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Abstract: Accurate determination of the onset time in acute ischemic stroke (AIS) patients helps to 

formulate more beneficial treatment plans and plays a vital role in the recovery of patients. Considering 

that the whole brain may contain some critical information, we combined the Radiomics features of 

infarct lesions and whole brain to improve the prediction accuracy. First, the radiomics features of 

infarct lesions and whole brain were separately calculated using apparent diffusion coefficient (ADC), 

diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences of AIS 

patients with clear onset time. Then, the least absolute shrinkage and selection operator (Lasso) was 

used to select features. Four experimental groups were generated according to combination strategies: 

Features in infarct lesions (IL), features in whole brain (WB), direct combination of them (IW) and 

Lasso selection again after direct combination (IWS), which were used to evaluate the predictive 

performance. The results of ten-fold cross-validation showed that IWS achieved the best AUC of 0.904, 

which improved by 13.5% compared with IL (0.769), by 18.7% compared with WB (0.717) and 4.2% 

compared with IW (0.862). In conclusion, combining infarct lesions and whole brain features from 

multiple sequences can further improve the accuracy of AIS onset time. 
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1. Introduction 

Stroke is a disease with high incidence, disability rate, mortality rate and recurrence rate and it has 

become one of the leading causes of death and disability worldwide [1]. Acute ischemic stroke (AIS) is 

caused by obstruction of blood flow in cerebral arteries, leading to downstream cerebral tissue hypoxia 

and local brain tissue damage and necrosis [2]. The treatment of AIS requires prompt restoration of 

cerebral blood flow through intravenous thrombolysis or endovascular thrombectomy in the early 

stages of symptom onset, and the selection of treatment method and success rate are closely related to 

the onset time [3]. 

Recombinant tissue plasminogen activator (rt-PA) is currently the preferred medication for 

treating AIS [3,4], which has been proven to reduce the thrombotic burden and long-term disability in 

patients [5], and it has become a part of the standard treatment protocol in stroke management 

guidelines across the globe. However, thrombolytic therapy has a strict time usage guideline, which can 

help patients quickly open blood vessels and restore cerebral blood supply within the time window [6], 

thereby reversing ischemic and hypoxic tissue to normal tissue transformation rather than continuing 

deterioration. In contrast, when the onset time exceeds the time window, it is difficult to restore brain 

cell function even with thrombolytic therapy, which may cause reperfusion injury and increase the risk 

of cerebral hemorrhage [7]. Additionally, determining the exact onset time in patients is often 

complicated by various factors, including delayed hospital admission, wake-up stroke, etc. [8,9]. Some 

studies have shown that 25–30% of AIS patients are excluded from intravenous thrombolysis treatment 

due to the inability to determine the exact onset time [10,11]. However, the onset of these patients may 

fall within the time window. Therefore, finding a way to determine the onset time accurately is necessary. 

For patients with an unclear onset time, some studies suggest using diffusion-weighted 

imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch to determine the “tissue 

clock” for assessing eligibility for intravenous thrombolysis [12,13]. However, this method can 

sometimes be overly rigorous in determining the onset time, potentially excluding patients who could 

have benefited from thrombolytic therapy due to their imaging characteristics [14]. Additionally, the 

use of imaging for “tissue clock” determination may also be influenced by subjective physician 

judgment. With the development of radiomics and artificial intelligence, image features have been 

widely used in stroke diagnosis and prognosis [15]. Several studies have developed various ML models 

based on imaging features derived from stroke images, providing evidence of ML algorithms’ 

feasibility in determining the onset time and guiding rt-PA usage eligibility. Ho et al. [16] extracted lesion 

features from MR images, perfusion parameter maps and deep autoencoder feature maps, using ML 

models to classify the onset time. The best classifier achieved an area under the curve (AUC) of 0.765. 

Lee et al. [17] classified the onset time based on the radiomics features of the lesions from DWI and 

FLAIR sequences. The best classifier achieved an AUC of 0.851. Zhu et al. [18] segmented DWI and 

FLAIR’s ROI based on deep learning and generated features, which were further inputted into five 

classification models and obtained robust accuracy through voting. Zhang et al. [19] developed a deep 

learning model for classifying the onset time based on the lesion’s DWI and apparent diffusion 

coefficient (ADC) radiomics features, with an AUC of 0.754. As seen above, previous studies have 

focused on determining the onset time through quantitative analysis of information within the lesions, 
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often overlooking the information available from the whole brain. However, stroke occurrences can 

trigger responses throughout the whole brain. Therefore, it is necessary to investigate the relationship 

between whole brain radiomics features and stroke onset time. 

To address these issues, we compared the predictive performance of different models based on 

lesions radiomics features and whole brain radiomics features and proposed a feature fusion strategy 

for comprehensive analysis of infarct lesions and whole brain information to improve the accuracy of 

classifying the onset time. 

2. Materials and methods 

2.1. Materials 

We collected 537 AIS patients treated in the neurology department of the Shanghai Fourth 

People’s Hospital, affiliated with the Tongji University School of Medicine, China, from January 2013 

to September 2019. 

A total of 72 patients were included in this study after the screening, and the inclusion and 

exclusion criteria were as follows (Figure 1): (1) The MR examinations were conducted within 24 

hours of symptom onset; (2) Complete MR imaging sequences (ADC, DWI and FLAIR); (3) The 

actual treatment and National Institute of Health stroke scale (NIHSS) scores; (4) Occlusions of the 

middle cerebral artery (M1 segment); (5) Actual recorded stroke onset time. The onset time was 

classified into two classes based on the patients’ actual recorded time of onset: Positive (⩽4.5 h) and 

negative (> 4.5 h). 

 

Figure 1. Flowchart of patient inclusion and exclusion criteria. SWI: susceptibility 

weighted imaging; MRA: magnetic resonance angiography; mRS: modified rankin scale; 

MCA: middle cerebral artery. 
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All MR images were scanned on a 1.5-Tesla MR scanner (Siemens, Munich, Germany). The 

parameters of DWI: b = 1000 s/mm2; field of view, 230 × 230 mm2; matrix size, 192 × 192; slices, 

18; slice thickness, 5 mm; pixel spacing, 1.198 × 1.198 mm2; repetition time, 3600 ms; echo time, 

102 ms; bandwidth, 964 Hz/pixel; and EPI factor: 192. FLAIR: field of view, 201× 230 mm2; matrix 

size, 448 × 512; slices, 20; slice thickness, 5 mm; pixel spacing, 0.449 × 0.449 mm2; repetition time, 

4000 ms; echo time, 92 ms; bandwidth, 190 Hz/pixel. Table 1 shows the details of patient information. 

Table 1. Ischemic stroke patient cohort characteristics. 

 Patients (n = 72) 

Female 20 

Male 52 

Age (Mean ± Std) 70.1 ± 11.3 

Time since stroke (hour) 7.23 ± 9.90 

NIHSS on admission (Mean ± Std) 8.47 ± 6.57 

Classification label (cases) ⩽4.5 h (42); >4.5 h (30) 

2.2. Methods 

The methods in this study can be divided into five parts (seen in Figure 2): (1) Image Processing; 

(2) Infarct Lesions and Whole Brain Segmentation; (3) Feature Extraction; (4) Feature Selection and 

Combination Strategy; (5) Performance Evaluation. 

 

Figure 2. The whole process of methods: (a) Image processing; (b) Infarct lesions and 

whole brain segmentation; (c) Feature extraction; (d) Feature selection and combination 

strategy; (e) Performance evaluation. 

2.2.1. Image Processing 

The main focus of image processing is image registration to reduce the impact of positional deviation 
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between images on the experimentation and to prepare for the segmentation of infarct lesions and the 

whole brain. The original FLAIR sequences were registered at Montreal Neurological Institute (MNI) 

space through a 12-degree-of-freedom affine transformation using the neuroimaging software package 

FMRIB’s Linear Image Registration Tool (FLIRT) [20,21]. The original DWI sequences were first 

registered onto original FLAIR sequences and then registered onto MNI space to obtain registered 

images and corresponding transformation matrices. Then, original DWI sequences were registered 

onto MNI space according to conversion matrices. 

2.2.2. Infarct lesions and whole brain segmentation 

In this study, we employed the normalization threshold method proposed by Lee et al. [22] to 

automatically segment the infarct lesions. The method consists of two major components: Initial 

segmentation and false-positive removal. After skull stripping, the initial segmentation begins by 

constructing a percentile intensity curve for the ADC sequences. The x-axis represents percentiles, 

and the y-axis represents the intensity of the ADC sequences. Subsequently, tangents are drawn at 

this curve’s maximum and minimum derivative points. The intensity value at the intersection of these 

two tangents is considered the peak intensity of the ADC intensity histogram. Each voxel’s intensity 

in the ADC sequence is then divided by this peak intensity to obtain the adjusted ADC sequence. 

This adjusted ADC sequence is subjected to initial segmentation using a threshold of 0.835. The 

initial segmentation results are mapped onto DWI sequences in the second step. The average 

intensity (𝜇𝑔𝑙𝑜𝑏𝑎𝑙 ) and standard deviation (𝑆𝐷𝑔𝑙𝑜𝑏𝑎𝑙 ) of the DWI sequence within this region are 

calculated. Then, a fine segmentation threshold is computed using the formula 𝑇 = 𝜇𝑔𝑙𝑜𝑏𝑎𝑙 + 1.5 ∗

𝑆𝐷𝑔𝑙𝑜𝑏𝑎𝑙 . Regions with intensities lower than this threshold are defined as false positives and are 

removed to obtain the final infarct segmentation results. 

The whole brain mask was produced using the Brain Extraction Tool (BET) [23,24], which 

performed brain extraction operations on the registered FLAIR sequence, generated by the brain tissue 

mask and skull mask. Then, the brain tissue mask can be regarded as the whole brain mask in FLAIR, 

ADC and DWI sequences. 

2.2.3. Radiomics features extraction 

We extracted radiomics features from the registered DWI, ADC and FLAIR sequences of infarct 

lesions and whole brain. Including six original feature groups: First-order statistics (First_order), gray-

level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone 

matrix (GLSZM), gray-level dependency matrix (GLDM) and neighboring gray-tone difference matrix 

(NGTDM). Then, six filters were used to process the original feature groups, including log sigma with 

scale {1.0,2.0,3.0,4.0,5.0}, wavelet, square, square root, logarithm and exponential [25,26]. We also 

summarized the filtering results into the original feature groups to categorize the features. The calculated 

features were renamed by connecting their original name, sequence type and extraction region. The 

radiomics features extraction from the images was automatically performed using the PyRadiomics 

software package in Python 3.9 [28]. For each sequence, 1674 radiomics features were extracted for both 

infarct lesions and whole brain, respectively, including 324 first-order features, 432 GLCM features, 288 

GLRLM features, 288 GLSZM features, 90 NGTDM features and 252 GLDM features. 
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2.2.4. Radiomics features selection and combination strategy 

In this study, we combined the t-tests algorithm, least absolute shrinkage and selection operator 

(Lasso) to select the extracted features. This was done to explore the impact of different combinations of 

radiomic features to determine the onset time of AIS. Before feature selection, in order to eliminate the 

influence of the difference of dimensionality and value between features, and to speed up the calculation 

of feature dimension reduction, Equation (1) was used in this study to normalize the feature vectors. 

 𝐹𝑖
∗ = (𝐹𝑖 − 𝐹�̅�)/(𝐹𝑖𝑚𝑎𝑥 − 𝐹𝑖𝑚𝑖𝑛) (1) 

where 𝐹𝑖
∗ is the normalized result of the feature 𝐹𝑖, the variables 𝐹�̅�, 𝐹𝑖𝑚𝑎𝑥 and 𝐹𝑖𝑚𝑖𝑛 are the mean, 

maximum and minimum of 𝐹𝑖, respectively; and the i is the order of features.  

Then, the normalized features were subjected to a t-test algorithm, and the significant radiomics 

features with values of p < 0.05 remained. After that, the retained features were selected using the 

Lasso algorithm, and effective features related to the target variable remained. As an effective feature 

selection method for choosing target-variable-related features, Lasso has found applications in various 

domains [29]. We implemented Lasso feature selection using the LassoCV function from scikit-learn 

(LassoCV (alpha = alphas, cv = 10, max_iter = 100,000, normalize = False)) in Python 3.9. Here, 

alphas represent the regularization weight, and in our research, we employed a range of alpha values 

(alpha = np.logspace(−10, 1, 500, base=2)) to determine the features. To better compare the research 

outcomes, four experimental groups were established based on different feature combination strategies: 

IL, WB, IW and IWS. IL was infarct lesion features that were obtained by performing the above feature 

screening operation, WB was the whole brain features that were obtained by the same operation, IW 

was the direct combination of IL and WB features and IWS was the features result after another Lasso 

feature selection of IW features. 

2.2.5. Performance evaluation 

The obtained radiomic features were provided as input into ten different classification models, 

and we used ten-fold cross-validation to calculate the models’ parameters to evaluate the prediction 

model’s performance. In order to ensure an equal representation of positive and negative samples in 

both the training and test sets, we implemented the StratifiedKFold(n_splits = K) function, where K = 

10, indicating the division of the dataset into ten subsets. All classification models were implemented 

in Python 3.9, including nine machine learning models: Support vector machine (SVM) with 

“sklearn.svm.SVC(kernel = ‘rbf’, probability = True)”, multilayer perceptual neural network (NN) 

with “sklearn.neural_network. MLPClassifier(hidden_layer_sizes = (400, 100), alpha = 0.01, max_iter 

= 10,000)”, random forest (RF) with “sklearn.ensemble.RandomForestClassifier(n_estimators = 200)”, 

decision tree (DT) with “sklearn.tree.DecisionTreeClassifier()”, k-nearest neighbors (KNN) with 

“sklearn.neighbors. sklearn.neighbors()”, Adaboost classifier (Ada) with 

“sklearn.ensemble.AdaBoostClassifier()”, logistic regression (LR) with 

“sklearn.linear_model.logisticRegressionCV(max_iter = 100,000, solver = “liblinear”)”, GaussianNB 

(NB) with “sklearn.naive_bayes.GaussianNB()”, gradient boosting classifier (GBDT) with 

“sklearn.ensemble.GradientBoostingClassifier()” and one statistical classification model: linear 

discriminant analysis (DA) with “sklearn.discriminant_analysis.LinearDiscriminantAnalysis()”. 
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3. Results 

3.1. Selected radiomics features 

After feature selection and combination, 39 features were selected for the IL group, 42 for the 

WB group and 31 for the IWS group (seen in Figure 3(a)). Furthermore, we labeled 81 features selected 

separately from infarct lesions and the whole brain as F1 to F81. Upon observation, it was found that 

only two features, “logarithm_glcm_Correlation_adc” and “wavelet-LHH_firstorder_Mean_flair” 

appeared in both the IL and WB groups (seen in Figure 3(b)). 

 

Figure 3. The counts and distribution of features in four experimental groups: (a) Counts 

of the selected features in IL, WB, IW and IWS; (b) the distribution of the selected features, 

F1–F79 are the features series. 

3.2. Performance of four experimental groups 

In this study, we assessed the classification performance of all experimental groups (IL, WB, IW, 

IWS) to determine AIS onset time by analyzing the performance parameters of multiple classification 

models. These performance parameters included AUC, accuracy (acc), precision (pre), F1 score (F1) 

and recall. We primarily focused on presenting and explaining the AUC, with the remaining parameters 

displayed only for the recommended models. Table 2 shows the AUCs of the four experimental groups 

using features from ADC, DWI and FLAIR sequences across ten classification models. The range of 

AUCs for IL, WB, IW and IWS were as follows: 0.699 ± 0.089, 0.640 ± 0.045, 0.754 ± 0.080, 0.795 

± 0.096. The SVM and RF models achieved the best AUC of 0.769 in the IL group. WB group achieved 

the best AUC of 0.717 (NN), lower than IL’s. Moreover, for the same models, the AUCs of the WB 

group were generally lower than those of the IL group, with only NN and DA models showing some 

improvement. Regardless of whether considering the best AUC or the AUC for individual models, the 

IW group outperformed the IL and WB groups. The IW group’s best AUC was 0.862 (SVM), 
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significantly higher than the IL group (0.769) and the WB group (0.717). Only the AUC for RF, Ada 

and GBDT models showed slight decreases compared to the IL group. The IWS group performed the 

best among the four experimental groups, achieving the best AUC of 0.904 (NN) and the AUCs of each 

model were also generally the highest among all experimental groups, and compared to the IW group, 

only DT and Ada exhibited decreased AUCs. 

Table 2. The AUCs of four experimental groups with the ADC_DWI_FLAIR sequence combination. 

Classifier IL WB IW IWS 

SVM 0.769 0.644 0.862 0.887 

NN 0.707 0.717 0.837 0.904 

RF 0.769 0.632 0.746 0.787 

DT 0.631 0.618 0.652 0.632 

KNN 0.721 0.638 0.767 0.854 

Ada 0.729 0.570 0.721 0.704 

LR 0.757 0.692 0.829 0.867 

NB 0.752 0.654 0.804 0.871 

GBDT 0.677 0.580 0.636 0.688 

DA 0.478 0.657 0.682 0.757 

Mean ± Std 0.699 ± 0.089 0.640 ± 0.045 0.754 ± 0.080 0.795 ± 0.096 

The results in Table 2 indicate that the performance parameters of the IWS group’s models are 

generally superior to those of the IL, WB and IW groups. This feature combination is also proposed 

and recommended in this study. Therefore, we will continue to present the remaining parameters of 

the IWS group models with the ADC_DWI_FLAIR sequence combination, as shown in Table 3, to 

validate the accuracy and effectiveness of this method. Similar to the AUC values, the performance 

metrics for SVM and NN models surpass those of the other models, with the NN model performing 

the best. Specifically, the NN model achieves acc, pre, F1 and recall values of 0.916, 0.939, 0.904 

and 0.909, respectively. 

Table 3. The performance parameters of the IWS group with the ADC_DWI_FLAIR 

sequence combination. 

Classifier ACC PRE F1 RECALL 

SVM 0.904 0.931 0.887 0.894 

NN 0.916 0.939 0.904 0.909 

RF 0.803 0.813 0.787 0.789 

DT 0.646 0.622 0.632 0.619 

KNN 0.873 0.913 0.854 0.858 

Ada 0.718 0.725 0.704 0.699 

LR 0.873 0.888 0.867 0.867 

NB 0.873 0.901 0.871 0.864 

GBDT 0.707 0.695 0.688 0.675 

DA 0.761 0.802 0.757 0.744 

Mean ± Std 0.807±0.094 0.823±0.111 0.795±0.096 0.792±0.102 
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To better explore the relationships and patterns between the experimental groups, we also 

conducted controlled experiments using different combinations of sequences, including the use of a 

single sequence (“ADC”, “DWI”, “FLAIR”), as well as a combination of two sequences 

(“ADC_DWI”, “ADC_FLAIR”, “DWI_FLAIR”). Table 4 shows the AUCs of the two best models 

SVM and NN from previous results, and the best AUCs in each experimental group. In the 

“DWI_FLAIR” sequence combination, the best AUC of IWS, and the AUCs of SVM and NN, are 

significantly higher than those of the IL, WB and IW groups. Similarly, in the “ADC_FLAIR” and 

“ADC_DWI” sequence combinations, IWS exhibited the best AUC, with both SVM and NN 

outperforming the other three groups. In the “FLAIR” sequence combination, only the AUC (0.708) 

of NN in IWS is lower than IW (0.723), while the rest are the highest AUCs in the IWS group. In the 

“DWI” sequence combination, the IWS group had the highest AUC. In the “ADC” sequence 

combination, only the AUC (0.728) of NN in IWS is lower than IL (0.734), while the rest are the 

highest in the IWS experimental group. 

Table 4. The AUCs of four experimental groups with the additional sequence combinations. 

Sequence 

combination 
Classifier IL WB IW IWS 

DWI_FLAIR 

Best 0.817 0.730 0.808 0.871 

SVM 0.804 0.659 0.792 0.825 

NN 0.728 0.717 0.808 0.837 

Mean ± Std 0.742 ± 0.070 0.654 ± 0.063 0.748 ± 0.057 0.781 ± 0.078 

ADC_FLAIR 

Best 0.732 0.711 0.790 0.871 

SVM 0.723 0.711 0.771 0.854 

NN 0.665 0.636 0.748 0.871 

Mean ± Std 0.674 ± 0.061 0.615 ± 0.081 0.703 ± 0.094 0.781 ± 0.080 

ADC_DWI 

Best 0.807 0.717 0.850 0.896 

SVM 0.753 0.628 0.798 0.879 

NN 0.790 0.653 0.724 0.811 

Mean ± Std 0.738 ± 0.055 0.632 ± 0.060 0.746 ± 0.071 0.784 ± 0.091 

FLAIR 

Best 0.717 0.677 0.742 0.762 

SVM 0.683 0.561 0.700 0.712 

NN 0.634 0.614 0.723 0.708 

Mean ± Std 0.633 ± 0.066 0.578 ± 0.063 0.644 ± 0.080 0.684 ± 0.065 

DWI 

Best 0.812 0.703 0.827 0.836 

SVM 0.740 0.630 0.761 0.797 

NN 0.709 0.556 0.751 0.801 

Mean ± Std 0.741 ± 0.041 0.606 ± 0.067 0.748 ± 0.044 0.770 ± 0.042 

ADC 

Best 0.734 0.718 0.788 0.817 

SVM 0.667 0.707 0.758 0.817 

NN 0.734 0.590 0.726 0.728 

Mean ± Std 0.681 ± 0.044 0.612 ± 0.096 0.716 ± 0.062 0.745 ± 0.083 
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4. Discussion 

Accurately determining the onset time in AIS patients holds significant clinical importance for 

devising appropriate treatment protocols, predicting patient prognosis and facilitating recovery 

outcomes. Currently, there are two major methods for determining the onset time. One is through 

clinical interviews, but it can be limited by the patient’s condition, resulting in patients struggling to 

express their onset time clearly. The other method employs the DWI-FLAIR mismatch, but some 

studies have indicated that the accuracy of determining the onset time using image mismatch is only 

about 0.6 [12]. Therefore, some studies have employed patient data with precise onset time to develop 

ML models, and some researchers have introduced radiomics technology [16–19], demonstrating the 

feasibility of ML algorithms in determining stroke onset time. However, these studies often focus 

solely on the lesion’s local features, ignoring the whole brain’s global information, resulting in lower 

predictive accuracy of the models, failing to meet the clinical requirements. In this study, we intended 

to classify the onset time of AIS in patients by combining the radiomics features from both infarct 

lesions and whole brain of multi-sequenced MR images. It investigated the impact of different 

feature combinations on classification accuracy. As a result, the best AUC after combining features 

reached 0.904 (IWS), an improvement of 13.5% over the results using lesion features alone. This 

confirmed that combining infarct lesions and whole brain features could further enhance the accuracy 

of onset time classification. 

The main cause of ischemic stroke is local brain tissue damage caused by cerebral vascular 

occlusion [30], manifested as local lesions on imaging. However, blood circulation occurs throughout 

the body. When ischemic stroke occurs, cerebral blood flow (CBF) parameters in not only the lesions 

but also the surrounding regions of lesions will be affected [29–31]. Some articles [32–35] have also 

indicated that changes in blood flow transmission in local tissues could lead to blood flow transmission 

and blood oxygen metabolism in surrounding tissues and even the whole brain. This means that local 

blockage of blood vessels may affect the tissue characteristics of the whole brain to varying degrees [36]. 

Therefore, we have reason to believe that the imaging findings of stroke patients are not only related 

to the situation of the local lesions but also to information in other regions or the whole brain, and the 

whole brain features may help diagnose and treat ischemic stroke. In this study, the best AUC for the 

experimental group using lesion features alone was 0.817 (IL, “DWI_FLAIR”), consistent with previous 

research results using lesion features. When using whole brain features directly to determine stroke onset 

time, the best AUC was 0.730 (WB, “DWI_FLAIR”). Furthermore, according to Figure 3(b), it could be 

observed that whole brain features were independent of lesion features. Therefore, it can be concluded 

that whole-brain features play a significant role in determining the onset time, and their combination 

may enhance the accuracy of the predictive model. 

We combined lesion and whole brain features for a more comprehensive analysis. From the initial 

results in Table 2, it can be seen that whether combining the features directly or combining them and 

then selecting, the results are better than using the lesion features or whole brain features alone, with 

the AUCs of 0.862 (IW, “ADC_DWI_FLAIR”) and 0.904 (IWS, “ADC_DWI_FLAIR”), respectively, 

and establishing a linear relationship as “IWS > IW > IL > WB”, which not only demonstrates the 

potential role of whole brain features in determining the onset time of stroke but also reveals the 

possible relationship between infarct features and whole brain features. To validate the findings of this 

study, we conducted additional comparative experiments based on different combinations of sequences. 

The results showed that when using lesion features or whole brain features alone as models input, the 
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AUCs remained below 0.82. However, combining the infarct lesions and whole brain features could 

significantly improve the performance of the classifiers, and it can be proved that the relationship 

discovered in this study was not accidental and played an important role in accurately determining 

stroke onset time. In addition, regarding the combination of sequences, we found that the performance 

of classifiers using multiple sequence combinations was generally better than those using single 

sequences. For example, in the IWS group, the best AUC obtained from multiple sequence 

combinations is above 0.870. In contrast, the AUC of single sequence combinations, except for “DWI” 

which reaches 0.836, is significantly lower than that of multiple sequence combinations. Similarly, 

from the results, the IW, IL and WB groups also largely followed the above trend. Using features from 

multiple sequences can further enhance the accuracy of determining the onset time. We also observed that 

the “DWI” sequence combination seems distinct from the other two single-sequence combinations, “ADC” 

and “FLAIR”, as its best AUC was comparable to or even higher than that of multi-sequence combinations. 

For instance, as shown in Table 4, in the IW group, the “DWI” sequence combination achieved the best 

AUC of 0.827, surpassing the best AUCs of the “DWI_FLAIR” (0.808) and “ADC_FLAIR” (0.790), and 

in the IWS group, the AUC for the “DWI” sequence combination reached 0.836. Therefore, in specific 

scenarios such as emergencies, scanning only the DWI sequence may be considered to save time and 

expedite patient rescue, which can be highly beneficial to the patients. 

Radiomics is an image post-processing technology developed in recent years, which is widely used 

in the diagnosis, prognosis and prediction of diseases due to its excellent characterization ability [37–39]. 

Lee et al. [17] and Zhang et al. [19] have used radiomics features to determine the onset time of stroke, 

demonstrating the great clinical value of radiomics. The results of this study also demonstrated that 

using radiomics features as input to the classifier models had a good effect on determining the onset time 

of stroke. However, radiomics has technical limitations, including susceptibility toward image acquisition 

and reconstruction parameters and it is susceptible to class imbalances and image quality [40]. Therefore, 

the radiomics features extracted from different datasets may vary and directly impact the model 

performance, an inherent characteristic of radiomics [41]. This can be directly observed from Figure 

3b, which shows minimal overlap in features between the IL and WB groups, indicating significant 

differences in radiomic features extracted from the same dataset’s infarct lesion and whole brain. 

Moreover, MR images have their characteristics, and differences in scanning equipment, scanning 

methods and reconstruction algorithms can result in different output images, further affecting the 

extraction of features. 

The patients in this study were from a single medical center, MR images were all of the exact 

specifications, and the sample size of patients was relatively small, which may lead to a lack of 

generalizability of the extracted features. This is a limitation in this study. However, it is noteworthy 

that the number of positive and negative samples is similar, with 42 positive and 30 negative cases, 

reducing the possibility of inadequate training. Thus, we performed ten-fold cross-validation to 

evaluate the performance of the classifier models and mitigate the impact of sample size on the 

evaluation results. However, there is a trade-off during feature selection. For instance, we performed 

it on the entire dataset (not just the 9 partitions used each time) and repeated it for each fold in the 10-

fold cross-validation. This could lead to some process leakage (test set data used for feature extraction). 

However, considering that the impact may not be significant (using only 10% of the data), we plan to 

overlook and address this trade-off in future work. 

Additionally, due to the limitation of the dataset size, we classified only whether the stroke onset 

time was within 4.5 hours. In some clinical applications, the thrombolysis time window has been 
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extended to 6, 9 or even 24 hours. Therefore, in future work, we will expand the dataset and validate 

and improve our method with more extensive and varied datasets. To further refine the classification 

of patient onset time, for example, we divided patients within 24 hours into one-hour intervals, and 

explored the patterns and relationships. Furthermore, we will consider using CT scan images for such 

studies and explore the possibility of identifying standardized features as inputs for the classification 

model, enhancing their applicability across different devices and patient populations. 

5. Conclusions 

In conclusion, several studies have demonstrated the feasibility of using infarct lesion features to 

determine the onset time of AIS. Based on the previous studies, we combined the radiomics features 

of multi-sequence infarct lesions and whole brain from MR images to determine AIS onset time. From 

the results, it can be concluded that combining lesion features with whole brain features can further 

improve the predictive performance. The AUC increased by 13.5% (from 0.769 to 0.904) compared to 

using only lesion features. Also, the selection of sequences may affect the classifier’s performance, 

and using multiple sequences can provide more feature information to improve its classification ability. 

Thus, this study may provide decision guidance for clinicians in AIS treatment. 
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