values of fixed rest mass 𝑚0 = [0.5, 1.0, 1.5,
2.0]. Here, we explore the effect of the fixed rest mass on the observed
resonances presented in Figs. 3(a) and 3(b). The value of the LF
parameter 𝜔 at which resonance occurs is increased by increasing the
fixed mass 𝑚0 as shown in Figs. 4(a)–(d) for 𝑚0 = 0.5, 𝑚0 = 1.0, 𝑚0 = 1.5
and 𝑚0 = 2.0, respectively. Also, it can be suggested that the value
of the fixed rest mass influences the HF-induced resonance through
cooperation of the HF and PDM parameters. This is confirmed from
the dependence of response amplitude 𝑄 on the HF amplitude 𝑔 for
6

Fig. 5. Dependence of the response amplitude 𝑄 on (a) HF amplitude 𝑔 for four
values of fixed rest mass 𝑚0 = [0.5, 1.0, 1.5, 2.0], (b) fixed rest mass 𝑚0 for different
values of the HF amplitude 𝑔 = [0, 100, 250, 500, 750, 1000]. Other system parameters
are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝛺 = 20𝜔, 𝑓 = 0.1, 𝑘 = 0.01. Thick broken line
represents response curve obtained from the analytically computed response amplitude
using Eq. (35) while thin continuous line of the same color represents the corresponding
response curve from the numerically computed response amplitude using Eq. (37).

different fixed masses (𝑚0 = 0.5, 1.0, 1.5, 2.0) as shown in Fig. 5(a). It is
observed that the fixed mass 𝑚0 controls the value of the HF amplitude
at which maximum response occurs, that is, increasing 𝑚0 increases 𝑔𝑣𝑟.
The computed analytical and numerical results presented in Fig. 5(a)
for the variation of response amplitude with HF amplitude 𝑔 are in close
agreement. However, the larger the fixed mass, the more the deviation
between them. This deviation grows as the fixed mass increases from
𝑚0 = 0.5 to 𝑚0 = 2.0. This is expected due to the approximations in the
analytical solution process. This validates the contributory effect of the
fixed mass and is consistent with the results of Roy-Layinde et al. [44].

Next, we discuss the possibility of initiating resonance from the
parameters of the exponential mass. First, we produced the response
curves from the modulation of fixed mass 𝑚0 for different values of the
HF amplitude 𝑔 = [0, 100, 250, 500, 750, 1000] as shown in Fig. 5(b). Sin-
gle resonance peaks were obtained for all values of the response ampli-
tude. The analytically-computed response amplitude and the
numerically-computed responses also show good agreement, while
their deviation grows with increasing value of HF amplitude.
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Fig. 6. 3-Dimensional variation of response amplitude on HF amplitude 𝑔 and fixed
rest mass 𝑚0 for four values of LF (a) 𝜔 = 1.0, (b) 𝜔 = 1.5, (c) 𝜔 = 2.0 and (d) 𝜔 = 2.5.
Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝛺 = 20𝜔, 𝑓 = 0.1, 𝑘 = 0.01.

Fig. 7. 3-Dimensional variation of response amplitude 𝑄 on HF amplitude 𝑔 and fixed
rest mass 𝑚0 for four values of HF (a) 𝛺 = 15𝜔, (b) 𝛺 = 20𝜔, (c) 𝛺 = 25𝜔 and (d)
𝛺 = 30𝜔. Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝑓 = 0.1, 𝑘 = 0.01.

From the foregoing, single resonances were obtained by modulating
the HF parameter for different values of the fixed mass (see Fig. 5(a))
and by modulating the fixed mass 𝑚0 for different values of the HF
amplitude (see Fig. 5(b)). This is shown on a 3-Dimensional plot of the
variation of response amplitude 𝑄 with respect to the HF amplitude
and fixed mass, for four values of the LF parameter 𝜔 = 1.0, 1.3, 2.0, 2.5,
presented in Figs. 6(a)–(d), respectively. The single resonance peaks
form a continuous ridge-shape band across the 𝑔 − 𝑚0 plane. The
position of the resonance ridge on the plane is dependent on the LF
parameter. The resonance ridge moves from one extreme of the plane
to the other as 𝜔 is increased from 𝜔 = 1.0 to 𝜔 = 2.5, when the HF
parameter is set at 𝛺 = 20𝜔.

Figs. 7(a)–(d) present similar 3-Dimensional plot to Fig. 6 for four
values of the HF parameter, 𝛺 = 15𝜔, 𝛺 = 20𝜔, 𝛺 = 25𝜔 and 𝛺 = 30𝜔,
respectively, where 𝜔 = 1.3. Again, the ridge-shaped resonance band
move across the 𝑔−𝑚0 plane as the HF parameter is increased from 15𝛺
to 30𝛺. This shows that resonance can be induced from both parameters
of the plane. Furthermore, we showed in Figs. 8 and 9 that the HF
7

Fig. 8. 3-Dimensional variation of response amplitude 𝑄 on HF 𝛺 and fixed rest mass
𝑚0 for four values of HF amplitude (a) 𝑔 = 50, (b) 𝑔 = 100, (c) 𝑔 = 250 and (d) 𝑔 = 500.
Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝑓 = 0.1, 𝑘 = 0.01.

Fig. 9. 3-Dimensional variation of response amplitude 𝑄 on HF 𝛺 and fixed rest mass
𝑚0 for four values of HF amplitude (a) 𝜔 = 1, (b) 𝜔 = 1.3, (c) 𝜔 = 2.0 and (d) 𝜔 = 2.5.
Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝑓 = 0.1, 𝑘 = 0.01.

parameter 𝛺 can also induce resonance much like the HF amplitude 𝑔
with 3-Dimensional plots(𝑄 vs 𝛺 vs 𝑚0).

Fig. 8 depicts the dependence of the response amplitude 𝑄 on
HF 𝛺 and fixed mass 𝑚0 for four values of the HF amplitude 𝑔 =
[50, 100, 250, 500], while Fig. 9 shows the dependence of the response
amplitude 𝑄 on HF 𝛺 and fixed mass 𝑚0 for four values of LF 𝜔 =
[1.0, 1.3, 2.0, 2.5]. In these Figures, single peak resonances, controllable
by the fixed mass 𝑚0, were observed. While this is not a new result,
the cooperation with the PDM parameter 𝑚0 re-validate the role of the
PDM parameter as a control parameter in VR. Finally, we examined the
role of the mass nonlinear strength 𝑘 in accordance with the achieved
results for the fixed mass 𝑚0. Since the system’s response depends on
the HF amplitude 𝑔 and fixed rest mass 𝑚0, we first present the role
of the mass nonlinear strength on induced resonances, for four values
of the mass nonlinear strength, 𝑘 = [0.0, 0.01, 0.02, 0.04] as shown in
Figs. 10(a) and 10(b), respectively. When 𝑘 = 0, the system becomes
a Duffing oscillator and produces a single resonance. Figs. 10(a) and
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Fig. 10. (a) Dependence of the response amplitude 𝑄, numerically computed
from Eq. (37) on (a) HF amplitude 𝑔 for four values of mass nonlinear strength
(𝑘 = 0, 0.01, 0.02, and 0.04) when 𝑚0 = 1, (b) fixed rest mass 𝑚0 for four values of mass
nonlinear strength (𝑘 = 0, 0.01, 0.02, and 0.04) when 𝑔 = 250. Other system parameters
are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1, 𝜔 = 1.3, 𝛺 = 20𝜔, 𝑓 = 0.1.

10(b) show that the nature of the vibrational resonance is not affected
by the system’s variable mass. This is evident from the fact that just one
resonance was obtained for each value of the nonlinear strength that
was taken into consideration. Although, the nonlinear strength did not
amplify the observed VR, the amount at which resonance occurred for
the modulated system parameter, that is, 𝑔𝑣𝑟 and 𝑚0𝑣𝑟, are controlled
by it. Hence, we remark that both PDM parameters (𝑚0, 𝑘) can be
effectively employed to control observed resonances.

Since we have shown that the fixed mass 𝑚0 can induce resonance in
a PDM system, it is pertinent to investigate the possibility of inducing
resonance by modulating the mass nonlinear strength 𝑘. This is done by
modulating 𝑘 to achieve resonance, as presented, for the dependence of
the response amplitude on the PDM nonlinear strength 𝑘 in Fig. 11(a)
for four values of the fixed mass 𝑚0[= 0.5, 1.0, 1.5, 2.0] and in Fig. 11(b),
for four values of the HF amplitude 𝑔 = [250, 350, 500, 750]. Clearly, the
PDM nonlinear strength also induced resonance. The 𝑘-induced single-
peak resonance can also be controlled by other system parameters. The
value of the PDM nonlinear strength at which maximum enhancement
is achieved 𝑘 , is increased by increasing the fixed mass 𝑚 as shown
8

𝑣𝑟 0
Fig. 11. Variation of response amplitude 𝑄 on mass nonlinear strength 𝑘 for four
values of (a) fixed rest mass 𝑚0 = [0.5, 1.0, 1.5, 2.0] at 𝑔 = 250, (b) HF amplitude
𝑔 = [250, 350, 500, 750] at 𝑚0 = 2. Other system parameters are: 𝛽 = 1, 𝛼 = 0.5, 𝜔0 = 1,
𝜔 = 1.3, 𝛺 = 20𝜔, 𝑓 = 0.1.

in Fig. 11(a), and by decreasing the HF amplitude 𝑔 as presented in
Fig. 11(b).

In the presence of the HF signal, both PDM parameters cooperate
to produce and control the resonance effect in a PDM system (shown
in Fig. 11(a)). This is well highlighted by a 3-Dimensional plot of
𝑄 vs 𝑚0 vs 𝑘 presented in Fig. 12(a). The ridge-shaped continuous
resonance peaks traverses across the (𝑚0, 𝑘)-plane, which shows both
parameters can induce as well as control resonance. Similarly, a 3-
Dimensional surface plot of 𝑄 vs 𝑔 vs 𝑘, complementing the result
presented in Fig. 11(b), and demonstrating that the nonlinear PDM
strength and the HF amplitude, can cooperate to induce resonance, is
shown in Fig. 12(b). Hence, a bi-harmonically driven PDM system with
exponentially varying mass is shown to undergo VR as well as PDM-
induced resonance. This is consistent with the results of Roy-Layinde
et al. [45] for a PDM system with doubly-singular mass function.
However, only single resonances were observed for the exponentially
varying mass in contradistinction to the reported double-resonance
induced doubly-singular mass function.
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Fig. 12. 3-Dimensional variation of response amplitude 𝑄 on mass nonlinear strength
𝑘 and (a) fixed rest mass 𝑚0 at 𝑔 = 250. Here we chose a wider spectrum of 𝑚0 than
that considered in Fig. 11(a) (b) HF amplitude at 𝑚0 = 2. We chose a wider spectrum
of 𝑔 than that considered in Fig. 11(b). Other system parameters are: 𝛽 = 1, 𝛼 = 0.5,
𝜔0 = 1, 𝜔 = 1.3, 𝑓 = 0.1, 𝑘 = 0.01.

5. Conclusion

Most studies on vibrational resonance focus on systems with con-
stant mass and bi-harmonic drive Motivated by the role of variable-
mass in physical systems, we examined vibrational resonance (VR) in a
Duffing-type oscillator with exponentially varying position-dependent
mass (PDM) and an external driving force. The Duffing-type system
was viewed as a driven mechanical system with nonlinear stiffness and
periodically-varying mass perturbation. The exponential mass function
was modeled as a periodic function of position. The PDM had an
inherent accretion process, strong enough to alter the system’s rest
mass. We considered the cooperation between the PDM parameters
comprising a fixed mass 𝑚0 and nonlinear strength 𝑘 as well as the
external high-frequency signal with amplitude 𝑔 and frequency 𝛺. Res-
onance was characterized using the response amplitude 𝑄. Numerical
and analytical methods were used to compute the response amplitude.
We considered the traditional VR and generated resonance from the
HF external signal parameter. It was shown that the observed VR could
be controlled by the PDM parameters. Also, we showed that the PDM
parameters could be modulated to induce resonance when the system is
bi-harmonically driven. In both the observed traditional VR and PDM-
induced resonance, single resonances were obtained. The analytical
9

and numerical results are in good agreement with each method being
independently sufficient.

The significant cooperation between the PDM and the HF sig-
nal, in determining the nature of the observed resonance from the
system’s response to the particular modulated parameter, was em-
phasized from theoretical and numerical investigations. The observed
PDM-induced resonance effects are similar to those obtained in the
traditional VR cases, for a typical constant-mass Duffing oscillator.
Clearly, the inherent mass perturbation in the variable mass can play
interchangeable roles to the HF periodic signal, leading the system into
more controllable and wider resonant states.

CRediT authorship contribution statement

T.O. Roy-Layinde: Conceptualization, Methodology, Investigation,
Software, Analysis, Writing – original draft, Writing – reviewing. K.A.
Omoteso: Methodology, Investigation, Software, Analysis, Writing –
original draft, Writing – reviewing. U.H. Diala: Methodology, Investi-
gation, Software, Analysis, Resources, Project administration, Supervi-
sion, Writing – original draft, Writing – review & editing. J.A. Run-
sewe: Methodology, Investigation, Software, Analysis, Funding. J.A.
Laoye: Project administration, Resources, Supervision, Software, Val-
idation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Thompson JMT, Stewart HB. Nonlinear dynamics and chaos. John Wiley & Sons;
2002.

[2] Vincent UE, Kolebaje O. Introduction to the dynamics of driven nonlinear
systems. Contemp Phys 2020;61(3):169–92.

[3] Fidlin A. Nonlinear oscillations in mechanical engineering. Springer Science &
Business Media; 2005.

[4] Bagchi B, Das S, Ghosh S, Poria S. Nonlinear dynamics of a position-dependent
mass-driven Duffing-type oscillator. J Phys A 2012;46(3):032001.

[5] Mustafa O. Comment on nonlinear dynamics of a position-dependent mass-driven
Duffing-type oscillator. J Phys A 2013;46(36):368001.

[6] von Roos O. Position-dependent effective masses in semiconductor theory. Phys
Rev B 1983;27(12):7547.

[7] El-Nabulsi RA. Dynamics of position-dependent mass particle in crystal lattices
microstructures. Physica E 2021;127:114525.

[8] Zhao F, Liang X, Ban S. Influence of the spatially dependent effective mass on
bound polarons in finite parabolic quantum wells. Eur Phys J B 2003;33(1):3–8.

[9] De Saavedra FA, Boronat J, Polls A, Fabrocini A. Effective mass of one He 4
atom in liquid He 3. Phys Rev B 1994;50(6):4248.

[10] Khordad R. Effect of position-dependent effective mass on linear and nonlinear
optical properties in a quantum dot. Indian J Phys 2012;86(6):513–9.

[11] Irschik H, Belyaev AK. Dynamics of mechanical systems with variable mass, vol.
557. Springer; 2014.

[12] Awrejcewicz J. Dynamics of systems of variable mass. In: Classical mechanics.
Springer; 2012, p. 341–57.

[13] Nanjangud A, Eke FO. Angular momentum of free variable mass systems is
partially conserved. Aerosp Sci Technol 2018;79:1–4.

[14] Cveticanin L. Dynamics of bodies with time-variable mass. Springer; 2016.
[15] Hinvi LA, Koukpémèdji AA, Monwanou VA, Miwadinou CH, Kamdoum Tamba V,

Chabi Orou JB. Resonance, chaos and coexistence of attractors in a position
dependent mass-driven Duffing-type oscillator. J Korean Phys Soc 2021;1–17.

[16] Karantonis A, Karaoulanis D. Electrical resonance and antiresonance of the
electrochemical interface under potentiostatic control: Theoretical considerations.
Electrochim Acta 2012;78:244–50.

[17] Gandhimathi V, Rajasekar S, Kurths J. Vibrational and stochastic reso-
nances in two coupled overdamped anharmonic oscillators. Phys Lett A
2006;360(2):279–86.

[18] Rajasekar S, Sanjuan MA. Nonlinear resonances. Springer; 2016.

http://refhub.elsevier.com/S0960-0779(23)01212-2/sb1
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb1
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb1
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb2
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb2
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb2
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb3
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb3
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb3
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb4
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb4
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb4
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb5
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb5
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb5
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb6
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb6
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb6
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb7
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb7
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb7
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb8
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb8
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb8
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb9
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb9
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb9
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb10
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb10
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb10
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb11
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb11
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb11
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb12
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb12
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb12
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb13
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb13
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb13
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb14
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb15
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb15
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb15
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb15
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb15
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb16
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb16
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb16
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb16
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb16
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb17
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb17
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb17
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb17
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb17
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb18


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114310T.O. Roy-Layinde et al.
[19] Buldú JM, Chialvo DR, Mirasso CR, Torrent M, García-Ojalvo J. Ghost resonance
in a semiconductor laser with optical feedback. Europhys Lett 2003;64(2):178.

[20] Landa P, McClintock PV. Vibrational resonance. J Phys A: Math Gen
2000;33(45):L433.

[21] Vincent UE, McClintock PV, Khovanov IA, Rajasekar S. Vibrational and stochastic
resonances in driven nonlinear systems. 2021.

[22] Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán MA. Vibrational resonance
in an asymmetric duffing oscillator. Int J Bifurcation Chaos 2011;21(01):275–86.

[23] Chizhevsky V. Vibrational higher-order resonances in an overdamped bistable
system with biharmonic excitation. Phys Rev E 2014;90(4):042924.

[24] Roy-Layinde TO, Laoye JA, Popoola OO, Vincent UE, McClintock PVE. Vibra-
tional resonance in an inhomogeneous medium with periodic dissipation. Phys
Rev E 2017;96(3):032209.

[25] Vincent UE, Roy-Layinde TO, Adesina PO, Popoola OO, McClintock PVE. Vi-
brational resonance in an oscillator with an asymmetrical deformable potential.
Phys Rev E 2018;98:062203.

[26] Deng B, Wang J, Wei X, Yu H, Li H. Theoretical analysis of vibrational resonance
in a neuron model near a bifurcation point. Phys Rev E 2014;89(6):062916.

[27] Yang J, Liu X. Controlling vibrational resonance in a multistable system by time
delay. Chaos 2010;20(3):033124.

[28] Yang J, Zhu H. Vibrational resonance in duffing systems with fractional-order
damping. Chaos 2012;22(1):013112.

[29] Jothimurugan R, Thamilmaran K, Rajasekar S, Sanjuán MA. Experimental ev-
idence for vibrational resonance and enhanced signal transmission in Chua’s
circuit. Int J Bifurcation Chaos 2013;23(11):1350189.

[30] Venkatesh P, Venkatesan A. Vibrational resonance and implementation of
dynamic logic gate in a piecewise-linear Murali–Lakshmanan–Chua circuit.
Commun Nonlinear Sci Numer Simul 2016;39:271–82.

[31] Yu H, Wang J, Liu C, Deng B, Wei X. Vibrational resonance in excitable neuronal
systems. Chaos 2011;21(4):043101.

[32] Wu X-X, Yao C, Shuai J. Enhanced multiple vibrational resonances by Na+ and
K+ dynamics in a neuron model. Sci Rep 2015;5(1):1–10.

[33] Fu P, Wang C-J, Yang K-L, Li X-B, Yu B. Reentrance-like vibrational resonance
in a fractional-order birhythmic biological system. Chaos Solitons Fractals
2022;155:111649.

[34] Rajamani S, Rajasekar S, Sanjuán MAF. Ghost-vibrational resonance. Commun
Nonlinear Sci Numer Simul 2014;19(11):4003–12.

[35] Rajasekar S, Sanjuán MAF. Nonlinear resonances. Springer series in synergetics,
Switzerland: Springer; 2016.

[36] Liu Y, Dai Z, Lu S, Liu F, Zhao J, Shen J. Enhanced bearing fault detection using
step-varying vibrational resonance based on duffing oscillator nonlinear system.
Shock Vib 2017.
10
[37] Zhang D, Yu D. Multi-fault diagnosis of gearbox based on resonance-based signal
sparse decomposition and comb filter. Measurement 2017;103:361–9.

[38] Gao J, Yang J, Huang D, Liu H, Liu S. Experimental application of vibrational
resonance on bearing fault diagnosis. J Braz Soc Mech Sci Eng 2019;41(1):1–13.

[39] Xiao L, Zhang X, Lu S, Xia T, Xi L. A novel weak-fault detection technique
for rolling element bearing based on vibrational resonance. J Sound Vib
2019;438:490–505.

[40] Pan Y, Duan F, Chapeau-Blondeau F, Xu L, Abbott D. Study of vi-
brational resonance in nonlinear signal processing. Phil Trans R Soc A
2021;379(2192):20200235.

[41] Morfu S, Usama B, Marquié P. On some applications of vibrational resonance
on noisy image perception: the role of the perturbation parameters. Phil Trans
R Soc A 2021;379(2198):20200240.

[42] Xiao L, Tang J, Zhang X, Xia T. Weak fault detection in rotating machineries
by using vibrational resonance and coupled varying-stable nonlinear systems. J
Sound Vib 2020;478:115355.

[43] Borromeo M, Marchesoni F. Vibrational ratchets. Phys Rev E 2006;73(1):016142.
[44] Roy-Layinde T, Vincent U, Abolade S, Popoola O, Laoye J, McClintock P.

Vibrational resonances in driven oscillators with position-dependent mass. Phil
Trans R Soc A 2021;379(2192):20200227.

[45] Roy-Layinde TO, Omoteso KA, Oyero BA, Laoye JA, Vincent UE. Vibrational
resonance of ammonia molecule with doubly singular position-dependent mass.
Eur Phys J B 2022;95(5):1–11.

[46] Cruz y Cruz S, Rosas-Ortiz O, et al. Dynamical equations, invariants and spectrum
generating algebras of mechanical systems with position-dependent mass. SIGMA.
Symmetry Integ Geom Methods Appl 2013;9:004.

[47] Plastino AR, Muzzio JC. On the use and abuse of Newton’s second law for
variable mass problems. Celestial Mech Dynam Astronom 1992;53:227–32.

[48] Roy-Layinde TO, Omoteso KA, Kolebaje OT, Ogunmefun FO, Fasasi RA, Laoye JA,
et al. Vibrational resonance in a multistable system with position-dependent
mass. Commun Theor Phys 2023;75(11):115602.

[49] Blekhman II. Selected topics in vibrational mechanics, 11, chap. Conjugate
resonances and bifurcations of pendulums under biharmonical excitation. In:
Chapter: Conjugate Resonances and Bifurcations of Pendulums under Bihar-
monical Excitation. Singapore: World Scientific Publishing Company; 2004, p.
151–65.

[50] Omoteso KA, Roy-Layinde TO, Laoye JA, Vincent UE, McClintock PV. Delay-
induced vibrational resonance in the Rayleigh–Plesset bubble oscillator. J Phys
A 2022;55(49):495701.

[51] Blekhman II. Vibrational mechanics: Nonlinear dynamic effects, general
approach, applications. World Scientific; 2000.

http://refhub.elsevier.com/S0960-0779(23)01212-2/sb19
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb19
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb19
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb20
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb20
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb20
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb21
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb21
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb21
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb22
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb22
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb22
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb23
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb23
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb23
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb24
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb24
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb24
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb24
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb24
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb25
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb25
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb25
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb25
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb25
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb26
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb26
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb26
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb27
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb27
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb27
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb28
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb28
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb28
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb29
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb29
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb29
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb29
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb29
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb30
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb30
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb30
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb30
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb30
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb31
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb31
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb31
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb32
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb32
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb32
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb33
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb33
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb33
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb33
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb33
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb34
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb34
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb34
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb35
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb35
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb35
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb36
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb36
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb36
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb36
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb36
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb37
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb37
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb37
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb38
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb38
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb38
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb39
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb39
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb39
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb39
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb39
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb40
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb40
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb40
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb40
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb40
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb41
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb41
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb41
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb41
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb41
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb42
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb42
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb42
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb42
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb42
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb43
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb44
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb44
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb44
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb44
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb44
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb45
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb45
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb45
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb45
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb45
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb46
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb46
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb46
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb46
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb46
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb47
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb47
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb47
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb48
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb48
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb48
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb48
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb48
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb49
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb50
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb50
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb50
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb50
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb50
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb51
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb51
http://refhub.elsevier.com/S0960-0779(23)01212-2/sb51

	Analysis of vibrational resonance in an oscillator with exponential mass variation
	Introduction
	The Model
	Methods
	Analytical Method
	Numerical Method

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


