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Abstract: An automated storage and retrieval system (AS/RS) is a key component of enterprise 
logistics. Its performance metrics include, e.g., order fulfillment time and energy consumption. A 
crane-based automated storage and retrieval system (CB-AS/RS) is used as the study subject in this 
paper to build a location allocation model with the goal of minimizing order fulfillment time and 
minimizing energy consumption. The two-objective problem is transformed into a single-objective 
problem by the weight method. A genetic algorithm (GA) is used to optimize and simulate the model 
using spatial mapping coding. A permutation-combination heuristics (PCH) is proposed that follows 
the coding method and cross-operation of the GA and conducts both arrange-operation and change-
operation. During the simulation, the influence of different storage utilization rates and different output 
and input instruction quantities in a batch of orders on the results is considered. Experimental results 
show that the results of the PCH algorithm are better than the GA and the optimization results are more 
stable. In this paper, we provide an optimization idea for the CB-AS/RS researchers and managers. 
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1. Introduction 

Since the invention of the automated storage and retrieval system (AS/RS) in the 1950s, it has 
been widely used worldwide. The AS/RS is a key component of enterprise supply chain logistics, and 
is advantageous considering its high space utilization, reduced labor costs, short retrieval times and 
better inventory control [1]. The usage of AS/RS has grown rapidly with the growth of e-commerce 
and the increasing demand for manufacturing. In order to provide AS/RS users with greater economic 
benefits, AS/RS manufacturers usually focus on continuously improving the throughput efficiency of 
the system. Furthermore, AS/RS users such as manufacturing enterprises and e-commerce companies 
care about the economic benefits it brings. As a consequence, more and more high-speed AS/RS have 
been developed and put into use, and some AS/RS stacker cranes can even reach an astonishing speed 
of 3.5m/s [2]. Higher AS/RS speeds often mean higher power motors, more energy consumption and 
more carbon emission when the system operates. Therefore, it is necessary to consider the energy 
consumption of the AS/RS in the design and operation process. According to the classification 
standards of storage and retrieval machines (S/R machines), common AS/RS can be roughly divided 
into shuttle-based storage and retrieval system (SBS/RS) and crane-based automated storage and 
retrieval system (CB-AS/RS). Among them, the SBS/RS mainstream handling machines are shuttles 
and elevators. Elevators can transport the goods to the corresponding layer, while single-tier shuttles 
can receive the goods at the corresponding level and move them to the designated storage location. 
There is also another type of multi-tier shuttles, which can move vertically between two or more aisles 
and complete the storage and retrieval of goods [3]. The CB-AS/RS is a traditional AS/RS, whose S/R 
machine is only a crane. This type of crane can move freely in the storage rack aisle and use the loaded 
fork to achieve the handling task of the goods on both sides of the storage rack. Usually, each aisle of 
the rack would be equipped with only one crane, but that single crane can operate with multiple items 
simultaneously to improve operational efficiency. 

As society develops, people’s awareness of protecting the environment and saving energy is 
increasing, and how to reduce AS/RS’s energy consumption during operation has become a hot spot 
for more and more researchers. Lerher et al. [2] have conducted research earlier in the energy 
consumption problem and presented a model for miniload AS/RS based on warehouse throughput, 
mechanical analysis of S/R machines and carbon dioxide emissions. They also studied the impact of 
different warehouse volumes and different speeds and accelerations of the S/R machines on warehouse 
performance. They thought it would be unwise to blindly increase the speed and acceleration of the 
S/R machine for some large storage shelves, whereas they considered it advisable to increase the 
number of the S/R machines. The performance metrics of the AS/RS are defined primarily by the unit-
time throughput, or the time consumed to complete a certain amount of delivery tasks. Therefore, while 
reducing energy consumption, it is necessary to ensure that the performance of the warehouse does not 
suffer too much losses. Borovinšek et al. [4] established an optimization objective model for the 
SBS/RS with the goal of minimizing average throughput time, energy consumption and total 
investment costs. They considered the number of channels, layers, columns, shuttle speeds and 
accelerations, as well as elevator speeds and accelerations in the optimization process, and used the 
NSGA2 algorithm to solve and optimize the model. They provided an optimization idea for the early 
stage of warehouse design. Liu et al. [5] studied the impact of speeds and accelerations on the energy 
consumption of elevators and shuttles of the SBS/RS in different configurations under determined 
throughput requirements. The results showed that the speeds and accelerations of vertical motions have 
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the most significant impact on energy consumption. Also, they concluded that there is a high 
correlation between throughput and energy consumption. They established a decision-making basis 
for energy consumption optimization for warehouse designers and SBS/RS managers. 

In the AS/RS, it is both the pain point as well as the focus for researchers to establish a 
mathematical model that fully conforms to reality. The SBS/RS carries relatively light loads and 
belongs to the miniload type. The shuttles used by the SBS/RS have lower power and are more energy-
saving than those of the CB-AS/RS. Thus, there is much more researches on the mathematical models 
of the SBS/RS than the CB-AS/RS. However, for a heavier category of items, companies are more 
inclined to use a CB-AS/RS. Therefore, we establish a location optimization model for the existing 
CB-AS/RS to minimize energy consumption and order fulfillment time. Calculations of the order 
completion time and crane energy consumption are done from different perspectives, which 
specifically speaking are specifical input and output instructions. The GA is used to solve the model 
by spatial mapping coding. A permutation-combination heuristics is proposed, which follows the 
coding method and cross-operation of the genetic algorithm and conducts both arrange-operation and 
change-operation. 

2. Literature review 

The AS/RS combines modern intelligent technology with traditional warehouse management, and 
upgrades the warehouse structure and management in an all-round way, which is the development 
direction of intelligent warehousing. From a structural point of view, the AS/RS is in general composed 
of aisles with storage racks (SR) on both sides, storage and retrieval machines (S/R machines), input 
and output (I/O) locations and pick locations [6]. 

With the increase in enterprise demand and the development of e-commerce trade, the AS/RS has 
achieved rapid development in recent years. Research mainly aims at increasing the performance of 
the AS/RS as well as increasing the efficiency of operation and reducing the costs of enterprises. The 
location allocation and storage policy are the hotspots in these attempts. Jiang et al. [7] proposed a 
scattered storage strategy considering the correlation between products. They also developed a mixed 
genetic algorithm and particle swarm algorithm to solve the storage model, The results proved that the 
hybrid algorithm can greatly improve the quality of model. Li et al. [8] used the product affinity 
heuristic algorithm of data mining to calculate the correlation among the items to solve the dynamic 
storage allocation problem. They proposed a greedy genetic algorithm to calculate the model. The 
results showed that the proposed model based on data mining improves the average picking distance 
by 7–104% compared with the traditional ABC classification model. Liu and Poh [9] proposed a 
scattered storage space allocation method suitable for Internet distribution warehouse operations in the 
field of e-commerce retail. The storage model was described as a mixed integer programming (MIP) 
model, and a heuristic algorithm including a feasibility check and two-stage optimal location allocation 
is developed for this model. Through the algorithm performance test and the application model 
efficiency test, it was proven that the proposed model and algorithm improve the picking efficiency. 
He et al. [10] studied three-rack strategies of an automated stereoscopic warehouse from the 
perspective of space utilization and proposed a real matrix genetic algorithm, including first-fitting 
and best-fitting location allocation. The experimental results showed that the adaptive shelf strategy 
and the best-fitting shared shelf strategy can better meet the needs of small inventory and high-
density warehouse operations. Yang et al. [11] established the optimization function from the 
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perspective of shelf stability and inbound and outbound efficiency of an automated stereoscopic 
warehouse. They used the genetic algorithms to prove that optimizing the cargo space and the 
running route of the stacker crane can improve the overall operation efficiency. Chen et al. [12] 
proposed several heuristic repositioning strategies inspired by traditional storage location allocation 
strategies for the warehousing process of e-commerce. They set up a dynamic scheme to relocate 
the storage position of non-empty pallets. They also proposed a migration strategy that 
approximated dynamic programming to improve the efficiency of retrieval operations based on the 
experiment results. In summary, most researchers use the heuristic algorithms to solve the location 
allocation problem. 

With the strengthening of people’s concept of green development, more and more researchers 
have begun to pay attention to the energy consumption of AS/RS. Meneghetti et al. [13] studied the 
combination of racks of different heights with the cranes of different specifications to optimize time 
and energy consumption simultaneously. An overall optimization model based on constraint 
programming and large neighborhood search was proposed, which combined the best storage 
allocation strategy and the optimal ranking method for joint application for the first time. The results 
show that the medium-height shelf-shape rack can achieve the best performance in energy efficiency. 
Lower shelf-shape racks perform better in time performance. Ekren [14] took the number of layers, 
columns, maximum speed and acceleration that can be achieved by the elevators and shuttles as design 
variables, and studies their impacts on the average cycle time, energy consumption and energy 
regeneration of the SBS/RS’s transactions. She also considered the influence of interactions between 
design variables on the results. Through the simulation with ARENA, the level of influence of each 
design variable on warehouse performance was obtained. Hsu et al. [15] proposed a framework for 
the close connection between simulation and optimization of double-deep AS/RS. Taking the 
minimum energy consumption as the optimization goal, they used a variety of common heuristic 
algorithms to solve the problem. Moreover, they proposed an improved whale optimization 
algorithm (IWOA) with adaptive motion and mutation characteristics, and proved that the IWOA 
combined with dynamic programming can better solve the crane scheduling problem in the double-
deep AS/RS. 

Lerher et al. [2] did not calculate energy consumption with actual input and output orders, but 
obtained the average power by taking the square root of the motor power at acceleration, deceleration 
and constant speed, through the process of which the theoretical energy consumption was calculated. 
Borovinšek et al. [4] also obtained the average power by taking the square root. He achieved the 
theoretical solution based on probability theory and reached at the expected energy consumption of 
the running time. Liu et al. [5] used the average time of acceleration, deceleration and constant speed 
to obtain energy consumption. It is hard to judge which calculation method is better using different 
models. In this paper, we calculate energy consumption based on specific orders and obtain energy 
consumption for each input and output instruction. In order to get closer to the real warehouse operating 
state, the outbound and inbound instructions of specific orders are randomly generated by computer 
simulation. Furthermore, to solve the problem that there are few research papers on the CB-AS/RS’s 
energy consumption, we establish a location allocation model based on the CB-AS/RS to minimize 
order fulfillment time and energy consumption. The GA is used to solve the model by spatial mapping 
coding, and a PCH algorithm is proposed to solve the model. The influence of different storage 
utilization rates and different input and output instruction quantities in a batch of orders on the results 
is also considered in the simulation process. 
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3. Model for designing crane-based storage and retrieval systems 

The following assumptions are proposed to develop an order fulfillment time and energy 
consumption model for the CB-AS/RS. 

1) Ignore the time consumed when the forks load and unload the items 
2) Ignore the energy consumption of the forks when loading and unloading the items  
3) Ignore the resistance of rotating masses when the crane accelerates and decelerates  
4) Ignore the circuit heating, noise and other consumption of the crane  
For assumptions 1), 2) and 4), most researches [2,4,5] ignore circuit heating, noise and the energy 

and time consumption of forks. Their explanation is that the time and energy consumption consumed 
to load and unload the same order can be considered roughly the same, and it is also irreducible. The 
consumption of heat and noise is theoretically difficult to calculate, as it only accounts for a small 
portion of the overall consumption of the crane. Therefore, in order to simplify the calculation, this 
article also ignores the above consumption. 

For assumption 3), Ekren et al. [16] considered resistance of rotating masses with variable speed 
in the SBS/RS model. They introduced factor (fr = 1.15) into the resistance calculation process and 
multiply the factor by the overall mass. Finally, they achieved results with high accuracy. However, 
the CB-AS/RS proposed in this article is different from the SBS/RS. The acceleration and deceleration 
of the crane model studied in this article are much lower than that of the SBS/RS. Second, if this article 
directly refers to their method, which is multiplying the overall mass by a factor during calculation. 
This may yield results that may not be applicable to this model. Finally, and most importantly, it is 
difficult to obtain the precise mass of rotating components without dismantling the crane. Thus, in 
summary, we will not consider the resistance of rotating masses in the calculation process and adopt 
random storage strategy. The decision is to highlight the differences in model calculations between the 
GA and the PCH. 

To facilitate analysis, the symbols are introduced to represent parameters (See Appendix). The 
parameters consist of three parts: basic parameters, auxiliary variables and decision variables. 

3.1. Order fulfillment time model 

In this paper, the CB-AS/RS warehouse racks are designated to be single-deep racks, and the 
crane can handle one location unit per operation. It is necessary to take into account whether the crane 
is operating in single command (SC) or double command (DC) mode. Take SC mode as an example: 
The crane operation can be decomposed into vertical movement and horizontal movement, and they 
do not interfere with each other. The crane, from the starting point to the target point, has undergone 
acceleration and deceleration from standstill, and if the maximum running speed is reached in the 
process, there would be a constant speed process in the middle. Therefore, the movement in both 
directions needs to consider whether the maximum speed can be reached. The running time of the 
crane between any point i in the racks and point O is calculated as follows, where point O is placed in 
the I/O position. Point i and j are the locations in the racks and (ix, iy) represents the ix column and iy 
tier in the racks. 
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Figure 1. Speed variation of crane. 
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The same process can be applied to calculate the vertical movement time.  
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3.1.1. Order fulfillment time calculation in SC mode 

In SC mode, the crane first loads the item at the I/O location, then moves to the input position to 
unload the item. Finally, it returns to the I/O location. The running route is shown in the blue line in 
Figure 2, so the SC cycle time can be obtained. 
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  2SC H oi Vojt max t ,t   (5) 
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Storage 
Racks

 

Figure 2. Diagram of single-deep AS/RS. 

3.1.2. Order fulfillment time calculation in DC mode 

The DC mode operation route is shown in the red line in Figure 2. In this mode, the crane first 
loads the item at the I/O location and moves to the input location (ix,iy) to unload the items. Then, the 
crane runs to the (jx,jy) position to load the output item, and finally returns to the I/O point to unload 
the item. Thus, the DC cycle time can be obtained as follows. 

      DC H oi Voi H ij Vij Hjo Vjot max t ,t max t ,t max t ,t     (6) 

The running time required for one crane with a batch of orders can be finally obtained as follows. 
a represents the number of the aisles, whose amount is equal to those of the cranes. 

 
1 1

SC DCn n

a SC DC
sc dc

T t t
 

     (7) 

The order fulfillment time depends on the longest running time of all the stacker cranes involved 
in the order. When all cranes work together: 

    1 2 3F aT max T ,a , , ,...,A    (8) 

3.2. Energy consumption model 

The calculation of the energy consumption caused by crane operations can be divided into 
horizontal energy consumption and vertical energy consumption. Taking the SC as an example, the 
traction force produced in the process of accelerating, decelerating and constant speed movement in 
horizontal direction can be obtained through mechanical analysis: FHa, FHd, FHc. The power is 
calculated respectively: PHa, PHd, PHc. 

 Ha x rF ma mgk    (9) 
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  Ha Ha x x r xp F v a gk mv     (10) 

 Hd x rF ma mgk    (11) 

  Hd Hd x x r xp F v a gk mv     (12) 

 H c rF m g k   (13) 

 Hc Hc xmax r xmaxp F v mgk v    (14) 

The same process can be applied to the analysis of the traction force produced in the vertical direction. 

 Va yF mg ma    (15) 

  Va Va y y yp F v g a mv     (16) 

 Vd yF mg ma    (17) 

  Vd Vd y y yp F v g a mv     (18) 

 VcF mg   (19) 

 Vc Vc y y maxp F v mgv    (20) 

when the crane is fully loaded, m = mc + ms; when the crane is empty loaded, m = mc. mc represents the 
overall mass of the crane, mv represents the mass of the lifting device. According to the schematic 
diagram of the stacker crane in Figure 3, it is clear that mc includes upper crossbeam, lower crossbeam, 
left column, right column, carriage platform, forks, vertical travel motor, horizontal travel motor and 
electrical control cabinet, while mv includes carriage platform and forks. 

Left column

Carriage 
platform

Lower crossbeam

Upper 
crossbeam

Forks

Right column

Horizontal 
travel motor

Vertical 
travel motor

Electrical 
control cabinet

 

Figure 3. Schematic diagram of crane structure. 

3.2.1. Calculation of SC cycle energy consumption 

For one SC cycle, the crane if fully loaded in the former half of the whole process and empty 
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loaded in the other way. The energy consumption can be calculated according to the formula W = Fvt. 

          HFoi x r c s x Haoi x r c s x Hdoi c s r xmax HcoiEC a gk m m v t a gk m m v t m m gk v t          (21) 

        VFoi y c s y Vaoi y c s x Vdoi c s ymax VcoiEC g a m m v t g a m m v t m m gv t          (22) 

    HEoi x r c x Haoi x r c x Hdoi c r max HcoiEC a gk m v t a gk m v t m gk v t       (23) 

    VEoi y c y Vaoi y c x Vdoi c ymax VcoiEC g a m v t g a m v t m gv t       (24) 

 
 HFoi VFoi HEoi VEoi

SC

EC EC EC EC
EC

e

  
   (25) 

The product of all vt in the above formula is the distance. It should be noted that the velocity is 
non-constant during acceleration and deceleration. The e is the energy conversion efficiency. 

If 
2

oi x
x
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DH o i *Ws

a
   , then vxtHaoi and vxtHdoi are the horizontal distances of acceleration 

and deceleration, and 1

2x Hdoi x Hdoi xv t v t o i Ws   . 

  HFoi x c s xE C a m m o i Ws     (26) 

If 
2

oi x
x

Vxmax
DH o i *Ws
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   , then
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v t o i *Ws
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   . 
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 
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 
  (27) 

If 
2

oi y
y

Vy max
DV o i * He

a
   , then vytVaoi and vytVdoi are the vertical distances of acceleration and 

deceleration, and 1

2y Vdoi y Vdoi yv t v t o i * He    

  VFoi c s yE C g m m o i * He     (28) 

If 
2

oi y
y

Vy max
DV o i * He

a
   , then

2

ymax Vcoi y
y

Vy max
v t o i * He

a
    

    
2 2

VFoi c s y c s
y y

Vy max Vy max
E C g m m o i * He m m g

a a

 
       

 
  (29) 

The ECHEoi and ECVEoi can be calculated in the same way. Thus, no further explanation is required. 

3.2.2. Calculation of the DC cycle energy consumption 

In DC mode, the crane first loads the item at the I/O location and moves to the input location (ix,iy) 
to unload the item. Then, the crane runs to the (jx,jy) position to load the output item, and finally returns 
to the I/O point to unload the item. After obtaining the operation status of each step, the Eq (30) can 
be reached. Because each step of the calculation is the same as that of the SC mode, no further 
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elaborated explanation would be presented. 

  HFoi VFoi HEij VEij HFjo VFjo

DC

EC EC EC EC EC EC
EC

e

    
  (30) 

After calculating the energy consumption of each crane, the energy consumption of the crane with 
one batch of orders is finally summed up as shown in Eqs (31) and (32). 

 
1 1

SC DCn n

a SC SC
sc dc

EC E C E C
 

     (31) 

 
1

A

a
a

EC EC


    (32) 

3.3. Objective function 

The model proposed in this paper considers both order fulfillment time and energy consumption 
of the cranes. By introducing weight coefficients, the multi-objective optimization problem is 
transformed into a single-objective problem. The specific steps are: 

a. Eliminate the dimensions and align the order of magnitude of the two optimization goals. 
b. Define the importance of the goals by weight coefficient. 
The objective function is as follows: min(EC) and min(TF) are the minimum values obtained by 

the genetic algorithm after multiple calculation. The former takes energy consumption as the single-
objective function, and the latter takes order fulfillment time as the single-objective function. 

    
1 212

1 20

1

1 0 1
F

F

EC T
Objective f n

w
unctio

min EC

w

mi

w

n T

w

w , w


    

 
        (33) 

4. Solution procedure 

The model proposed in this paper includes input and output operations. For output, the core issue 
lies in the arrangement and combination of output and input instructions. For input, the core issue lies 
in the location allocation, which has been proven to be an NP-Hard problem. Therefore, the popular 
genetic algorithm is used to solve the model proposed in this paper. Furthermore, based on the basic 
logic of the heuristic algorithm, a permutation and combination heuristic algorithm is proposed to solve 
this model. 

4.1. Procedure of the genetic algorithm 

The genetic algorithm is a heuristic optimization algorithm formed by imitating the evolution 
process of organisms in nature. From a macroscopic point of view, evolution ensures that the living 
organisms can adapt to their living environment. Individuals with strong survival abilities in the 
process of population reproduction will have a greater probability of being retained by the environment. 
Microscopically speaking, evolution means a process in which biological chromosomes continue to 
copy, cross and mutate to produce new individuals, whereas new individuals are filtered by the 
environment with the fittest ones surviving. In the genetic algorithm, the digital information of each 
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individual of the population is retained through the initial population definition and coding method. 
Each iteration of the algorithm corresponds to a filtering of the individual by the environment. The digital 
information is copied, crossed and mutated again and again to increase the fitness function value, 
corresponding to the improvement of the adaptability of the biological group to the environment. The basic 
process of the genetic algorithm includes encoding, population initialization, copy operation, crossover 
operation and mutation operation, as shown in Figure 4. These aspects will be further described below. 

Begin

Initialize the 
population

Spatial mapping 
encode

Populations

Copy operations

Crossover operations

Mutate operations

If iterations > 
setpoint

New populations

End

Yes
No

 

Figure 4. Genetic algorithm flowchart. 

4.1.1. Spatial mapping encoding 

In this article, we use spatial mapping coding to encode the location of the warehouse in real 
numbers. Each actual storage location (x, y, z) of the warehouse has only one rack number N that 
corresponds to it. This method can transform the three-dimensional location coordinate information 
into one-dimensional information and at the same time reduce the length of a feasible solution. Taking 
A, M, C as an example, because in each aisle a crane can handle the items on two rows of the racks, 
the warehouse rack information is column C, row 2*A, tier M, (x, y, z) is represented as the x column, 
y row and z tier in the rack, and the specific spatial mapping rule is: 

    1 2 1N x C y AC z      (34) 

Digital information should not only exhibit the input instructions but also the output instructions. 
The one-dimensional information of only one bit cannot fully represent the input and output operation 
instructions. Therefore, an additional identifier bit is introduced to represent the distinction between 
input instructions and output instructions. For example, (identifier, N) is an operation instruction. The 
identifier belongs to 0 or 1, where 1 represents an input instruction and 0 represents an output 
instruction. (1,1120) represents that the next input item will be stored on the rack number 1120, and 
(0,1886) means that the item will be taken out of the rack number 1886. For one batch of orders, the 
known output instructions and random input instructions constitute a feasible solution. In the feasible 
solution, after being decoded, two instructions on the same channel (instructions tracing back to the 
same crane) can form a DC cycle instruction. The former would be an input instruction and the latter 
an output instruction. 
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4.1.2. Initialize the population 

The input and output instructions of a batch of orders are randomly arranged to form an individual, 
which can also be called a feasible solution. Multiple individuals form a population. Usually, a feasible 
solution is not the state with the largest number of DC instructions. It is necessary to collect the 
instructions belonging to the same stacker in the feasible solution, form as many DC instructions as 
possible according to the order of first input and then output, and combine them into sub-feasible 
solutions in crane units. To a certain extent, the efficiency of the crane operation depends on the number 
of DC instructions, so forming as many DC instructions as possible can improve the efficiency of the 
cranes per time unit. The sub-feasible solutions are combined into a complete feasible solution. This 
is the process of initializing the population. The decode process is as follows: 

 
2

N
z ceil

AC
   
 

  (35) 

 
  2 1N z AC

y ceil
C

  
 
 
 

  (36) 

    2 1 1x N z AC y C       (37)  

In Eqs (35) and (36), the function ceil is the round toward positive infinity 

4.1.3. Copy operation: tournament selection method 

The basic idea of the tournament selection method is to randomly select a determined number of 
individuals (feasible solutions) from the parent population, and put them into the fitness function for 
calculation. Then, the results are compared and individuals with good performance are selected. The 
operation is repeated until the number of selected individuals reaches the specified number, and these 
are sent to the next operation. 

4.1.4. Crossover operation: single-point self-crossover 

A complete instruction consists of two bits. If the cross-breakpoint is in the middle of an instruction, 
the crossover process will produce a bad solution. Thus, only two consecutive gene fragments are 
allowed to cross during the crossover process. Considering that the crossing of two random 
chromosomes (solutions) in the population will cause duplicate location coordinates, this paper would 
splits the solution into two sub-solutions for crossing. Taking a solution containing twelve instructions 
as an example, the solution is divided into the sub-solution A and the sub-solution B of equal length. 
Here, the solution contains an even number of instructions. If there is an odd number of the solutions, 
then the sub-solution A would be rendered one more instruction than the sub-solution B. It is necessary 
to ensure that any instruction remains complete without being split. Then, perform the single point 
crossing. The specific process is shown in Figure 5. The rack number in the sub-solution of the crane 
is calculated while A = 8, M = 15 and C = 36. The instructions of different colors in the figure represent 
the instructions belonging to the same crane. Taking three cranes as an example, each crane only 
contains four instructions, whose rack numbers are within the condition range.  



128 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 116–143. 

1,6955 0,1204 1,6404 0,2947 1,8138 0,1804 1,7629 0,5262 1,6496 0,1881 1,6484 0,1928
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break point

Sub-solution of crane1

1,6955 0,1204 1,6404 0,2947 1,8138 0,18041,7629 0,52621,6496 0,1881 1,6484 0,1928
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divide into two parts

combine into a whole solution

Sub-solution of crane2 Sub-solution of crane3

Sub-solution A

Sub-solution B

Sub-solution A

Sub-solution B

 

Figure 5. Crossover process. 

Under real working conditions, the number of instructions that a crane needs to process in an order 
will be much more than four, and the output instructions and input instructions are not necessarily 
equal. The simplification made here is to better explain the rules of the algorithm. Only if the sub-
solutions A and B come from the same solution, it can be ensured that the same location genes do not 
appear during the crossover process. 

4.1.5. Mutation operation 

The crossover operation restricts the point of the cross and packs the valid gene fragment. This 
operation does not create new genes in the crossover process, making it easier for the algorithm to 
reach the local optimum. Therefore, the mutation operation can continue to escape the touch of local 
optimum by appropriately increasing the mutation probability. The mutation process is valid only for 
the input instructions, while the output instructions are determined by the demand of the order. The rack 
numbers of the items in the output order are determined by the locations stored in the input process. Except 
for collating inventory, warehouse transfers, etc., the stored items cannot be moved by default. The basic 
idea of the mutation process is to change the rack numbers in the input instructions. It needs to be explained 
that the changed rack numbers cannot be used, including those that have already been put into use or been 
stored in the input instructions prior to the designated input instructions in the process. 

Practically, if the number of remaining racks is relatively large, the efficiency of randomly exchanging 
the remaining rack numbers will be comparatively low. Even worse, it would be difficult to find a rack 
number with better performance. Therefore, in the mutation process, the algorithm randomly seeks for a 
new rack number nearby the initial one to see whether it shows a better performance. After the exchange 
process, if the new rack number is found to be once used before this entire order, then this process would 
be judged as invalid. If the new rack number is found to be once used in the input instruction, then the rack 
number with a better performance is preserved regardless of the initial sequences. The previous rack 
number is replaced if its performance is inferior, or retained if it is superior. 

4.2. Procedure of permutation-combination heuristics 

The genetic algorithm is inevitably subject to slow convergence speed and would easily fall into 
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the local optimum. Therefore, we propose a permutation-combination heuristic (PCH) based on 
genetic algorithms while at the same time similar to most heuristic algorithms. The basic processes of 
PCH are: encoding, initialization of feasible solution, arrange operation, offset operation, cross 
operation and change operation, as shown in Figure 6. Encoding and crossover operation are the same 
as those of the genetic algorithm described above. 

Begin

Arrange operation

Spatial mapping encode

Solutions

Offset operation

Crossover operations

Change operations

If iterations > 
setpoint

New solutions

End

Yes

Arrange  solutions

No

 

Figure 6. Permutation-combination heuristics flowchart. 

4.2.1. Arrange operation 

This operation is basically the same as the process of initializing a feasible solution in the GA as 
mentioned above, but it is not a random combination. First, the instructions belonging to the same 
crane in the solution are collected. Second, the instructions are taken out one by one according to the 
serial number of the crane and combined into a feasible solution, until all instructions are taken, as 
shown in Part I of Figure 7. 

1,6955 0,1204 1,6404 0,2947 1,8138 0,1804 1,7629 0,5262 1,6496 0,1881 1,6484 0,1928

1,6955 1,8138 1,6496 0,1204 0,1804 0,1881 1,6404 1,7629 1,6484 0,2947 0,5262 0,1928

1,6955 1,8138 1,6496 1,6404 1,7629 1,6484

offset

1,6955 1,81381,6496 1,6404 1,7629 1,6484

offset

0,1204 0,1804 0,1881 0,2947 0,5262 0,19281,6496 1,6404 1,7629 1,6955 1,81381,6484

I

II

 

Figure 7. Arrange and offset process. 

4.2.2. Offset operation 

The purpose of the offset operation is to search for the best combination of output instructions and 
input instructions. The specific operation includes fixing the output instructions, collecting input 
instructions orderly, randomly generating the offset bit (the italic offset represents the number of digits), 
letting the input instructions offset to the left, then filling in the offset input instructions on the left to 
the right position in turn and finally filling the input instructions back in the original positions after the 
offset process is completed. As shown in Part II of Figure 7, the offset is 2 bits. The restriction of the 
offset is: 0 < offset < = NS, where NS represents the number of input instructions in a batch of orders. 
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4.2.3. Change operation 

The mutation operator here is also valid only for input instructions. The operation is divided into 
two parts: The first part is the exchange of instructions between the cranes; the second part is the 
change of instructions belonging to the same crane. 

The specific process of the first part includes first counting the number of instructions processed by 
each crane in this batch of orders, and randomly selecting an input instruction from the crane with the 
largest number of instructions and changing this input instruction into a new instruction that belongs to the 
crane with the smallest number of instructions. This is to balance the intensity of work between cranes. 

From the modeling point of view, it can be obtained that for multiple items of determined mass, 
the larger the mass stored in the lower tiers and the smaller the mass stored in the higher tiers, the less 
energy the crane would consume. The energy demand is also lower. The closer the storage location is 
to the I/O location, the shorter the vertical and horizontal movement distance of the crane and the 
shorter the order completion time. 

Based on the above analysis, the second part of the process is obtained. From a three-dimensional 
perspective, the second part of the process can be concluded to be: Moving the input storage location 
downward while moving back and forth on that row of the rack to reach the optimum. From the 
perspective of digital information, moving downward means rack number(N) minus 2AC, and moving 
forward or backward means rack number(N) adding 1 or subtract 1. When the storage location is on 
the first tier (z = 1), the rack number cannot subtract 2AC; when the storage location is at the head of 
the column (x = 1) or the end of the column (x = C), the rack number cannot minus 1 or add 1. After 
the change, it is necessary to verify that the changed rack number whether has been used. If it has been 
used by the stored items, this change would be judged as invalid. If the new rack number is found to 
be once used in the input instruction, then the rack number with a better performance would be 
preserved. The previous rack number would be replaced if its performance is inferior, or retained if it 
is superior. The specific process is shown in Figure 8. 

Count the number of 
instructions per crane

Select input instruction Randomly:
(1,N1) subordinates amax

Change N1 into N2:
(1,N2) subordinates amin

For per input instruction:(1,N)

N=N-2AC

Get the crane number with the maximal/minimal 
number of instructions: amax amin

Decode N to 
get z, if z=1 

No

N=N

Yes

Decode N to 
get x 

Change N into 
N+1or N 

with equal 
probability

x=1x=C 1<x<C

Change N into 
N-1or N 

with equal 
probability

Change N into 
N-1or N+1or N 

with equal 
probability

Whether N has 
been used

N will be used in 
the same order already
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after exchange

No

Get new N
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Figure 8. Flowchart of change operation. 
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5. Numerical study 

In this section, numerical simulation experiments are carried out using MATLAB. The basic 
parameters of the racks are: A = 8, M = 15, C = 36, WS = 2m, He = 1m. The basic parameters come 
from a reducer assembly warehouse in China. The basic parameters of the cranes are: Vxmax = 2m/s, 
ax = 0.3m2/s, Vymax = 0.5m/s, ay = 0.3 m2/s, mc = 3400kg, mv = 600kg, provided by crane manufacturers. 
The energy conversion efficiency is e = 0.8, the gravitational acceleration is g = 9.8N/kg and the 
storage utilization rate is 25%. The mass ms of the items are generated by the algorithm. The range of 
the mass is between 800 and 1,100kg conforming a uniform distribution. Considering the uncertainty 
of the number of input instructions and output instructions in a batch of orders, the experiment adopts 
three matches of different NS and NR, specifically Group A: NS = 50, NR = 100; Group B: NS = 100, NR 
= 100; and Group C: NS = 100, NR = 50. 

Finally, considering the unstableness of the results solved by the heuristic algorithm, the genetic 
algorithm and the PCH algorithm perform repetitive experiments for ten times. The mass of the input 
and output items and the location of the output items remain constant in the same group of repetitive 
experiments. Generally speaking, the settings of parameters in the heuristic algorithm have a great 
impact on its performance. Therefore, after literature review [17,18], multiple tests and discussions 
with relevant researchers, we present the settings of the parameters as follows. 

For both the GA and the PCH, the population size is 100, the number of iterations is 100 and the 
crossover probability is 0.8. For the GA, the mutation probability is 0.3. The experiment results are 
shown in Table 1. TF is measured in seconds (S) and EC is measured in kilowatt-hours (kWh). In this 
table, the standard values of EC and TF are the minimum values that are solved by the genetic algorithm 
ten times. The EC uses energy consumption as the single-objective function, and the TF uses order 
fulfillment time as the single-objective function. The TF is rounded to one decimal place and the EC is 
rounded to two decimal places. For Diff, it is displayed as a percentage and rounded to three decimal 
places. These experiments were performed on a computer with Intel Core i5-12400F (64 bits and 
Performance-core Base Frequency 2.5 GHz) and 8*2 GB DRAMs.  

Table 1. Experimental results solved by the GA at 25% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

1 968.2 3.606% 4.74 4.405% 1047.6 5.893% 6.40 2.073% 813.0 6.288% 5.14 3.213% 

2 955.5 2.247% 4.61 1.542% 1076.4 8.804% 6.60 5.263% 817.7 6.903% 5.17 3.815% 

3 944.2 1.038% 4.57 0.661% 1016.1 2.709% 6.46 3.030% 810.1 5.909% 5.17 3.815% 

4 944.7 1.091% 4.70 3.524% 1079.8 9.148% 6.58 4.944% 778.8 1.817% 5.15 3.414% 

5 950.9 1.755% 4.67 2.863% 1044.8 5.610% 6.50 3.668% 835.0 9.165% 5.16 3.614% 

6 942.5 0.856% 4.60 1.322% 1010.6 2.153% 6.51 3.828% 854.5 11.714% 5.20 4.418% 

7 947.9 1.434% 4.64 2.203% 1021.1 3.214% 6.61 5.423% 806.7 5.465% 5.11 2.610% 

8 945.4 1.166% 4.63 1.982% 1027.2 3.831% 6.47 3.190% 785.4 2.680% 5.11 2.610% 

9 963.7 3.125% 4.58 0.881% 1012.5 2.345% 6.44 2.711% 790.4 3.334% 5.15 3.414% 

10 948.3 1.477% 4.71 3.744% 1038.5 4.973% 6.39 1.914% 803.8 5.086% 5.19 4.217% 

Standard  934.5 0.000% 4.54 0.000% 989.3 0.000% 6.27 0.000% 764.9 0.000% 4.98 0.000% 

Average 951.1 1.780% 4.65 2.313% 1037.5 4.868% 6.50 3.604% 809.5 5.836% 5.16 3.514% 
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Tables 1 and 2 are the experiment results of the GA and the PCH at 25% storage utilization rate 
of groups A, B and C, respectively. The fonts for the highest and lowest values of each group in the 
experiments in the table have been set in bold. The Diff is the percentage difference between each 
result and the standard value. The smaller the Diff, the better the results. According to the data in the 
table, the Diff of the order fulfillment time (TF) obtained by the PCH of groups A, B and C is lower 
than that obtained by the GA, and the Diff value of the energy consumption (EC) obtained by the PCH 
is also lower than the result obtained by the GA.  

Table 2. Experimental results solved by PCH at 25% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

1 937.5 0.321% 4.45 −1.982% 980.1 −0.930% 6.18 −1.435% 714.6 −6.576% 4.92 −1.205% 

2 937.4 0.310% 4.45 −1.982% 976.3 −1.314% 6.27 0.000% 710.1 −7.164% 4.97 −0.201% 

3 937.5 0.321% 4.45 −1.982% 979.8 −0.960% 6.20 −1.116% 704.7 −7.870% 4.82 −3.213% 

4 935.0 0.054% 4.45 −1.982% 974.8 −1.466% 6.15 −1.914% 681.2 −10.943% 4.84 −2.811% 

5 935.0 0.054% 4.48 −1.322% 975.3 −1.415% 6.23 −0.638% 714.5 −6.589% 4.93 −1.004% 

6 937.5 0.321% 4.44 −2.203% 982.4 −0.697% 6.15 −1.914% 702.7 −8.132% 4.87 −2.209% 

7 937.5 0.321% 4.46 −1.762% 979.5 −0.991% 6.21 −0.957% 702.3 −8.184% 4.80 −3.614% 

8 937.2 0.289% 4.45 −1.982% 971.9 −1.759% 6.21 −0.957% 729.1 −4.680% 4.91 −1.406% 

9 937.4 0.310% 4.48 −1.322% 978.9 −1.051% 6.21 −0.957% 707.4 −7.517% 4.87 −2.209% 

10 937.5 0.321% 4.45 −1.982% 977.9 −1.152% 6.21 −0.957% 688.4 −10.001% 4.84 −2.811% 

Standard 934.5 0.000% 4.54 0.000% 989.3 0.000% 6.27 0.000% 764.9 0.000% 4.98 0.000% 

Average 937.0 0.262% 4.46 −1.850% 977.7 −1.174% 6.20 −1.116% 705.5 −7.766% 4.88 −2.068% 

It is observed that the order fulfillment time and the energy consumption obtained by the GA fluctuate 
greatly, while the PCH results are more stable. In order to visualize the difference in results, Figures 9 and 
10 show the box-whisker plots of TF and EC based on the data in Tables 1 and 2, where the light-blue box 
represents the PCH and the light- brown box represents the GA. Each box contains 50% of the data results 
of each experiment. It can be clearly observed that the PCH results of the groups A, B and C are lower than 
those of the GA. Except for the box obtained by the PCH for group C in Figure 10, which is not flatter than 
the GA, the boxes obtained by the PCH in all groups are flatter than those obtained by the GA under the 
same configuration, which further indicates that the results obtained by the PCH are more stable. In 
summary, the PCH not only outperforms the GA at 25% storage utilization rate, but is also more stable. 

 

Figure 9. Box-whisker plot of TF of groups A, B and C at 25% storage utilization rate. 
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Figure 10. Box-whisker plot of the EC of group A, B and C at 25% storage utilization rate. 

In order to explore the influence of different storage utilization rates on the algorithm solution, 
the storage racks with 50 and 75% storage utilization rates are simulated separately. Tables 3 and 4 are 
the experiment results of the GA and PCH with 50% storage utilization. 

Table 3. Experimental results solved by the GA at 50% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff 

1 1106.0 2.635% 6.96  1.903% 1196.5 5.642% 9.84 1.969% 860.7 5.607% 7.77 1.569% 

2 1100.9 2.162% 7.02  2.782% 1215.4 7.311% 9.87 2.280% 845.7 3.767% 7.83 2.353% 

3 1123.3 4.241% 6.94  1.611% 1208.6 6.710% 9.82 1.762% 872.7 7.080% 7.72 0.915% 

4 1090.6 1.206% 6.97  2.050% 1242.8 9.730% 9.88 2.383% 843.3 3.472% 7.81 2.092% 

5 1101.6 2.227% 7.05  3.221% 1207.5 6.613% 10.00 3.627% 840.7 3.153% 7.84 2.484% 

6 1095.3 1.643% 6.95  1.757% 1158.9 2.322% 9.89 2.487% 831.6 2.037% 7.76 1.438% 

7 1100.2 2.097% 6.98  2.196% 1161.8 2.578% 9.95 3.109% 817.2 0.270% 7.76 1.438% 

8 1118.5 3.795% 6.98  2.196% 1216.8 7.434% 9.84 1.969% 874.5 7.301% 7.85 2.614% 

9 1108.6 2.877% 6.92  1.318% 1177.1 3.929% 9.88 2.383% 895.5 9.877% 7.82 2.222% 

10 1087.8  0.947% 7.01  2.635% 1204.2 6.322% 9.96 3.212% 811.9 -0.380% 7.74 1.176% 

Standard 1077.6  0.000% 6.83  0.000% 1132.6 0.000% 9.65 0.000% 815.0 0.000% 7.65 0.000% 

Average 1103.3  2.383% 6.98  2.167% 1199.0 5.859% 9.89 2.518% 849.4 4.218% 7.79 1.830% 

Tables 3 and 4 show that the TF and EC results of group A and group B by the PCH are lower than 
those of the GA. In group C, the minimum Diff of TF and EC obtained by the GA solution is smaller 
than the maximum Diff obtained by the PCH, indicating that it cannot be directly decided which 
algorithm is better by comparing the experiment results. However, the mean Diff obtained by the PCH 
solution in group C is lower than that of the GA: The mean Diff of TF obtained by the PCH is –0.834%, 
which is less than 4.218% obtained by the GA; the mean Diff of EC is 1.438%, which is also less than 
1.830% obtained by the GA. 
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Table 4. Experiment results solved by the PCH at 50% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF  

(S) 
Diff 

EC 

(kWh) 
Diff 

TF  

(S) 
Diff 

EC 

(kWh) 
Diff TF (S) Diff 

EC 

(kWh) 
Diff 

1 1081.1  0.325% 6.88  0.732% 1127.2  −0.477% 9.76  1.140% 792.7  −2.736% 7.81  2.092% 

2 1082.1  0.418% 6.85  0.293% 1134.7  0.185% 9.67  0.207% 830.3  1.877% 7.78  1.699% 

3 1086.6  0.835% 6.84  0.146% 1133.9  0.115% 9.69  0.415% 812.3  −0.331% 7.79  1.830% 

4 1082.6  0.464% 6.88  0.732% 1125.1  −0.662% 9.80  1.554% 816.6  0.196% 7.67  0.261% 

5 1083.5  0.548% 6.87  0.586% 1140.7  0.715% 9.68  0.311% 800.0  −1.840% 7.83  2.353% 

6 1082.6  0.464% 6.88  0.732% 1130.2  −0.212% 9.74  0.933% 812.3  −0.331% 7.81  2.092% 

7 1082.6  0.464% 6.87  0.586% 1132.6  0.000% 9.77  1.244% 814.7  −0.037% 7.84  2.484% 

8 1077.6  0.000% 6.88  0.732% 1137.9  0.468% 9.70  0.518% 791.7  −2.859% 7.68  0.392% 

9 1084.9  0.677% 6.83  0.000% 1126.6  −0.530% 9.78  1.347% 804.2  −1.325% 7.76  1.438% 

10 1082.6  0.464% 6.86  0.439% 1132.6  0.000% 9.71  0.622% 807.5  −0.920% 7.63  −0.261% 

Standard  1077.6  0.000% 6.83  0.000% 1132.6  0.000% 9.65  0.000% 815.0  0.000% 7.65  0.000% 

Average 1082.6  0.466% 6.86  0.498% 1132.2  −0.040% 9.73  0.829% 808.2  −0.834% 7.76  1.438% 

Figures 11 and 12 are box-whisker plots of TF and EC based on the data in Tables 3 and 4, 
respectively. It is observed that the performance of groups A and B is consistent with the previous 
analysis, and the boxes of TF and EC obtained by the PCH are not only lower than those obtained by 
the GA, but also flatter. This indicates that the results obtained by the PCH are better and more stable 
than those obtained by the GA. In group C, the box of TF obtained by the PCH is lower than the box 
obtained by the GA, indicating that the PCH is still better than the GA in TF. The box of EC obtained 
by the PCH is slightly lower than the GA, but as a whole it is taller than the box obtained by the GA. 
The PCH is better than the GA based on the median of the two boxes (indicated by the horizontal line 
in the box) and the mean of the results. Through the previous analysis, it can be concluded that the 
optimization performance of the PCH in group C has weakened at 50% storage utilization rate. 

 

Figure 11. Box-whisker plot of TF of group A, B and C at 50% storage utilization rate. 



135 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 116–143. 

 

Figure 12. Box-whisker plot of EC of group A, B and C at 50% storage utilization rate. 

Tables 5 and 6 show the experiment results of the GA and the PCH at 75% storage utilization rate, 
respectively. In group A, it is observed that the Diff of TF and EC obtained by the PCH are lower than 
that obtained by the GA in each experiment. In group B, the Diff of TF obtained by the PCH is lower than 
that of the GA in each experiment, but the Diff of EC obtained by the PCH is not entirely lower than that 
of the GA. This means that the optimal solution obtained by the GA solution is better than the worst solution 
solved by the PCH. In group C, the Diff of TF and EC obtained by the PCH is also not entirely lower than 
those of the GA. At this point, the optimization ability of the PCH has been further weakened. 

Table 5. Experimental results solved by the GA at 75% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF 

(S) 
Diff 

EC 

(kWh) 
Diff TF (S) Diff 

EC 

(kWh) 
Diff TF (S) Diff 

EC 

(kWh) 
Diff 

1 961.9 2.156% 8.73 2.706% 1149.3 2.818% 12.66 1.199% 961.2 6.859% 10.32 2.279% 

2 949.3 0.818% 8.75 2.941% 1163.6 4.097% 12.88 2.958% 945.0 5.058% 10.40 3.072% 

3 953.7 1.285% 8.72 2.588% 1146.5 2.568% 12.87 2.878% 905.0 0.611% 10.27 1.784% 

4 967.3 2.729% 8.80 3.529% 1113.9 -0.349% 12.80 2.318% 925.6 2.902% 10.25 1.586% 

5 958.3 1.774% 8.67 2.000% 1188.0 6.280% 12.71 1.599% 915.6 1.790% 10.43 3.370% 

6 958.3 1.774% 8.68 2.118% 1155.3 3.355% 12.74 1.839% 927.3 3.091% 10.25 1.586% 

7 954.0 1.317% 8.72 2.588% 1129.0 1.002% 12.77 2.078% 944.3 4.981% 10.34 2.478% 

8 955.3 1.455% 8.74 2.824% 1132.6 1.324% 12.69 1.439% 922.6 2.568% 10.32 2.279% 

9 963.3 2.305% 8.79 3.412% 1159.7 3.748% 12.74 1.839% 886.0 -1.501% 10.29 1.982% 

10 941.5 -0.011% 8.73 2.706% 1133.9 1.440% 12.73 1.759% 969.8 7.815% 10.35 2.577% 

Standard 941.6 0.000% 8.50 0.000% 1117.8 0.000% 12.51 0.000% 899.5 0.000% 10.09 0.000% 

Average 956.3 1.560% 8.73 2.741% 1147.2 2.628% 12.76 1.990% 930.2 3.413% 10.32 2.279% 

Figures 13 and 14 demonstrate box-whisker plots of TF and EC based on the data in Tables 5 and 6. 
In group A, it is observed that the boxes of TF and EC obtained by the PCH are not only lower than the 
boxes obtained by the GA, but also flatter. In group B, the box of TF obtained by the PCH is lower 
than the box obtained by the GA, but the EC solved by the PCH has a numerical overlap with the box 
obtained by the GA. In group C, the boxes of TF and EC obtained by the PCH both have a numerical 
overlap with the boxes obtained by the GA. With the exception of the box of EC obtained by the PCH 
in group C, all boxes obtained by the PCH are lower than those of the GA. The box of EC obtained by 
the PCH in group C is higher than the box obtained by the GA, but the median of the PCH box 
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(indicated by the horizontal line in the box) is slightly lower than that of the GA, whereas the value 
remains very close. It can be concluded that the optimization ability of the PCH for EC in group C at 
75% storage utilization rate is in the same level with or even inferior to the GA. Considering the two 
factors of TF and EC, the PCH can still be considered slightly better than the GA in group C. 

In Table 6, the TF of group A has multiple duplicate results. Theoretically speaking, the results 
solved by the heuristic algorithm are generally different. Duplicate results can infer a local optimal 
solution or the global optimal solution in the value. It is generally very difficult to determine whether 
the solution is the local optimal solution or the global optimal solution. Therefore, we do not put a 
major emphasis on this topic. 

Table 6. Experimental results solved by the PCH at 75% storage utilization rate. 

Experiment 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

TF  

(S) 
Diff 

EC 

(kWh) 
Diff 

TF  

(S) 
Diff 

EC 

(kWh) 
Diff 

TF  

(S) 
Diff 

EC 

(kWh) 
Diff 

1 935.3 −0.669% 8.57 0.824% 1072.5 −4.053% 12.72 1.679% 903.7 0.467% 10.21 1.189% 

2 934.7 −0.733% 8.59 1.059% 1086.1 −2.836% 12.64 1.039% 875.3 −2.690% 10.32 2.279% 

3 935.7 −0.627% 8.58 0.941% 1100.9 −1.512% 12.64 1.039% 927.0 3.057% 10.19 0.991% 

4 935.7 −0.627% 8.57 0.824% 1089.8 −2.505% 12.66 1.199% 899.4 −0.011% 10.40 3.072% 

5 934.3 −0.775% 8.57 0.824% 1093.0 −2.219% 12.78 2.158% 889.5 −1.112% 10.24 1.487% 

6 934.3 −0.775% 8.61 1.294% 1070.8 −4.205% 12.68 1.359% 919.9 2.268% 10.41 3.171% 

7 934.3 −0.775% 8.56 0.706% 1077.6 −3.596% 12.80 2.318% 918.3 2.090% 10.31 2.180% 

8 934.3 −0.775% 8.60 1.176% 1086.7 −2.782% 12.65 1.119% 883.8 −1.745% 10.51 4.163% 

9 934.7 −0.733% 8.59 1.059% 1077.4 −3.614% 12.78 2.158% 907.5 0.889% 10.33 2.379% 

10 935.7 −0.627% 8.59 1.059% 1094.3 −2.102% 12.65 1.119% 900.3 0.089% 10.29 1.982% 

Standard 941.6 0.000% 8.50 0.000% 1117.8 0.000% 12.51 0.000% 899.5 0.000% 10.09 0.000% 

Average 934.9 −0.712% 8.58 0.941% 1084.9 −2.943% 12.70 1.519% 902.5 0.334% 10.32 2.279% 

 

Figure 13. Box-whisker plot of TF of group A, B, and C at 75% storage utilization rate. 
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Figure 14. Box-whisker plot of EC of group A, B and C at 75% storage utilization rate. 

Figures 15 and 16 are the optimization rate bar charts of order fulfillment time and energy 
consumption. The optimization rate calculation in the figures is done by taking the difference between 
the average values of the Diff obtained by the PCH and the GA. In group A, it can be observed that the 
optimization rate of TF increases slightly with the increases of storage utilization, and the optimization 
rate of EC decreases first and then increases. In groups B and C, the optimization rates of TF and EC 
decrease to varying degrees with the increase of storage utilization. Further analysis shows that the 
optimization ability of the PCH in groups B and C weakens with the increase of storage utilization. 

 

Figure 15. Optimization rates of order fulfillment time. 

 

Figure 16. Optimization rates of energy consumption. 
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The comprehensive optimization rate is drawn by weighting the average of the optimization rates of 
TF and EC, as shown in Figure 17. It can be observed that the comprehensive optimization rates of groups 
B and C decrease, and the comprehensive optimization rate of group A first decreases and then increases. 
A possible reason might be that the increase in storage utilization has reduced the number of storage racks 
that can be selected for the input items and the reduction of optimization space would lead to a decrease in 
the optimization rate. The number of input instructions in groups B and C is 100. The number of input 
instructions in group A is 50, which has less optimization potential than groups B and C. 

 

Figure 17. The comprehensive optimization rates. 

In Table 7, the solution time consumed by the PCH is less than that of the GA at 25% storage 
utilization rate. Especially in group A, the solution time of the PCH is saved by 48.81%, in which case 
the PCH has a huge advantage. At 50% storage utilization rate, the solution times of the PCH and GA 
is roughly the same. At 75% storage utilization rate, the PCH solution time is significantly higher than 
the GA solution time. Especially in group C, the solution time of the PCH is 51.14% more than that of the 
GA. However, the comprehensive optimization rate of the PCH is 1.55% higher than the GA. At this point, 
it is up to the AS/RS’s manager to determine whether to spend additional time to solve for better system 
performance, or to use an upgraded computer with higher frequency and more cores to solve it. 

Table.7 The usage time solved by the GA and the PCH with storage utilization variation 

Storage 
utilization 

A: NS = 50, NR = 100 B: NS = 100, NR = 100 C: NS = 100, NR = 50 

GA PCH GA PCH GA PCH 

25% 67.4 34.5 134.6 114.4 91.3 84.0 
50% 68.5 60.5 137.7 125.4 93.3 94.2 
75% 70.8 81.9 147.8 158.6 96.8 146.3 

Comparing the solution time of groups A and C, it takes more time to solve group C. The reason 
for this is that there are more NS in the input instructions in group C. From the algorithmic level, the 
mutation operation of the GA and the change operation of the PCH are only valid for the input 
instructions. The increase of NS in the input instructions has a more significant impact on the solution 
time of the algorithm than on NR in the output instructions. 
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6. Conclusions 

In CB-AS/RS, the energy efficiency of the cranes is one of the most important performance 
metric. In this paper, we establish a location optimization model for the CB-AS/RS to minimize 
energy consumption and order fulfillment time. Here, we use spatial mapping coding to implement 
the GA to find the solution. A new PCH algorithm is proposed at the same time, whose basic process 
includes encoding, initializing a feasible solution, arrange operation, offset operation, cross 
operation and change operation. In real AS/RS operations, the items are constantly removed and 
replenished at the same time. It is difficult to predict the specific output and input quantities of the 
items in a batch of orders. Therefore, we conduct experiments with three sets of different output and 
input quantities, namely groups A, B and C. The essence of the PCH and the GA is not only 
permutation and combination of the existing operators, but also the exploration for the unknown 
operators. The PCH algorithm focuses more on the permutation and combination of input operators 
and takes into account the scheduling problem of the cranes (reflected in the change operation). 
Based on the experiment results, the following conclusions can be drawn. 

1) At 25 and 50% storage utilization rates, the PCH performs better than the GA for groups A 
(NS = 50, NR = 100), B (NS = 100, NR = 100) and C (NS = 100, NR = 50) in solving TF and EC, and is 
more stable. At 75% storage utilization rate, the PCH performs at an average level when solving EC 
in group C. After comprehensive consideration of TF, the overall performance of the PCH is still 
considered better than that of the GA. Analyzing the TF alone, the PCH solution results are better 
than those of the GA by 1.52% to 13.6%. From the EC analysis, the PCH is better than the GA by 
0.02 to 5.58%. From the analysis of comprehensive optimization rate, the PCH is better than the GA 
by 1.55 to 9.59% in the specific value. All in all, the PCH is overall better than the GA without 
considering algorithm solution time. 

2) In group A (NS = 50, NR = 100), with the increase of storage utilization rate at 25, 50 and 
75%, the optimization ability of the PCH first decreases and then increases. In groups B (NS = 100, 
NR = 100) and C (NS = 100, NR = 50), the optimization ability of the PCH has been continuously 
weakening as the storage utilization rates increase. 

3) Except for group C at 50% storage utilization rate, the solution time of the PCH is less than 
the GA at 25 and 50% storage utilization rates. At 75% storage utilization rate, the solution time of 
the PCH is higher than with the GA, and the largest increase in group C reaches 51.14%. 

4) The solution time of the GA and the PCH is increasing with the storage utilization rate. The 
reason is that the climbing storage utilization increases the number of shelves that are used, which 
will make the mutation operation in the GA and the change operation in the PCH produce more 
repeated position judgment loops. 

The major contributions of this paper are as follows:  
1) Taking the existing CB-AS/RS as the research object, a location allocation model is 

established to minimize order completion time and energy consumption. 
2) A Permutation-Combination Heuristics is proposed, which follows the coding method and 

crossover operation of the genetic algorithm, while at the same time it adds arrange operation and 
change operation. We offer an optimization idea for the researchers and administrators who study 
the CB-AS/RS. 

Many experts have also pointed out the shortcomings of this study, such as the model may 
deviate from reality, and the hypothesis given may not be in line with the actual situation. We will 
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continue to optimize the existing model to better fit the reality in future research, and we are very 
grateful to the anonymous reviewers for their contributions to this article. 
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Appendix 

Basic parameters 
A: the number of aisles in the CBS /RS 
M: the number of tiers in the CBS /RS 
C: the number of columns in the CBS /RS 
NS: the number of cargo input in a batch of orders 
NR: the number of cargo output in a batch of orders 
i, j: the locations in the racks 
nSC: the amount of time consumed in the single command cycle 
nDC: the amount of time consumed in the double command cycle 
Ws: the width of a storage location 
He: the height of a tier 
Vx: horizontal velocity of the crane 
Vxmax: max horizontal velocity of the crane 
ax: horizontal acceleration/deceleration of the crane  
Vy: vertical velocity of the crane 
Vymax: max vertical velocity of the crane 
ay: vertical acceleration/deceleration of the crane 
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G: acceleration of gravity 
DHij: horizontal distance between i and j 
DVij: vertical distance between i and j 
kr: coefficient of friction (0.01) 
e: energy conversion efficiency 
ms: quality of the items and pallets 
mc: overall quality of a crane (including: upper crossbeam、lower crossbeam、left column、right 
column、carriage platform、forks、vertical travel motor、horizontal travel motor、electrical control 
cabinet） 
mv: quality of the lifting device (including: carriage platform, forks) 
Auxiliary variables 
tHij: horizontal running time between i and j 
tVij: vertical running time between i and j 
tHaij: horizontal acceleration time between i and j 
tHdij: horizontal deceleration time between i and j 
tVcij: horizontal constant speed time between i and j 
tVaij: vertical acceleration time between i and j 
tVdij: vertical deceleration time between i and j 
tVcij: vertical constant speed time between i and j 
tSC: single command cycle time 
tDC: double command cycle time 
Ta: the running time of a crane 
TF: order fulfillment time 
FHc: horizontal traction force of a crane moving horizontally at a constant speed 
FHa: horizontal traction force of a crane moving horizontally at acceleration 
FHd: horizontal traction force of a crane moving horizontally at deceleration 
FVc: vertical traction force of a crane moving horizontally at a constant speed 
FVa: vertical traction force of a crane moving horizontally at acceleration 
FVd: vertical traction force of a crane moving horizontally at deceleration 
PHc: horizontal power of a crane moving horizontally at a constant speed 
PHa: horizontal power of a crane moving horizontally at acceleration 
PHd: horizontal power of a crane moving horizontally at deceleration 
PVc: vertical power of a crane moving vertically at a constant speed 
PVa: vertical power of a crane moving vertically at acceleration 
PVd: vertical power of a crane moving vertically at deceleration 
ECHFij: horizontal energy consumption of a crane with full load moving between i and j  
ECVFij: vertical energy consumption of a crane with full load moving between i and j  
ECHEij: horizontal energy consumption of a crane with empty load moving between i and j 
ECVEij: vertical energy consumption of a crane with empty load moving between i and j 
ECSC: energy consumption of the single command cycle pattern 

ECDC: energy consumption of the double command cycle pattern 
ECa: energy consumption of a crane 

EC: energy consumption of a batch of orders 
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Decision variables 
N: Rack number 
(identifier, N): Crane operation instructions (When the identifier is 1, it means that the item is stored 
in a location where the rack number is N; When the identifier is 0, it means that the item is retrieved 
from the rack numbered N) 
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