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A wearable sensor and framework for accurate
remote monitoring of human motion
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Remote monitoring and evaluation of human motion during daily life require accurate

extraction of kinematic quantities of body segments. Current approaches use inertial sensors

that require numerical time differentiation to access the angular acceleration vector, a

mathematical operation that greatly increases noise in the acceleration value. Here we

introduce a wearable sensor that utilises a spatially defined cluster of inertial measurement

units on a rigid base for directly measuring the angular acceleration vector. For this reason,

we used computational modelling and experimental data to demonstrate that our new sensor

configuration improves the accuracy of tracking angular acceleration vectors. We confirmed

the feasibility of tracking human movement by automatic assessment of experimental fall

initiation and balance recovery responses. The sensor therefore presents an opportunity to

pioneer reliable assessment of human movement and balance in daily life.
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Human motion in daily life usually consists of a combi-
nation of arbitrary translational and rotational move-
ments of various body segments1. Given that we abstract

the segments of a human body as rigid bodies we can use
mechanics to evaluate segment dynamics. This type of evaluation
requires quantification of angular velocity, linear and, angular
acceleration states of several body segments. Optical motion
capture systems have been widely used in analysing body segment
kinematics. This type of measurement is the gold standard for
direct measurement of position vectors and segment orientation
is thence derivable. However, for this approach, several weak-
nesses arise in other applications. On the one hand, we can assess
the velocity or acceleration states of body segments indirectly
using the technique of numerical differentiation1. In general, it is
known that numerical differentiation is noise-amplifying and
lowers signal-to-noise ratio. This applies even more so for the
required second numerical derivative to evaluate acceleration
signals. On the other hand, a motion capture system is location-
bounded and can only cover a limited measurement space, such
as in a laboratory or clinical environment.

To assess kinematic quantities of body segments during
movement in everyday life and outside the laboratory, wearable
sensors in the form of inertial measurement units (IMU) are
typically used2,3. Such IMUs have been widely applied to analyse
upper and lower extremity joint kinematics during movement
using various population groups and with various research
objectives4–7.

Several assumptions and limitations must be considered for the
use of IMUs to assess kinematic quantities. An IMU includes at
least one three-dimensional accelerometer to measure the linear
acceleration vector and one gyroscope to measure the angular
velocity vector of the body segment to which it is attached. To
calculate the angular acceleration vector from the measured
values of a single IMU, a numerical time derivative is inevitable.
Here it also applies that the numerical differentiation amplifies
the noise behaviour of the physical sensor signals.

Numerical differentiation has another disadvantage. The cal-
culation depends on at least two discrete points in time. If
backward differentiation is used for real-time application, this will
lead to a phase delay in the target signal and the noise amplifi-
cation effect requires filtering of the signal. If real-time evaluation
is required for a person during testing, the phase delay will fur-
ther increase depending on the filtering principle used. For
determining the segment orientation based on the measured
signals common approaches use a sensor fusion algorithm. These
approaches involve numerical integration (solving a differential
equation system for quaternions) using the directly measured
angular velocity and fusing it with the sensor orientation esti-
mation derived from evaluating the gravity vector and the earth’s
magnetic field. Moreover, the numerical integration of noisy
sensor data leads to a signal drift.

In robotics, there are clear examples showing the negative
influence of typical white noise behaviour of inertial sensors in
combination with numerical differentiation8. For example, in
robotics numerical differentiation of inertial sensor signals is
necessary for calculating the inverse dynamics, e.g. to estimate the
centre of pressure or the ground reaction force vector to derive
stability criteria. Besides, these calculations must be feasible
online in robotics and preferably should not introduce a phase
delay. Finally, the noise-amplifying effect makes the estimation of
these indicators almost impossible as the introduced noise sig-
nificantly affects the results8.

Ovaska and Valiviita reviewed in ref. 9 alternative approaches
with a particular focus on noise amplifying effects and real-time
capability of the analysed approaches. They especially noted that
indirect measuring methods (e.g. numerical differentiation)

require an adapted post-processing method. Further, the max-
imum error depends on the required acceleration bandwidth and
the acceptable phase delay. Finally, they concluded that it will be
important to develop direct measurement methods that do not
limit the motion of the object being measured.

To overcome the difficulties of numerical differentiation, var-
ious approaches have been used via direct and indirect measuring
systems in various application fields10–12. Padgaonkar and
colleagues10 used a direct measuring method, the so-called nine
accelerometer package (NAP), to analyse the angular acceleration
signal. They equipped a dummy head with nine accelerometers to
measure the acceleration state and drew conclusions about pos-
sible injuries to the brain during a simulated car crash. Their
approach eliminated the need for numerical differentiation of the
angular velocity vector. For a similar application, Martin and
colleagues11 used a configuration, the so-called angular rate
sensor cube (ARS), consisting of three three-dimensional accel-
erometers and one gyroscope, with the latter used to separately
measure the angular velocity vector. This combination allowed
them to calculate the angular acceleration vector in two redun-
dant ways. Ho and Lin12 aimed to calculate the kinematic state of
a rigid body using a similar approach to Padgaonkar and
colleagues10. They used four three-dimensional accelerometers
but no gyroscopes to measure angular acceleration. Their algo-
rithm to calculate the angular velocity vector using rigid body
equations along with only linear acceleration measurements led to
equations with sign ambiguity.

One main aspect of the direct measuring approaches described
in the previous work is that the individual sensors need to be
fixed separately at various locations of the body segment of
interest. Such approaches would not be feasible for accurate
motion analysis in humans due to the placement of the sensors to
the non-rigidity of body segments incorporating inevitable dis-
placements and misalignments between sensors caused by soft
tissue artefacts and the wobbling of the human body. Further, to
the best of our knowledge, there is no sensor available to date that
can be attached to a human body segment and can measure
angular acceleration without using numerical differentiation or
filtering methods.

Regarding the use of sensor fusion or a filtering algorithm, the
approaches used reveal that directly measuring angular accel-
eration state avoids employing Kalman filters or complementary
filters. There is no approach that combines a numerically derived
angular acceleration signal with a directly measured one, although
in theory the former would result in a more accurate signal.
Published work used Kalman filters when the sensor, for instance,
consists solely of accelerometers to estimate angular velocity13. By
leveraging the known relationships (the model equations)
between angular velocity and angular acceleration, the angular
velocity state is estimated using a Kalman filter. In this context,
there are published methods that estimate the angular accelera-
tion state solely from position information14, or measure angular
velocity and linear acceleration data15 employing Kalman filters.

From an applied perspective, an accurate assessment of kine-
matic quantities in monitoring human motion can provide new
insights into the complex interactions between active lifestyles
and increased exposure to situations in which actual loss of bal-
ance occurs. In particular, the assessment of trunk and upper
body dynamics during daily-life walking is of great importance in
the detection of the diminished balance control and fall risk that
occurs with ageing16–18. The trunk comprises approximately half
of the total body mass and is characterised by large lever arms
from its centre of mass to the axes of rotation of the hip and ankle
joint. Due to such geometric characteristics and high trunk
contribution to the whole-body angular momentum during
walking19, accurate knowledge of trunk kinematic signals is
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extremely important. For example, the extent to which forward-
directed fall initiations during perturbed locomotion are with-
stood may be revealed from the regulation of trunk dynamics and
whole-body angular momentum16,20,21. Whole-body angular
momentum quantifies the balance of momenta of body segments
in relation to their combined centre of mass and is close to zero
during unperturbed locomotion22. Thus, measurement of trunk
dynamics can be important in detecting failures of control during
perturbed walking and may be linked to diminished balance
recovery responses and falls.

In general, the use of wearable sensors for monitoring body
segment kinematics in daily life, along with enhanced evaluation
algorithms, has proven to be an effective approach for fall
detection. The literature contains numerous approaches that
demonstrate automatic fall detection, such as those proposed by
Bourke and Lyons23, Wu24, Iguchi and colleagues25, Solaz and
colleagues26, and Lim and colleagues27. All these approaches
utilise wearable sensors to monitor the kinematic data of human
body segments. For instance, Bourke and Lyons employed a bi-
axial gyroscope mounted at the trunk23. Solaz and colleagues and
Lim and colleagues used a three-axis accelerometer, attached with
elastic belts at chest or trunk levels26,27. On the other hand, Iguchi
and colleagues25 used datasets measured with an IMU. One
dataset involved placing the IMU at the thigh, while the other
dataset comprised head kinematics data with an IMU fixed to a
helmet.

These published approaches employed either simple threshold
methods, machine learning techniques, or a combination of both.
Threshold approaches used specific kinematic parameters or
dimensionless parameters extracted from sensor data, whereas
Bourke and colleagues23 employed identical thresholds for all
analysed individuals. However, such methods can lead to inac-
curacies due to the diversity of individual behaviours, resulting in
less accurate fall detection. Machine learning methods25, on the
other hand, require the labelling of data containing various types
of falls and activities in daily life (ADL) patterns, which were then
provided to a learning algorithm.

Furthermore, the mentioned approaches primarily focus on
recognising falls in daily activity measurements. However, more
challenging distinctions, such as identifying whether an external
perturbation triggers a stumble without the risk of falling, or
understanding how individuals adapt to repetitive perturbations,
have not been addressed adequately in previous work. From our
perspective, developing sensors capable of detecting a wide range
of and hence enabling an evaluation of recovery performance in
response to external perturbations offers distinct advantages over
sensors that solely focus on detecting falls. High sensitivity in
monitoring body kinematics will allow the assessment of different
magnitudes of balance recovery responses to perturbations during
locomotion.

We recently showed that a direct measurement approach
applied in robotics reduces the influence of noise sufficiently for
obtaining sensible estimations of stability criteria from the
dynamics8. According to this mathematical principle, the current
work aimed to further develop and apply the recent findings in
robotics to human motion analyses. Therefore, we developed a
new embedded and wearable sensor solution to monitor kine-
matic quantities and assess trunk dynamics during perturbed
locomotion. Our wearable inertial measurement cluster (IMC)
attached to a rigid base plate provides the three-dimensional
kinematic state of the attached body segment for each of its
sampled time steps. As noted, the unit worked without using
noise-amplifying numerical differentiation and therefore did not
require signal filtering. The current work comprised two research
objectives: (i) to estimate the absolute error for the new IMC by
computational modelling and to compare the IMC with the direct

measuring approaches NAP, ARS and a numerically derived
angular acceleration signal using experimental data; and (ii) to
analyse anteroposterior trunk dynamics and resolve well-known
adaptation phenomena28–32 during simulated forward falls. The
latter experimental situation involved highly standardised gait
perturbations during treadmill walking and less controlled con-
ditions, i.e. perturbed overground walking simulating real-world
trips more faithfully.

The results confirmed that our proposed combination of an
inertial measurement cluster and evaluation framework both
provides an embedded system which eliminates numerical dif-
ferentiation errors in evaluating angular acceleration enables
automatic assessment of anterior fall initiation and balances
recovery responses to trip perturbations.

Results
By analysing and comparing the results of the simulation
(simulated walking humanoid robot) and experimental data
(unperturbed walking human beings), we identified similarities
regarding the curve path. For example, we observed in the eval-
uated signal curve path a characteristic periodic pattern regarding
local maxima (Fig. 1a compared with Fig. 1b and Supplementary
Fig. S2). By exploiting the results of an autocorrelation analysis,
we recognised a periodicity of the characteristic local maxima in
both simulated and experimental data occurred with the double
step frequency. These local maxima could be assigned to the
touchdown event of the swing leg, as they were a consequence of
the respective touchdown. The amplitudes lay in the range of
approximately 8–15 rad/s2 for simulation data and in the range of
approximately 20–40 rad/s2 for the experimental data.

Computational modelling. As it is challenging to develop a
method capable of applying a defined angular acceleration state,
we utilised a simulation framework Webots 2022b (Cyberbotics

Fig. 1 Comparison between simulated and the experimental data of the
inertial measurement cluster (IMC) and the single inertial measurement
unit (IMU). Graph (a) shows the y-coordinate of the robot’s trunk angular
acceleration vector in simulation. The solid curve represents the ideal
signal, the dotted red curve represents the noisy measurement derived
from the sensor, and the dotted blue curve represents the noisy
measurement of the IMU. The periodically occurring positive local
maximum is a consequence of a touchdown of a foot. In (b), the
experimental data measured by the IMC and the single IMU of the y-
coordinate of the human being’s trunk angular acceleration vector is
presented. The blue curve corresponds to the IMC signal and the red curve
corresponds to the single IMU-derived signal.
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Ltd, Lausanne, Switzerland). This solved the general equations of
motion for rigid multi-body systems. As a result, it delivered the
true angular acceleration vector of a rigid body as ground truth
data. In this case, the simulation provided the angular accelera-
tion vector of the trunk of the unperturbed walking humanoid
robot. This type of executed movements was comparable with
baseline measurements in the experimental study.

Therefore, we defined the ideal signal from the simulation
framework of the angular acceleration vector as the reference
signal. To estimate the accuracy of the simulated noisy IMC and
IMU signals (see the section “Error analysis”), we calculated the
average relative error compared to the reference signal using the
root means squared error (RMSE) defined in Eq. (11). We used
data from a measurement series of ten consecutive steps for this
purpose. Figure 1a shows an example of the simulated
measurements and the ideal angular acceleration coordinate of
several steps for the transverse axis of the trunk’s principal axis
system. The measured values from the IMC had a RMSE= 0.06
rad/s2. In comparison, the RMSE of the numerically differen-
tiated IMU signal resulted in RMSE= 1.16 rad/s2.

Experimental data. When comparing the curve path of the IMC
and the numerically derived angular acceleration, it was evident
that the numerically derived angular acceleration signal contained
a significantly higher level of noise. We observed the highest
deviations between these two signals, especially in the intervals
between two touchdown events, where the angular acceleration
curve path seemed to change only moderately. The mean devia-
tion Δ, defined in Eq. (12), for this specific curve section, was
~105.5% from the numerically derived angular acceleration
coordinate with respect to the signal evaluated by the IMC.
Especially in these intervals, the IMC signal appeared to be a post-
processed, filtered (noise-reduced) version of the numerically
differentiated signal. The RMSE for the numerically derived sig-
nal with respect to the IMC signal was 1.68 rad/s2. The char-
acteristics of the experimental data corresponded to the
characteristics observed in the simulated sensor data, seen in
Fig. 1. By analysing the touchdown events referring to the local
maxima (higher magnitudes regarding the angular acceleration
component αy), we observed that the relative deviations got
smaller between these two approaches.

When comparing the three direct measuring approaches IMC,
NAP and ARS, we noticed that the evaluated curve path of the
IMC and the NAP nearly coincided (Supplementary Fig. S2). The
RMSE for the NAP signal with respect to the IMC signal was
0.1 rad/s2 and for the ARS signal with respect to the IMC signal
was 0.78 rad/s2. Compared to NAP and IMC, the ARS approach
showed in general a greater deviation. This behaviour was mostly
evident in the curve section containing higher gradients within
touchdown events (Supplementary Fig. S2).

For the curve section of the perturbed gait pattern, we observed
similar characteristics as in the unperturbed gait pattern
evaluation. With higher magnitudes in the curve path, the
relative deviation between all compared approaches in the αy-
signal got smaller. For example, the mean deviation Δ of the local
maxima and minima (regarding local extrema with absolute
values exceeding ±50 rad/s2) in Supplementary Fig. S3 between
IMC compared to the numerically derived signal was 10.3% and
from IMC to ARS 4.48%.

The comparison of the three approaches considering the
capability to analyse the angular velocity vector (Supplementary
Fig. S4) obviously showed a conceptual advantage for the IMC
and ARS approaches compared to the NAP. The directly
measured angular velocity vector coordinate ωy of IMC and
ARS nearly coincided. In comparison with them, the angular

velocity vector coordinate ωy evaluated by NAP exhibited high
deviations over the whole curve path.

Repeated treadmill-based gait trip-like perturbations. By using
our approach to automatically detect trip-like perturbations
during treadmill walking, the approach identified all valid
induced perturbations over the 30 min recordings in all analysed
participants. The approach also defined the corresponding
observation windows of the balance recovery response, indicating
the onset and offset of gait pattern changes compared to unper-
turbed walking. There was a main effect for the time of recovery
across the test period ½Fð1:507; 15:067Þ ¼ 7:117; p ¼ 0:005;
ηp

2 ¼ 0:416�, with statistically significant lower values for mid
(p= 0.017; 1.39 ± 0.28 s) and late (p= 0.048; 1.30 ± 0.25 s)
adaptation phases compared to early (1.67 ± 0.34 s; Fig. 2).
Within the testing period, the accumulated relative trunk angular
momentum showed a monotonic reduction with repeated prac-
tice ½Fð1:312; 13:209Þ ¼ 26:213; p < 0:001; ηp

2 ¼ 0:724�, i.e. lower
values for mid (p= 0.001) and late (p= 0.001) phases compared
to the early adaptation phase. The same pattern was observed for
the rate of change in relative trunk angular momentum
½Fð1:203; 12:031Þ ¼ 15:069; p ¼ 0:002; ηp

2 ¼ 0:601�, with lower
values for mid (p= 0.016) and late (p= 0.005) phases compared
to the early adaptation phase. The relative changes in trunk
dynamics between early and late adaptation phases were on
average 32%. No statistically significant differences were detected
in trunk dynamics between mid and late adaptation phases.

Repeated overground-based gait trip-like perturbations. For
overground gait perturbations, testing of two participants could
not be completed due to technical issues. Furthermore, due to
safety harness interference and various signal artefacts not all of
the 72 perturbation trials for the remaining nine participants
could be analysed, i.e sometimes only one trial was included to
represent early (trial 1 or 2), mid (trial 4 or 5) or late (trial 7 and
8) phases. Accordingly, for the visualisation of the descriptive
statistic in Fig. 3 we considered eight subjects providing all valid

Fig. 2 Values of the accumulated relative trunk angular momentum
(aTAM) and the accumulated rate of change in relative trunk angular
momentum (aRCTAM) for treadmill trip perturbations. The results
averaged across all subjects for each respective trial, as well as the same
data as stages in adaptation: early (trials 1 and 2), mid (trials 4 and 5), and
late (trials 7 and 8) using box plots are shown. In each box plot the lower
whisker corresponds to the smallest value, the upper whisker to the largest
value and the box is formed by the median and the 25% and 75% quartiles.
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trials. Nevertheless, there was a statistically significant main effect
[χ2(2)= 14.889, p < 0.001] for time of recovery, demonstrating
lower values for mid (p= 0.028; 1.17 ± 0.63 s) and late (p= 0.021;
0.98 ± 0.57 s) in relation to the early (1.17 ± 0.84 s) adaptation
phase, and for late (p= 0.028) compared to mid adaptation phase
during overground trips. Within the period of recovery time, the
accumulated relative trunk angular momentum showed con-
tinuous reductions from early to late adaptation phase
[χ2(2)= 16.222, p < 0.001]: early vs. mid, p= 0.008; mid vs. late,
p= 0.015; early vs. late, p= 0.008, with an average decline of
~30%. Almost the same statistical findings were obtained for the
rate of change in relative trunk angular momentum
[χ2(2)= 16.222, p < 0.001]: early vs. mid, p= 0.008; mid vs. late,
p= 0.050; early vs. late, p= 0.008; with an average decline of
~26%.

Lean-and-release balance recovery task. As for the overground
gait perturbation task (Fig. 4), the testing of one subject could not
be completed due to technical issues during the lean-and-release
task. When separating the trials for each individual into single-
and multiple-step recovery strategies, the time of recovery
demonstrated statistically significant higher values (p= 0.001) for
multiple versus single-stepping (1.37 ± 0.35 s vs. 0.63 ± 0.09 s).
Within the identified period of recovery time, both the accu-
mulated relative trunk angular momentum and rate of change in
relative trunk angular momentum showed significantly higher
values for multiple- compared to single-stepping (p < 0.001 and
p= 0.005, respectively), with an average difference of ~47% and
~32%, respectively.

Discussion
Remote monitoring using wearable sensors and accurate extrac-
tion of kinematic quantities can provide new insights into the
complex interactions between active lifestyles and increased
exposure to situations in which actual loss of balance occurs.
Current approaches, however, are often limited to accurately
extracting the body segment dynamics of functional activities.
This is because they require the use of IMUs. Some kinematic
quantities evaluated by IMU measurements are affected by

mathematical analysis including both noise-amplifying time dif-
ferentiation in relation to calculation of the angular acceleration
vector and time integration to estimate the orientation. For the
proposed IMC, we avoided differentiation through direct mea-
surement of angular acceleration by combining four gyroscopes
and four three-dimensional accelerometers, spatially separated
and mounted rigidly on the base plate. We also added a power
supply and the electronics required for the collection and pro-
cessing of the measured data. This enabled real-time data
acquisition and onboard processing over several hours of battery
life and stand-alone use appropriate to daily life. As a first step,
we assessed the IMC by investigating its use in the automated
assessment of fall initiation and balance recovery responses fol-
lowing perturbations while walking. With the experiments, we
revealed the sensitivity of the approach and the ability to enable
new insights regarding the impact of anteroposterior trunk
dynamics in perturbed locomotion. Due to the sensor’s wear-
ability at human body segments and its stand-alone usability, the
IMC presents an opportunity to pioneer a reliable assessment of
human movement and balance in daily life.

Comparative analysis using computational modelling and
experimental data. The computational modelling analysis con-
firmed our hypothesis that the application of the IMC combined
with a sensor fusion algorithm can significantly reduce errors
caused by numerical differentiation due to the principle of direct
measurement of angular acceleration. Additionally, compared to
direct measuring approaches NAP and ARS by Padgaonkar and
colleagues10 and Martin and colleagues11, we reduce the errors in
angular velocity evaluation compared to NAP (Supplementary
Fig. S4) as well as in the angular acceleration evaluation compared
to ARS (Supplementary Fig. S2). The results of the simulation
study demonstrate that the RMSE in angular acceleration is
clearly lower when using the IMC compared to a single IMU
(RMSE on average for the IMC was 0.06 and 1.16 rad/s2 for an
IMU). Such errors introduced via numerical differentiation can-
not be ignored in human movement sciences and robotics, par-
ticularly in monitoring kinematics with low ranges of angular
acceleration.

To transfer the conclusions of the simulated to experimental
data, we compared our approach with the direct measurement
approaches NAP and ARS, as well as the numerically derived
signal from a single IMU. By comparing the simulated and
experimental determined IMC signals with the numerically
derived signal from a single IMU, we observed nearly identical
phenomena and curve path characteristics. The experimental and
simulated characteristics closely correspond, indicating that we
can transfer the findings of simulation-generated results to real-

Fig. 3 Values of the accumulated relative trunk angular momentum
(aTAM) and the accumulated rate of change in relative trunk angular
momentum (aRCTAM) for overground trip perturbations. The results
averaged across all subjects for each respective trial, as well as the same
data as stages in adaptation: early (trials 1 and 2), mid (trials 4 and 5), and
late (trials 7 and 8) using box plots are shown. In each plot the lower
whisker corresponds to the smallest value, the upper whisker to the largest
value and the box is formed by the median and the 25% and 75% quartiles.

Fig. 4 Values of the accumulated relative trunk angular momentum
(aTAM) and the accumulated rate of change in relative trunk angular
momentum (aRCTAM) for the lean-and-release task. The data presented
represent all participants and are divided according to whether the recovery
strategy involved single steps or multiple steps. In each box plot the lower
whisker corresponds to the smallest value and the upper whisker to the
largest value. The box is formed by the median and the 25% and 75%
quartiles.
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world applications. Finally, we revealed that the IMC did
accurately resolve the true angular acceleration vector of a rigid
body in experimental conditions, like what we saw in the
simulation. The similarity in signal profiles for the angular
acceleration coordinate between NAP and IMC supports this
hypothesis. Furthermore, the experimental data revealed that our
approach has advantages in the accuracy of angular velocity
determination concerning NAP. This follows due to NAP needing
to solve equations based on noisy linear acceleration measure-
ments and sign ambiguity to estimate angular velocity, while our
approach uses redundant direct measurements. In contrast, the
ARS approach showed a more noise-prone angular acceleration
signal compared to NAP and IMC. This was caused since ARS
used fewer raw data signals, which makes the approach more
susceptible to measurement inaccuracies in general. Moreover,
our used sensor fusion algorithm reduced noise in both angular
velocity and acceleration signals exploiting signal redundancy.
Due to the statistical characteristic of the mathematical model for
white noise, using the eight independent noise raw data signal
combinations to evaluate the angular acceleration vector
coordinate leads to a more accurate estimation. Regarding the
use of, for example, a Kalman filter, there would not be a
substantial advantage in employing a data fusion algorithm, as we
aimed for a single-sensor solution using a principle of direct
measurement. Also in the previous work, no Kalman filter was
used for direct measurement methods10–12. Next, our evaluation
algorithm used only the component of the angular velocity and
acceleration vectors representing the anterior-posterior axis (see
the section “Data evaluation framework”). Therefore, we do not
need to evaluate the body segments’ orientations estimated
typically by a sensor fusion algorithm, e.g., a Kalman filter.

A consequence of this dual improvement is that the IMC can
resolve detail in the case of small changes in segment dynamics
due to a better signal-to-noise ratio for both signals. This is
particularly relevant for the automated detection of fall
initiation onsets and terminations of balance recovery. Conse-
quently, the increased accuracy of the kinematics measurements
(angular velocity and acceleration vectors) of our IMC has an
enormous impact on the resolvability of minimal segment
dynamics. For example, in our laboratory investigations, we
demonstrated it is feasible to distinguish various balance
recovery responses and clearly identify well-known adaptations
to perturbed locomotion28–32. Since our IMC is wearable
(compared to NAP and ARS) and through its stand-alone
usability, which allows maximally unimpaired motion of
the participant, it has the potential for accurate and remote
monitoring of human movement and for direct and sensitive
assessment of trunk dynamics.

Experimental assessment of perturbed locomotion in humans.
One challenge for detecting anterior fall initiation is that unper-
turbed gait patterns and trunk dynamics differ significantly
between individuals. The range of magnitudes regarding local
maxima for the coordinates of angular velocity and angular
acceleration around the transverse axis corresponding to touch-
downs during unperturbed overground walking were
0.499–1.343 rad/s and 28.626–70.744 rad/s2 for the analysed
participants, respectively. To address these variations objectively,
we referenced our proposed threshold algorithm for the detection
of anterior fall initiation and balance recovery to automatically
and individually determined thresholds that were extracted from
unperturbed walking curves. The advantage of our current
approach is that we consider individual variations in trunk
dynamics during walking via recording of reference curves during
unperturbed walking. Similarly, with the flexibility gained by the

threshold algorithm, we could determine personalised thresholds
for diverse movements or tasks to improve the accuracy of the fall
initiation detection and recovery performance analysis. Further-
more, we used the proposed quantities accumulated relative trunk
angular momentum and accumulated rate of change in relative
trunk angular momentum (see the section “Recovery perfor-
mance evaluation”) to analyse the recovery performance and
resolve adaptations. This will enable long-term comparison and
benchmarking between different test subjects due to the proposed
quantities combining measured absolute kinematics with the
subject-specific anthropometric quantities. In our case, we
weighted the measured kinematic signals with the individual
subject’s moment of inertia of the trunk about the transverse axis
(corresponds to y-axis of the trunk’s principal axis) EFΘðqÞ

yy . Here,
EF is the principal axes reference system of the trunk and
represents the coordinate frame in which the moment of inertia is
expressed. EFΘðqÞ

yy contains the trunk mass and the geometric
dimension as parameters and further the reference point q
(midpoint of the trunk lying on the level between both spina
illiaca anterior).

Previous investigations using time-consuming acquisition and
data processing approaches in laboratory settings have shown
that optical motion capture systems can assess adaptive
improvement in balance recovery responses to repeated trip-like
perturbations28–31. These responses involve effective increases in
step length that are aimed at decreasing the distance between the
anterior boundary of the base of support and the state of the
centre of mass33,34. Another essential component of withstanding
forward-directed fall initiations is the regulation of trunk
dynamics and whole-body angular momentum16,20,21.

Using our wearable IMC located at the trunk, we were able to
confirm optical motion capture studies showing that humans can
limit the consequences of trip-like perturbations with repeated
practice. These adaptations were observed for both repeated
treadmill trip perturbations and the tested overground trips
which may reflect more realistic real-life scenarios. There were
continuous reductions in accumulated relative trunk angular
momentum of ~30% from the early to late adaptation phase.
Moreover, we were able to confirm that our IMC and its
evaluation algorithm are sensitive enough not only to assess
adaptational phenomena but also to distinguish between single-
and multiple-stepping strategies when investigating simulated
anterior falls. Notably, balance recovery performances after a
sudden forward fall in a lean-and-release protocol, i.e. the ability
to recover balance with a single step, can predict fall risk for older
adults35. Thus we concluded that a failure to control relative
trunk angular momentum during perturbed walking is linked to
diminished balance recovery responses and that the IMC plus
evaluation algorithm can be used to objectively assess anterior
balance dysfunction and fall risk.

Regarding the argument that the numerically differentiated
signals extracted by a single IMU would be sensitive enough to
detect the balance recovery responses and resolve adaptation
phenomena, we want to highlight two facts. First, a comparison of
the simulation and experimental results between the IMC and
single IMU-derived signal showed the present accuracy deviations
considering the magnitudes and curve path characteristics
(Fig. 1a, b, and Supplementary Fig. S3). Especially in the low
range of angular acceleration magnitudes, the deviations are not
negligible concerning balance recovery response detection. Next,
physically useful results cannot be derived from it under any
circumstances, as shown in ref. 8. Secondly, we compared the
extraction of personalised threshold values from the baseline
curves for all subjects with experimental data, utilising both the
IMC measurements and the numerically differentiated signals
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from the IMU. As described in the section “Data evaluation
framework”, the automated balance recovery response detection
algorithm extracted the averaged local maximum and minimum
and the global maximum and minimum threshold.

The detection algorithm employed the scaled global maximum
and minimum thresholds to identify anomalies in the signal that
exceed the baseline’s magnitude. Next, by using the averaged local
maximum (referring to the touchdowns), the algorithm analysed
when these characteristic local maxima of the perturbed curve
path returned within the bandwidth of the averaged local and
global maximum and minimum, respectively, of the baseline. This
indicated the recovery of the gait pattern. We observed that the
thresholds determined through numerical differentiation were
notably higher than those derived from the IMC assessment.
Averaging all subjects for overground walking, the global
maximum threshold from numerical differentiation exceeded
the IMC threshold by 29.58 rad/s2. Similarly, a discrepancy of
10.53 rad/s2 was observed for the averaged local maximum
threshold (Supplementary Fig. S5). This directly leads to a
reduced accuracy in detecting balance recovery responses using
numerically differentiated signals. Conversely, these findings
confirm that the direct measurement approach regarding angular
acceleration is more sensitive.

It is important to elaborate on how the algorithm distinguishes
between fall initiation due to tripping and daily life motor tasks
requiring high relative trunk angular momentum such as picking
up an object. Since our current algorithm evaluates the angular
velocity and angular acceleration signal simultaneously, we are
confident that the system could distinguish between a controlled
voluntary trunk motion from a reactive trunk motion involved in
stability recovery. If only the trunk angular velocity signal was
measured, the lift and trip actions likely resulted in similar
amplitude characteristics of the signal’s curves. An advantage of
simultaneously evaluating trunk angular velocity and trunk
angular acceleration signals is that lift and trip discriminations
become feasible. We have provided an example data set
(Supplementary Fig. S6) showing that the amplitudes of local
extrema and the frequency spectrum in the curve path of the
angular acceleration vector transverse coordinate are much
smaller for picking and dropping (controlled voluntary trunk
motion) an object compared to a trip-like perturbation. In our
case, it was essential to evaluate both kinematic signals
simultaneously in order to provide a robust analysis for remote
and automated monitoring of anterior fall initiation and balance
recovery responses.

It should be acknowledged that remote monitoring over several
days may be restricted by the current size of the IMC. A shorter
distance between the sensor packages will be beneficial but is
likely to increase noise due to the inversely proportional
characteristics regarding the distance between the sensor
packages (see Eq. (10)). We also need to investigate how the
typical positioning and alignment precision for the sensor
packages affects miniaturised prototypes in terms of measure-
ment accuracy. To address the above issues, further developments
are required to enable the practical application of the current
sensor solution in clinical or gerontological settings.

In conclusion, our proposed combination of an inertial
measurement cluster and evaluation framework provides a new,
embedded system which eliminates numerical differentiation
errors for the evaluation of angular acceleration and enables
automatic assessment of anterior fall initiation and balance
recovery responses to perturbations. Due to its stand-alone
usability over the course of a day, we provide new possibilities for
accurate remote monitoring in human movement science,
particularly for objective assessments of balance dysfunction
and fall risk in designated population groups.

Methods
Inertial measurement cluster
General equations. In contrast to the use of a standard IMU, our
IMC measures the angular acceleration vector directly. The unit
incorporates four sensor packages, each consisting of one three-
dimensional gyroscope and one three-dimensional linear accel-
erometer within a rigid wearable structure. It derives the angular
acceleration vector using the laws of rigid-body motion and an
algebraic sensor fusion algorithm. The sensor packages are placed
spatially defined on a rigid three-dimensional base. The following
equation applies to the acceleration of an arbitrary fixed point on
a rigid body

ai ¼ a0 þ _ω ´ ri0 þ ω ´ ðω ´ ri0Þ: ð1Þ
Here ai indicates the linear acceleration at the spatial point i, ri0

is the relative vector from sensor package 0 to sensor package i. ω
is the angular velocity and _ω the angular acceleration vector
which are both constant for all points on a rigid body. The system
of the coordinate equations from Eq. (1) is under-determined due
to the skew-symmetric property of the cross-product. To obtain a
single unique solution of each coordinate equation, the three
relative vectors from sensor package 0 to all others of sensor
package i on the rigid body must be linearly independent. Due to
this, the sensor packages do not lie in a spatial plane. This ensures
that the three vector coordinates are unambiguously resolvable. In
general, three linear-independent vectors can form a basis of the
three-dimensional Euclidean space E3 with
G ¼ g1 ¼ r10; g2 ¼ r20; g3 ¼ r30. G0 ¼ g1; g2; g3 is the dual basis
of G, defined by g i � g j ¼ δ j

i . We can calculate the contravariant
basis vectors of the dual basis G0 using the common calculation

gk ¼ 1
g
g i ´ g j; ð2Þ

where g= (g1 × g2) ⋅ g3 applies. It is well known that the contra-
variant basis vectors also form a basis of E3. Thus, these con-
travariant vectors are also linearly independent (see, e.g., ref. 36).

Starting by rearranging Eq. (1) to

_ω ´ ri0 ¼ ai � a0 � ω ´ ðω ´ ri0Þ: ð3Þ
we subsequently used the circular permutation of the vector triple
product to separate the term _ω. For this purpose, the scalar
product of Eq. (3) and the relative vector rj0 is formed as follows:

ð _ω ´ ri0Þ � rj0 ¼ ðai � a0 � ω ´ ðω ´ ri0ÞÞ � rj0: ð4Þ
Here, rj0 is the relative vector from sensor package 0 to sensor

package j. Upon applying the circular permutation in Eq. (4), this
gives

ðri0 ´ rj0Þ � _ω ¼ ðai � a0 � ω ´ ðω ´ ri0ÞÞ � rj0: ð5Þ
Through applying Eq. (2), using the definition of the basis G,

and multiplying the inverse of g to Eq. (5), the following results
immediately:

gk � _ω ¼ 1
g
ðai � a0 � ω ´ ðω ´ ri0ÞÞ � rj0: ð6Þ

With Eq. (6), we can calculate the covariant components of _ω
directly. By using the definition of the dual basis, it applies

gk � _ω ¼ gk � αig i ¼ αk: ð7Þ
The coordinates αk of the angular acceleration vector are

expressed in the covariant basis.

Sensor setup. To evaluate mechanically interpretable coordinates,
we can define an arbitrary coordinate frame and transform the
vector equation to its corresponding system of coordinate
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equations. One example is the body-fixed sensor frame. Figure 5
shows a schematic of the setup illustrating the sensor’s own
evaluation frames and the four precisely defined spatial mounting
points of the sensor packages. These orthogonal frames represent
the so-called sensor evaluation frames in which the coordinates of
the linear acceleration and the angular velocity vectors are
measured.

We placed three out of the four sensor packages on top of the
base plate. One sensor package is placed centrally at the upper
edge of the base plate and designated with the number 0 (Fig. 5).
Two further sensor packages (1 and 2, Fig. 5) were placed so that
the vectors between them and sensor package 0 enclosed a 90°
angle. It was thus possible to use a symmetrically constructed base
plate that was comfortable to wear. For positioning the fourth
sensor package (3, Fig. 5) we fixed a bracket to the base plate and
aligned it directly above the sensor package 0 (Fig. 5). The relative
vector r30 between these two sensor packages (0 and 3, Fig. 5) was
parallel to the normal vector of the base plate. Each relative vector
was thereby collinear with one basis vector of the sensor package’s
own evaluation frame. The norms of the applied relative vectors
for the IMC used are in this study: r10= 0.1375 m, r20= 0.175 m
and r30= 0.1 m. We milled out the base of a rigid polyvinyl
chloride plate, with the resulting weight of the IMC prototype
being ~0.8 kg.

Sensor fusion of redundant signals. In contrast to previous
approaches, e.g. by Padgaonkar and colleagues10 using nine one-
dimensional accelerometers and Martin and colleagues11 using
one three-dimensional gyroscope and three three-dimensional
accelerometers, we utilised four sensor packages (four three-
dimensional gyroscopes and four three-dimensional accel-
erometers), resulting in the redundancy of the sensor signals.
Therefore, we used the four separate angular velocity vectors in
our algorithm and all of the measured three-dimensional linear
acceleration vectors at four different points. This redundancy
enables a fusion of the measured kinematics to estimate a more

accurate angular acceleration vector as well as a more accurate
angular velocity vector. Due to the chosen spatial structure of the
sensor packages, there are four different and independent con-
figurations for the evaluation of the angular acceleration vector.
For each independent configuration, one specific sensor package
was defined as the root (lower part of Fig. 5). In this way the
relative vectors rij changed depending on the chosen configura-
tion. Thus, our evaluation algorithm calculated each coordinate of
the angular acceleration vector expressed in the orthogonal eva-
luation frame in eight independent ways. Using a sensor fusion
algorithm for our IMC, we evaluated these eight independent
values per vector coordinate in relation to each other to identify
their validities and exclude measurement anomalies. We used the
eight independent calculated scalar values for one vector coor-
dinate to identify outliers caused by measurement inaccuracies.
Therefore, we sorted the eight scalar vector coordinates. After
sorting them, the algorithm selected the first value (lower limit)
and the eighth value (upper limit). By identifying them, we used a
weighted mean calculation principle to reduce the noise. We
assigned the six remaining scalar values a high confidence and
calculated the mean value of the vector coordinate with the
weight beta (quantitatively set to β= 0.8). The outlier values are
added separately to the mean calculation with the weight of
(1−β). Analogue, we used the same principle to calculate a
weighted mean value for the angular velocity vector coordinates
considering the four redundant measured angular velocity vec-
tors. For this, we used the weight β= 0.6.

Error analysis. There are three different categories of errors in
evaluating the angular acceleration when using the IMC: (i)
model assumptions; (ii) inaccuracies due to manufacturing and
assembling of the IMC components; and (iii) noise behaviour of
the gyroscopes and linear accelerometers themselves. Inaccuracies
for (i) may have arisen from the assumption that both the IMC
and the human upper body behaved like rigid bodies in the
investigated motion. In our computational modelling, we have
not considered inaccuracies of type (i). For inaccuracies (ii) due to
manufacturing and assembling, we considered misalignment and
mispositioning of the four sensor packages used. We assumed
that each sensor package’s own evaluation frame had a mis-
alignment with respect to the chosen evaluation frame after
mounting the sensor packages on the base plate. In general,
mispositioning meant that there was a three-dimensional offset
vector Δri0 added to the desired relative vector �ri0. For (iii), we
considered white noise behaviour of the gyroscopes and linear
accelerometer signals for angular velocity and linear acceleration.
We described the white noise of the gyroscope and linear accel-
erometer signals mathematically as normally distributed random
errors. Thus sðtÞ ¼ �sðtÞ þ nðtÞ generally applied. �sðtÞ was the real
but generally unknown value and n(t) was the error through
white noise. We estimated n(t) for each sample time point
depending on the standard deviation σ and the mean μ of the
gyroscopes and linear accelerometers used. We calculated with
σ ¼ ν

ffiffiffi
f

p
the standard deviation for the gyroscope and accel-

erometer as mentioned in the data sheet of Xsens MTi-20 VRU
(Movella Inc., Nevada, USA), where ν was the noise density, and f
was the sample rate applied. The mean μ was set to zero because
of the white noise characteristic.

We identified one main impact regarding the accuracy by
considering Eq. (6). We noticed that it contains the relative
vectors. Consequently, assuming noisy sensor signals, the
distances of the chosen vectors ri0 influence the accuracy of the
whole calculation. For example, we set for the measured linear
acceleration vector ai ¼ �ai þ n. Further, because we arranged the
sensor packages in an orthogonal evaluation frame (EF) (Fig. 5),
we got an orthonormal basis G ¼ e1; e2; e3 with the relative

Fig. 5 Definition of the vectors and frames used for the kinematic
description of the rigid multi-body system. The shown coordinate frames
of the sensor packages represent the sensor evaluation frame. The four
configurations shown are the basis of evaluation for the sensor fusion
algorithm.
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vectors r10= r10e1, r20= r20e2, and r30= r30e3. In this case 1, 2,
and 3 refer to the x-, y-, and z-axis of EF. By expressing Eq. (6)
with respect to EF, we get the following equation:

ri0rj0ek � _ω ¼ ðai � a0 � ω ´ ðω ´ ri0ÞÞ � rj0: ð8Þ
To calculate the kth coordinate of the angular acceleration

vector expressed in EF it applies

ek � _ω ¼ ðai � a0 � ω ´ ðω ´ ri0ÞÞ � ej
ri0

: ð9Þ

Here, ek � _ω are the coordinates of the angular acceleration
vector _ω expressed in EF. ri0 is defined as ri0ei. ei is one basis
vector of the orthogonal evaluation frame and ri0 is the
coordinate describing the distance between sensor package 0 to
i. By showing the general equations for an arbitrary basis in the
section “General equations”, we proved, without loss of general-
ity, that the general equations are valid to calculate the angular
acceleration vector despite non-orthogonal coordinate frames
caused by mispositioning and misalignment of the sensor
packages.

Especially, if we let the distances ri0 tend to zero the mounting
positions of those sensor packages would converge. This would
lead to that the real linear acceleration vector �ai converging
towards �a0 whereas the noise behaviour n and consequently its
contribution to the errors of the measurement would remain
unaffected through the spatial shifting. After inserting the above-
mentioned mathematical noise definition in Eq. (9), we see it
contains terms like

ðai � a0Þ � ej
ri0

¼ ð�ai þ ni � ð�a0 þ n0ÞÞ � ej
ri0

: ð10Þ

The noise behaviour ni and n0 of the gyroscopes and linear
accelerometers and the magnitude of the norms of the relative
vectors ri0 influence the calculated angular acceleration coordi-
nates. Consequently, due to the characteristics of in Eq. (10), we
have tried to design the geometric dimensions of the prototype so
that it fits the dimensions of the average anthropometrics of an
adult’s thorax. Thereby, we have used the optimum between the
wearability of the sensor and noise impact through the sensor
package’s distance.

Validation by computational modelling using a
humanoid robot. As it is challenging to develop a method capable
of applying a defined angular acceleration state to generate
experimental data, we utilised a simulation framework. In the
simulation, it is possible to generate ground truth data of the
angular acceleration vector from a rigid body, by solving the
general equations of motion. Additionally, we can simulate the
IMC sensor with typical manufacturing errors and noise beha-
viour (manufacturer’s specification) applied. Since we used in this
work the IMC to evaluate trunk movements about the transverse
axis during human bipedal locomotion, we validated the IMC on
the humanoid robot in simulation (Supplementary Fig. S1). We
used the simulation tool Webots 2022b (Cyberbotics Ltd, Lau-
sanne, Switzerland). Details about the humanoid robot and the
simulation model used are provided in Supplementary Note 1.

We modelled errors of the physical IMC and the single IMU
affecting the accuracy of the measurement results in the
simulation to ensure that the results of this validation with
simulated sensors can be used as realistic indicators for real-world
application. Therefore, both sensors were modelled with real-
world errors including mispositioning, misalignment and white
noise when using gyroscopes and linear accelerometers. To
estimate the error boundaries for mispositioning and misalign-
ment the IMC was measured using a 3D measuring machine

(Zeiss Prismo Ultra, Oberkochen, Germany). The maximum
error boundaries from this evaluation were used for modelling
these errors in the simulator. Therefore, the sensor packages 1–3
were shifted three-dimensionally in relation to sensor package 0
(general mispositioning) and rotated further against each other
(general misalignment).

The mispositioning expressed in EF was defined as
EFΔri0 ¼ EFri0 � EF�ri0.

EF�ri0 was the real but generally unknown
value. The applied magnitudes of mispositioning expressed in the
sensor evaluation frame for sensor packages were EFΔr10= [0.01 m,
−0.008m, 0.002m]T, EFΔr20= [−0.005m, 0.003m, −0.003m]T,
and EFΔr30= [0.008m, 0.002m, 0.005m]T.

In addition to the mispositioning of the sensor packages, we
applied also a misalignment to the corresponding sensor packages
1–3. Every sensor package was misaligned in a single axis of EF.
Consequently, we applied an elemental rotation Ri0ðΔϕi0jÞ about
one of the axes of the respective sensor package coordinate frame.
The subscript index i0 of R indicates the concrete sensor package
i for i= 1, 2, 3 to which the elemental rotation is applied with
respect to sensor package 0. The subscript index j for j= x, y, z
indicates the axis to which the misalignment was added. The
magnitudes of misalignment expressed in the sensor evaluation
frame were EFΔϕ10x = 0.017 rad, EFΔϕ20y =−0.035 rad, and
EFΔϕ30z =−0.026 rad. These quantities corresponded to mea-
surement results obtained with the 3D measuring machine.

In addition, white noise was added to each measured sensor
signal as described in the section “Error analysis”.
The magnitudes of the added noise density for all gyroscopes
were ν= 5.236e−4 rad/s/

ffiffiffiffiffiffi
Hz

p
and for all accelerometers

ν= 6.116e−5 m/s2=
ffiffiffiffiffiffi
Hz

p
. For the simulated data comparison

of the IMC and single IMU approaches, we took the raw
measurements of sensor package 0 used in the IMC to represent
the single IMU. Consequently, the same parameters for the
noise behaviour concerning the gyroscope of sensor package 0
ensure optimal comparability.

Verification by experimental data. To analyse the performance
and to compare our IMC to the state of the art with experimental
data, we implemented the approaches of Padgaonkar and
colleagues10 (NAP), of Martin and colleagues11 (ARS), and cal-
culated the numerical differentiation using the backward differ-
ence method. This comparison was possible because we utilised a
generalised sensor setup with redundant signals. The generalized
sensor setup also covered the ability of replicating previously
published methods such as NAP or ARS. Accurate representation
was achieved by disabling redundant sensors, ensuring that the
available raw data signals matched one-to-one with the signals
used in the published approaches. For the comparison of the
estimated angular acceleration state between those four approa-
ches, all of the approaches used the same sensor package raw data
(four single Xsens MTi-20 VRU with a sample rate of 200 Hz) of
the same torso movement as the basis to extract the angular
acceleration vector. This ensured the comparability between the
results of the approaches, as the raw signal quality, noise beha-
viour, manufacturing issues, and the ambient condition were
identical. Since no ground truth data were available, we did not
calculate absolute accuracy parameters in this comparison. We
also compared the results of the simulation and experimental data
to identify correlations and drew conclusions for use cases in
practice.

Participants and experimental set-up. Eleven healthy and
moderately physically active adults were recruited (data as
averages and standard deviations 29 ± 6 years of age,
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1.76 ± 0.12 m height, 77.8 ± 8.8 kg body mass; nine males, two
females). Exclusion criteria were any neurological or muscu-
loskeletal injuries or impairments limiting locomotion. Upon
providing consent, participants were fitted with the custom-made
IMC. It was attached to their back (level of thoracic vertebrae
1–12). We used adjustable straps to match the level of attachment
of the IMC to the specific anthropometrics of the subject’s trunk.
Further, these straps provided stabilisation of the base plate at
shoulder and waist levels hence greatly reducing relative move-
ment between the IMC and the trunk. This allowed the measured
kinematics of the IMC to represent the trunk kinematics to a
close approximation. During all three tasks evoking anteriorly
directed balance perturbations three-dimensional kinematics of
the trunk were measured. For the current analysis of anterior
perturbations, we evaluated the vector coordinate of the trans-
verse axis in the principal axis system of the trunk. The transverse
axis corresponds to the y-axis of the evaluation frame. Before each
measurement, we calibrated the IMC. To reduce constant offset
errors in the measurement series of the IMC for each sensor
frame axis, we calibrated the IMC through a static calibration
measurement of the IMC sensor over ~30 s. We calculated the
mean over all measurement samples for each vector coordinate of
the angular velocity and angular acceleration vector to reduce the
impact of white noise. We defined the calculated mean value as
the constant offset for the respective axis and subtracted this value
at each sample point of the subsequent measurement process.

Throughout all measurements, participants wore their own
non-slippery leisure/sports shoes and were protected by wearing a
safety harness connected to an overhead track which allowed for
full range of motion in the anterior-posterior and medio-lateral
directions but prevented contact of any part of the body with the
ground (except for the feet). The measurements comprised eight
successive trip-like perturbations, both while walking on a
treadmill and walking overground. In addition, all participants
were exposed to eight to ten trials of sudden anterior balance loss
from various static forward-lean angles (lean-and-release task).
Measurements were reviewed and approved by the ethics
committee of the School of Applied Sciences at London South
Bank University (approval ID: SAS1826b) and met all require-
ments for human experimentation in accordance with the
Declaration of Helsinki37.

Perturbed locomotion analyses
Repeated treadmill-based gait trip-like perturbations. The trip-like
perturbation paradigm has been used in previous studies28–32.
Four to seven days prior to measurements, all participants were
familiarised with unperturbed treadmill walking. On the day of
measurements, participants walked on a treadmill (Valiant
2 sport XL; Lode BV, Groningen, The Netherlands) at a stan-
dard speed (1.4 m/s), equipped with the IMC. A Teflon cable
and ankle strap connected each of a participant’s ankles to a
custom-built pneumatically driven perturbation device located
behind the treadmill (Fig. 6a). Following 4 min of walking38,
recordings of 2 min of continuous walking served to determine
baseline (unperturbed) gait patterns for each participant31. As
the participants continued to walk, eight trip-like perturbations
were induced unexpectedly, with each successive perturbation
being followed by a variable washout period (2–3 min) of
unperturbed walking28,31. The perturbations were induced by
activating a pneumatic cylinder using a hand trigger connected
to the perturbation device. A restraining force (140 N, rise time
20 ms) was thereby applied to the left limb via a Teflon cable
and ankle strap during mid-stance phase of the right foot to
standardise an interruption to motion of the left limb during its
mid-swing. The restraining force was released at touchdown of

the left foot to allow for continuity in walking after the per-
turbation. Although participants were informed that their gait
would be perturbed at some points during walking on the
treadmill and they were encouraged to continue moving for-
ward, the onset and removal of the resistance was applied
without any immediate warning.

Repeated overground-based trip-like perturbations. Participants
walked at a standard speed (1.4 m/s) on a custom-built flat
wooden walkway (8 m length, 1.2 m width), with Teflon cables
and ankle straps attached to both ankles32,39. The cables were in
turn attached to a custom-built pneumatically driven brake-and-
release device located behind the walkway (Fig. 6b). Walking
speed was monitored live via an optical motion capture system
that recorded a reflective marker located on the seventh cervical
vertebra (16 infra-red cameras operating at 120 Hz; Miqus2,
Qualisys, Gothenburg, Sweden). Once participants arrived at the
end of the walkway, they were guided back to the initial position
to prevent tangling of the Teflon cable. Thus only one direction of
movement was considered for measurements. Following famil-
iarisation with this walking, recordings of three consecutive for-
ward walking trials served to determine stability control during
movement on the walkway. Subsequently, eight trip-like pertur-
bations were induced at random forward-walking trials (wash-out
trials in between) but only if the standard speed was consistently
reached. As for the treadmill-based task, overground gait trip-like
perturbations were operated by means of a hand trigger con-
nected to the perturbation device and evoked by a braking action
of the Teflon cable on the left leg - during the mid-stance phase of
the right foot and released at touchdown of the left foot. Like the
treadmill-based task, perturbations were neither practised in
advance nor announced immediately before exposure.

Lean-and-release task. This task was operated according to pre-
vious studies40,41. Participants were forward-inclined with their
feet placed flat and at hip-width at various inclination angles so as
to cover a wide range of task demands. The inclination was
maintained by means of an inextensible, horizontal supporting
cable attached to a belt around the participant’s pelvis and at the
other end to a custom-built pneumatically driven brake-and-
release system. To initiate the perturbation, the supporting cable
was suddenly released within 10–30 s after the participant was
stabilised in the starting position (Fig. 6c). Participants were
asked and encouraged during prior task instruction, to choose the
left or right leg for recovery of stability after release using a single
step. Nevertheless, the inclination was varied for all participants
in order to cover a range of demand and thereby to provoke
minima of three single-step strategies and three multiple-step
strategies for each participant. Recovery stepping strategies were
classified as single or multiple stepping according to a previous
description40. Briefly, participants were classified as single step-
pers if only one step was required to regain balance or if a follow-
up step of the contralateral limb did not exceed the anterior
displacement of the recovery limb. Accordingly, multiple stepping
was defined as involving any additional step of the recovery limb
or if the participant took a contralateral step exceeding the
anterior displacement of the recovery limb.

Data evaluation framework. We developed an automated
threshold algorithm to detect anomalies in the time course of a
measurement series. The detection of fall initiation and balance
recovery and adaptations therein were based on the joint analysis
of angular velocity and angular acceleration signals. The gait
pattern of an individual may vary (ranges in transverse
axis coordinates of angular velocity and angular acceleration
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touchdown-induced local maxima during unperturbed over-
ground walking were 0.499–1.343 rad/s and 28.626–70.744 rad/s2

for the analysed participants, see the section “Experimental
assessment of perturbed locomotion in humans”. Further, its gait
pattern is influenced by the participant’s circumstances (e.g.
treadmill vs. overground gait). To allow for individual gait
characteristics, we applied automated threshold determination for
each participant. For the determination of personalised thresh-
olds, unperturbed gait measurements of the respective task
(treadmill or overground walking) containing angular velocity
and angular acceleration vectors served as a baseline measure for
each participant. The respective baseline measurements involved
each subject’s gait behaviour characteristics, including curve path,
magnitudes of local maxima and minima, and frequency content
of periodically occurring patterns. It is important to note that we
measured the baseline curves with the same settings and with the
same IMC sensor unit and placement of it. We did this to ensure
the best possible comparability from baseline curves to perturbed
gait analysis.

Personalised thresholds for angular velocity and angular
acceleration were derived by combining results of iteratively used
local extrema detection algorithm, monitoring of local extrema
value distributions, and autocorrelation analysis of the baseline
measurements of each participant (Fig. 7a). Finally, the local
extrema detection algorithm was able to extract both the local
maxima and minima of a signal, appearance times of local
extrema, and the resulting frequency spectrum over the entire
measurement period. Further, we used an autocorrelation analysis
to determine periodically repeating patterns in the curves and

drew conclusions about, for example, the step frequency. The
determined personalised thresholds were then applied to the
analysis of the perturbation data series (Fig. 7a).

Extraction of personalised thresholds. In our detection algorithm,
we used two kinds of thresholds for the analysed components of
the angular velocity and acceleration vector, respectively. On the
one hand, we determined the global maximum and minimum
(represented through the blue circles in Fig. 7b) within the
baseline curve. Therefore, we used the local extrema detection
algorithm. On the other hand, we estimated the averaged local
maximum of periodically occurring touchdown-induced local
maxima and the averaged local minimum threshold, shown in
Fig. 7b as the red dotted lines, respectively.

To determine the averaged local maximum and averaged local
minimum threshold, the local extrema detection algorithm
analysed each local maximum and minimum between two zero-
crossings over the entire baseline curve (relevant extrema are
marked with a red circle in Fig. 7b). To determine solely the
touchdown-induced local maxima, the detection algorithm
applied a iteratively used local maxima detection. This means
that the local extrema detection algorithm worked as an iterative
process in combination with local maxima distribution monitor-
ing and autocorrelation analysis. Thereby, the local maxima
distribution monitoring component subsequently divided the
detected local maxima into magnitude ranges. With the
occurrence count of the various local maxima magnitude ranges,
this part of the algorithm eliminated the irrelevant local maxima
magnitudes. Using the resulting irrelevant magnitudes as an

Fig. 6 Schematic illustration of the three perturbation tasks, and respective sensor recordings. Treadmill-based trip perturbations (a) consisted of eight
successive trip-like gait perturbations during treadmill walking. Overground-based trip perturbations (b), involved participants in eight successive trip-like
gait perturbations while walking overground. Lean-and-release (c), required participants to recover stability after release from various forward-inclined
positions. Safety harnesses were worn during all tasks to prevent contact of any part of the body with the ground (except for the feet). The vertical dash
lines in (a–c) on the right-hand side define the observation window which was detected automatically via the threshold algorithm based on individually
derived thresholds from baseline measurements.
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adjusted filter, the algorithm performed again the local maxima
detection process. Adjusted filter means here that the local
extrema detection component of the algorithm ignored the as
irrelevant defined magnitudes. In addition, by determining just
the touchdown-induced local maxima the periodicity in the gait
pattern could be read out. Using this, the algorithm repeated the
process until the periodicity of all detected local maxima matched
approximately the doubled step frequency (analysed by
autocorrelation).

The averaged local minimum threshold determination
worked more simply due to there was no gait pattern event
corresponding to one of a local minimum periodically.
Analogue, the algorithm used the local minimum distribution
monitoring component to filter out the local minima with low
absolute magnitudes. In contrast, this filtering process was
performed once and not iteratively. This sequence of analyses
and threshold determination procedures led to the definition of
the threshold bandwidth, bandwidth being the span between
averaged local maximum and global maximum thresholds, and
averaged local minimum and global minimum thresholds seen
in Fig. 7c.

Observation window determination. We utilised observation
windows to encapsulate the balance recovery response to per-
turbation in the measurement series. By using data within the

observation window, the algorithm evaluated the recovery
performance of the participants and also registered their
adaptations to repeated perturbations. A balance recovery
response to perturbation during locomotion (and hence the
onset and offset of an observation window) was defined by
involving local maxima and minima of both angular velocity
and angular acceleration of magnitudes >1.1 times the global
maximum and/or minimum of the baseline curve. For this, the
evaluation algorithm compared the detected local maxima or
minima between two zero-crossings in the perturbed mea-
surement curve with the scaled global maximum and minimum
of the baseline curve.

If the local extrema detection algorithm detected an anomaly in
the curve path for the angular velocity vector coordinate, it
checked the curve path for the angular acceleration vector
coordinate for the surrounding time points to verify whether or
not this signal also contained an anomaly in the curve path. We
defined the window of surrounding time points by the zero
crossings of the local extrema classified as an anomaly in the
angular velocity curve. Provided that anomalies occurred in both
angular velocity and angular acceleration curves over the same
observation window, we defined this as a balance recovery
response to perturbation.

In order to determine the offset of the observation window, the
subsequent time points after the detected anomaly were analysed.

Fig. 7 Automated threshold determination algorithm to detect balance recovery responses. The thresholds are determined individually for each
participant regarding the respective task (treadmill or overground walking). Automated threshold determination analyses an unperturbed baseline curve
using a combination of local extrema detection algorithm, determination of the local extrema distribution, and autocorrelation analysis, as shown in (a).
The procedure to evaluate the averaged local maximum and minimum thresholds (red dotted lines) and the global maximum and minimum thresholds
(blue dotted lines) is shown in (b). Red and blue circles mark the used local extrema for the respective threshold. The application of both types of
thresholds to define the observation windows of balance recovery responses in the perturbed measurement series is shown in (c). For example, the
averaged local maximum and global maximum threshold line form a bandwidth to evaluate the time point of the alignment of the perturbed curve with the
baseline. The yellow arrows indicate the frequency content of the touchdown-induced local maxima.
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For this purpose, the algorithm used bandwidths enclosed
between the averaged local maximum threshold (upper red
dotted curve in Fig. 7c) and the global maximum threshold
(upper blue dotted curve in Fig. 7c), the averaged local minimum
threshold (lower red dotted curve in Fig. 7c) and the global
minimum threshold (lower blue dotted curve in Fig. 7c) and the
frequency content of the touchdown-induced local maxima
(yellow arrows in Fig. 7c). We limited the time points for
subsequent analysis to the time equivalent of six steps.
Specifically, to detect the offset of the observation window the
algorithm analysed both the angular velocity and angular
acceleration curves of the perturbed measurement. The offset
was defined as when the local maxima and minima of the
measurement series aligned to the threshold bandwidths for the
first time. As shown in Fig. 7c, in the context of bandwidth,
aligned means the local extrema of the series were at least within
the respective bandwidths. A separate criterion is that high-
frequency content within the balance recovery response must
have decayed (see the black curve in Fig. 7c) compared to the
frequency content for the baseline. Quantitatively, the frequency
content of the perturbed measurement series had to converge
approximately to the doubled touchdown frequency to be
considered as decayed. The offset of the observation window
was set to the time point of the first zero-crossing following the
last irregular local extrema of the angular acceleration signal.
Similarly, we defined the onset of the observation window by the
time point of the zero-crossing of the first local extrema of the
angular acceleration measurement.

Recovery performance evaluation. After defining the observation
window of a balance recovery response, a quantitative evaluation
of the balance recovery response was performed separately via
curve path characteristics of angular velocity and angular accel-
eration. The total duration of the balance recovery response is
called the time of recovery, representing the time required to
return to a stable state. We also considered integrals of the curves
for both angular velocity as well as angular acceleration within the
observation window to evaluate the balance recovery response. To
ensure better comparability between participants, we scaled the
trunk kinematics with the subject’s moment of inertia of the
trunk for the transverse axis EFΘðqÞ

yy . Here, EF is the principal axes
reference system of the trunk and represents the coordinate frame
in with the moment of inertia is expressed and q represents the
reference point. Therefore, we could interpret the quantity
EFΘðqÞ

yy
EFωy as the y-coordinate of the relative angular momentum

expressed in the EF, which is defined in ref. 42 since the used
y-axis is a principal axis. The quantity EFΘðqÞ

yy
EFαy is then the rate

of change in the y-coordinate of the relative angular momentum
expressed in the EF, when we consider the planar motion of the
trunk. Overall, this led to the quantities accumulated relative
trunk angular momentum (aTAM :¼ R

tOW
EFΘðqÞ

yy
EF∣ωy∣dt) and

accumulated rate of change in relative trunk angular momentum
(aRCTAM :¼ R

tOW
EFΘðqÞ

yy
EF∣αy∣dt). We want to mention expli-

citly that these introduced quantities no longer have a physical
interpretation. Hence, we performed numerical integration of
both curves (angular velocity and angular acceleration) within the
observation window under the condition that we added the area
enclosed by the negative curve segments positively to the total
area. We justify this since these curve segments are also an
indicator of the magnitude of the balance recovery response.

To determine the total moment of inertia EFΘðqÞ
yy , we

measured the upper body dimensions of every participant
using a motion capture system (see the section “Repeated
overground-based trip-like perturbations”) and define the

reference point q as the midpoint of the trunk lying on the
level between both spina illiaca anterior. We placed markers at
the seventh cervical vertebra and on left and right acromium,
spina illiaca anterior and spina illiaca posterior. To estimate
trunk width dimensions, we took the distance between the right
and left acromion in the frontal plane. Trunk length was
determined by the averaged distance from the seventh cervical
vertebra to the left and right spina illiaca posterior in the
sagittal plane, whereas trunk depth was defined by the averaged
distance between spina illiaca anterior to posterior of the right
and left side in the transversal plane. The upper body was
modelled as an elliptical slab43.

Statistics. We used the simulation of the IMC attached to the
trunk of a bipedal walking humanoid robot to validate the IMC.
Using two angular acceleration vector signals (one from the ideal
simulation result and the noisy signal from the sensor type being
compared) we evaluate the accuracy of the simulated sensors with
the RMSE for the IMC and IMU data points compared to the
ideal result as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðαymethod

� αy idealÞ
2

n

s
: ð11Þ

A further quantitative evaluation is the relative error Δ. It is
defined as

Δ ¼ ∑
n

i¼0

jf procðtiÞ � f ref ðtiÞj
jf ref ðtiÞj

1
n
: ð12Þ

Here, fproc(ti) represents the value at the time point ti of the
investigated procedure’s signal. Similarly, fref(ti) represents the
reference signal for the comparison at the time point ti.

Concerning the investigations with human participants, the
adaptations of participant responses from practice of perturbation
tasks for both treadmill and overground walking were examined by
pooling trials. Data were combined for perturbations 1–2, 4–5 and
7–8 and labelled early, mid and late adaptation, respectively. For
the lean-and-release task, trials were first divided into single- and
multiple-stepping strategies. The mean values across trials
(separated by strategy) were calculated for each participant so as
to compare analysed parameters between balance recovery
strategies. Parametric assumptions for all analysed parameters
(time of recovery, accumulated relative trunk angular momentum,
rate of change in relative trunk angular momentum) were checked
using Shapiro–Wilk tests (p > 0.05). Possible differences between
trip-like perturbation trials (early vs. mid vs. late adaption phase)
were examined for treadmill walking using one-way repeated
measures analysis of variance (ANOVA) and for overground
walking using separate Friedman tests. In cases of significant main
effects, Bonferroni post-hoc corrections were applied. Concerning
the lean and release task, t-tests for dependent variables were used
to assess potential differences between single- and multiple-
stepping recovery, and hence balance performance for each of
the analysed parameters. All analyses were performed using SPSS
Statistics (v27, IBM; Chicago, IL, USA) and MATLAB (2020b,
MathWorks, Natick, MA, USA). If not stated otherwise, statistical
significance was set at α= 0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All datasets generated during and/or analysed during the current study are available on
Figshare with identifier https://doi.org/10.6084/m9.figshare.24781506.v1.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-024-00168-6 ARTICLE

COMMUNICATIONS ENGINEERING |            (2024) 3:20 | https://doi.org/10.1038/s44172-024-00168-6 | www.nature.com/commseng 13

https://doi.org/10.6084/m9.figshare.24781506.v1
www.nature.com/commseng
www.nature.com/commseng


Code availability
The code used for validation by computational modelling, the robot, and the framework
(mathematical algorithms) to analyse the kinematic data generated during the current
study is being made available by the corresponding author for research (non-commercial
use) or on reasonable request.
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