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Abstract: DNA-protein binding is crucial for the normal development and function of organisms. The 
significance of accurately identifying DNA-protein binding sites lies in its role in disease prevention 
and the development of innovative approaches to disease treatment. In the present study, we introduce 
a precise and robust identifier for DNA-protein binding residues. In the context of protein 
representation, we combine the evolutionary information of the protein, represented by its position-
specific scoring matrix, with the spatial information of the protein’s secondary structure, enriching the 
overall informational content. This approach initially employs a combination of Bi-directional Long 
Short-Term Memory and Transformer encoder to jointly extract the interdependencies among residues 
within the protein sequence. Subsequently, convolutional operations are applied to the resulting feature 
matrix to capture local features of the residues. Experimental results on the benchmark dataset 
demonstrate that our method exhibits a higher level of competitiveness when compared to 
contemporary classifiers. Specifically, our method achieved an MCC of 0.349, SP of 96.50%, SN 
of 44.03% and ACC of 94.59% on the PDNA-41 dataset. 
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1. Introduction  

The interaction between DNA and proteins plays a crucial role in various biological processes, 
including DNA transcription, repair and protein synthesis [1–3]. The accurate identification of DNA -
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protein binding sites holds significant importance in gaining a thorough understanding of multiple 
critical biological processes. This encompasses unraveling gene regulation, the interaction between 
proteins and nucleic acids and cellular signal transduction mechanisms. This is essential for a profound 
understanding of cellular function and the mechanisms of disease onset [4]. Furthermore, research on 
identifying DNA-protein binding sites also holds practical value in the field of drug design, aiding 
researchers in the discovery of new drug targets and the design of drug molecules for these sites [5]. 
DNA-protein binding sites represent pivotal locations for the interaction between DNA and proteins, 
and through these interactions, we can infer the function of proteins and predict their roles [6,7]. 

Given the significance of accurately identifying DNA-protein binding sites, numerous researchers 
in the past have developed various experimental methods to precisely identify sites where proteins 
bind to DNA. These methods include nuclear magnetic resonance (NMR) spectroscopy [8], 
conventional chromatin immunoprecipitation (ChIP) [9] and MicroChIP [10]. While the experimental 
methods exhibit good accuracy, they come with significant financial costs and time burdens. Moreover, 
the intricate nature of the experimental analysis process renders them unsuitable for large-scale 
data analysis. 

The rapid advancement of protein sequencing technology has led to a significant increase in the 
number of identified protein sequences. However, their structures and functions continue to pose 
unresolved mysteries. In view of the above factors, there is an urgent need for a more precise and 
efficient method to accurately identify the binding sites of proteins with DNA. Recently, there have 
been several computational methods for discerning DNA-protein binding sites based on sequence, 
structure, or a combination of both. 

Sequence-based methods typically employ protein sequence features and features extracted from 
the sequence. The formidable computational power of modern computers now allows us to extract 
evolutionary features from protein sequences. Combining high-quality evolutionary features with 
other sequence attributes often yields favorable experimental results. Although these methods lack 
structural information, the increasing prevalence of proteins with only sequence data and no other 
information has led to a growing interest in sequence-based approaches. A multitude of sequence-
based methodologies have emerged, including but not limited to DNApred [11], DNABR [12] and 
DRNApred [13]. DNApred introduces an ensemble support vector machine (SVM) with all 
improvements, where the method initially employs hyperplane distance-based under-sampling 
technique to generate training subsets for training meta-classifiers. Subsequently, the base classifiers 
are integrated into the system. DNABR is a random forest prediction algorithm that utilizes 
evolutionary information, physicochemical features and the relationships between neighboring 
residues as joint inputs. DRNApred was designed using a penalty cross-prediction regression [14] and 
a novel two-layer structure, which effectively reduces cross-predictions and accurately identifies high-
quality false positives. Additionally, it can accurately predict DNA- or RNA-binding proteins. 

The spatial structure of proteins to some extent dictates their function [15]. This is one of the 
reasons why structure-based methods or hybrid approaches that combine spatial information with 
sequence information often exhibit superior performance compared to sequence-based methods. For 
example, the structural method GraphBind [16] constructs a graph based on intrinsic properties of 
residues and the environment. The edge features of the graph are computed using geometric knowledge, 
while node information encompasses physicochemical properties, geometric knowledge and 
evolutionary conservation. It introduces a graph neural network (GNN) [17] where each module can 
learn more advanced feature representations. The hybrid method DNABind [18] introduces a 
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complementary strategy that combines machine learning with a template-based approach [19,20]. In 
this approach, the machine learning method involves a pure sequence predictor, whose results are 
linearly combined with the results of a support vector machine structure predictor, using some 
structural properties and evolutionary conservation as inputs. Additionally, the template method 
detects the best reference structure in a template library. 

However, it is worth noting that most studies have only considered certain structural or sequence 
features of individual residues and have not taken into account the relationships between residues. In 
other areas of interaction, some studies [21–23] have considered the interdependencies between 
elements and have achieved significant progress in their respective fields. For example, Wang et al. 
proposed DMFGAM [21], which initially fuses multiple molecular fingerprint features and utilizes 
attention mechanism to extract molecular graph features. Subsequently, a fully connected neural 
network is employed to determine whether a molecule is a human ether-a-go-go-related gene (hERG) 
blocker. Their research findings have become a powerful tool for predicting hERG blockers. 

Inspired by some prior work, in our study, we integrated Bi-directional Long Short-Term Memory 
(BiLSTM) with the Transformer encoder to capture the interactions between residues in proteins. We 
did not overlook the local features of residues; instead, we subsequently employed a convolutional 
neural network to process the protein feature matrix. It is known that secondary structure information 
can offer insights into the local environment and geometric configuration of residues, which is crucial 
for determining the types of protein residues. In characterizing proteins, we combined position-specific 
scoring matrix (PSSM) information with predicted protein secondary structure information to enhance 
the richness of protein features. On the PDNA-543 and PDNA-41 datasets, we executed a series of 
experiments, comparing our method with existing methods to gauge its efficacy. The outcomes suggest 
that our methodology demonstrates competitiveness, and in certain instances, surpasses the 
performance of prevailing state-of-the-art methods.  

Significant accomplishments in our study encompass: 1) The combination of Transformer 
encoder with BiLSTM allows for the collaborative extraction of long-range dependencies between 
residues at deeper and more complex levels. 2) Our methodology considers not only the global 
interplays between residues but also the localized feature attributes of target residues. 

2. Materials and methods 

2.1. Benchmark datasets 

We utilized the PDNA-543 and PDNA-41 datasets for construction and evaluation of our 
approach. These two datasets were initially introduced in the TargetDNA [24]. At the outset, the dataset 
consisted of 7186 protein sequences. To mitigate sequence similarity, CD-Hit software [25] was 
employed, ensuring that the similarity between sequences in the dataset remained below 30%. The 
resulting 584 sequences were divided into two parts: One named PDNA-543, comprising 543 
protein sequences and the other named PDNA-41, consisting of 41 protein sequences. In this work, 
PDNA-543 will be utilized as the training dataset to iteratively optimize the model parameters, whereas 
PDNA-41 will be employed to evaluate the generalization performance of the model. Table 1 provides 
an overview of the information related to both datasets. 
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Table 1. Data distribution of benchmark datasets. 

Dataset Proteins 
Residues % of binding 

residues Binding Non-Binding Total

PDNA-543 543 9549 134,995 144,544 7.07 

PDNA-41 41 734 14,021 14,755 5.24 

2.2. Feature representation 

The performance can vary significantly when different feature representations are used, even 
when the data is the same. Therefore, the representativeness and richness of data are crucial. The PSSM 
is widely employed in protein functional annotation and sequence analysis, leading to excellent 
performance in these tasks. Describing proteins solely based on sequence features is limited. Therefore, 
predicted protein secondary structure information has been incorporated into the sequence features to 
enhance predictive capability. 

2.2.1. PSSM 

In previous studies on predicting protein function [26] and protein-protein interactions [27], the 
effectiveness of PSSM in the field of bioinformatics has been demonstrated. In our research, we 
utilized PSI-BLAST [28], a multiple sequence alignment tool, to generate PSSM features. We adjusted 
the value of E to 10-3 and then performed three iterations on the Uniprot [29] database. This tool can 
represent a protein of length L as a feature matrix of size L*20. The number 20 represents the likelihood 
of an amino acid at that position mutating to one of the 20 different amino acids. To standardize units 
across different features, the PSSM values were normalized using a scaling formula that maps them to 
the interval (0, 1). The formula used to normalize the PSSM values is as follows: 

y           (1) 

where x represents the original values of the matrix elements, and y denotes the normalized results. 

2.2.2. Predicted secondary structure 

The spatial arrangement and relative positions of protein regions are described by the secondary 
structure, which typically includes coiled, α-helix and β-fold. When binding with DNA, proteins adopt 
specific secondary structure elements to interact with specific DNA sites. Therefore, in the study of 
identifying binding sites between proteins and DNA, the secondary structure information of protein is 
of significant assistance. Measuring the protein’s secondary structure directly requires advanced 
techniques and may be influenced by factors such as temperature, making it relatively challenging. 
Computational methods offer high precision at a low cost. In this study, PSIPRED [30] was employed 
to obtain the protein’s secondary structure. Here, we represent a protein with a sequence length of L as 
a feature matrix of dimensions L*3. Each row contains three elements representing the probability of 
the target amino acid being of the corresponding secondary structure type. 
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2.3. Model architecture 

In this work, an approach has been proposed that can capture long-term dependency relationships 
among DNA-binding protein residues while also extracting local features of the residues. Figure 1 
illustrates the model’s overarching structure. 
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Figure 1. The overall structure of the proposed approach. The workflow of the model is: 
Initially, concatenate the PSSM information and predicted protein secondary structure 
information to form residue feature vectors. Subsequently, input these vectors separately 
into Transformer encoder and BiLSTM to learn the dependencies between residues. 
Combine the obtained results. Then, process the encoded protein feature matrix using 
convolutional layers to obtain local residue features. Finally, employ a multilayer 
perceptron (MLP) as the decoder to generate the DNA binding pattern. 

2.3.1. Transformer encoder 

The transformer exhibits outstanding performance when processing sequential data. In this work, 
we consider proteins as sequences, with each amino acid regarded as a sequence element. With the use 
of a Transformer encoder, we can process the protein sequence to capture the attention relationships 
between residues. Figure 1 illustrates the composition of the Transformer encoder. The acquisition of 
residue attention between different positions is achieved through a self-attention mechanism, and the 
specific calculation method is as follows:  

Attention Q, K, V softmax V       (2) 

where Q, K and V are derived from the original input X through linear transformations, dk is a scaling 
factor designed to prevent the numerical values of the results from becoming too large. Its value 
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depends on the number of heads and the dimensionality of the K matrix. Single-head attention 
mechanism can only capture attention relationships between residues in a single dimension, whereas 
multi-head attention mechanism can obtain different types of interactions across multiple dimensions. 
The calculation method of the multi-head attention mechanism is: 

ℎ𝑒𝑎𝑑 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑋𝑊 , 𝑋𝑊 , 𝑋𝑊        (3) 

MultiHead Q, K, V Concat ℎ𝑒𝑎𝑑 , … , ℎ𝑒𝑎𝑑 𝑊      (4) 

where X represents the original input, while W Q 
i , W K 

i  and W V 
i  denote the matrices of linear 

transformation coefficients. 

2.3.2. BiLSTM 

Long Short-Term Memory (LSTM) can learn the dependencies between residues in a protein 
sequence through a gating mechanism. The specific computational process is as follows: 

First, generate a numerical value between 0 and 1 based on the forget gate. This operation takes 
the current input xt and the hidden state from the previous time step ht-1 to determine the degree of 
forgetting information. The sigmoid function is employed to remap the results, as follows: 

𝑓 𝜎 𝑊 ℎ , 𝑥 𝑏         (5) 

The next step, in the input gate, the previous time step’s hidden state ht-1 and the current time 
step’s input xt are used as computational parameters to transform the input values into a positive 
number less than 1, representing the proportion of new information to be added. Then, the tanh function 
is employed to calculate the candidate value for the new information. i.e., 

𝑖 𝜎 𝑊 ℎ , 𝑥 𝑏          (6) 

𝑗 tanh 𝑊 ℎ , 𝑥 𝑏         (7) 

where Wi, bi, Wj and bj are trainable parameters. At the current moment, we utilize the cell state Ct-1 
from the preceding time step and certain parameters to compute the new cell state Ct. i.e., 

𝐶 𝑓 ∗ 𝐶 𝑖 ∗ 𝑗          (8) 

Ultimately, the calculation of the output gate Ot is carried out to regulate the cell state’s value. 
The final cell’s hidden state is represented as ht. The specific computation is as follows: 

𝑂 𝜎 𝑊 ℎ , 𝑥 𝑏         (9) 

ℎ 𝑂 ∗ tanh 𝐶          (10) 

LSTM can learn information only before the target position. In order to allow the algorithm model 
to access future context information just like it does with past context information, BiLSTM is 
designed with two separate LSTM hidden layers that operate in opposite directions. In this structure, 
information from both before and after the target residue can be learned at the output layer. i.e.,  
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ℎ⃗ 𝐿𝑆𝑇�⃗� 𝑥 , ℎ ⃗         (11) 

ℎ⃖ 𝐿𝑆𝑇𝑀⃖ 𝑥 , ℎ⃖         (12) 

𝐻 𝑤 ℎ⃗ 𝑣 ℎ⃖ 𝑏         (13) 

where wt matches with the weights of the forward hidden layer, while vt corresponds to the weights of 
the backward hidden layer. Ht contains information from both, making it richer in information 
compared to the original input xt. 

2.3.3. Feature Extraction Module 

The binding residues within the sequence of DNA-binding proteins are partially scattered, with 
some being adjacent. Furthermore, a significant portion of non-binding residues is also adjacent. 
Additionally, the properties of adjacent residues in a protein sequence exhibit a degree of similarity to 
each other. Therefore, we considered the features of the target residue and its adjacent residues on both 
the left and right sides. Given the superior performance of convolutional neural networks in extracting 
local information from feature maps, convolutional operations are employed in this module to process 
protein feature matrices. We adjusted the size of the convolutional kernel to S*S, with a stride set to 1. 
Such parameter settings precisely capture information about the target residue in the protein sequence 
and the (S-1)/2 residues on each side. Here, S is a variable value, and a larger S value implies the 
consideration of more neighboring residue information. Additionally, we investigated the performance 
variations associated with different convolutional kernel sizes, as elaborated in Section 3.2. 

2.3.4. Decoder Module 

In this module, we use a decoder based on MLP to obtain the predicted probabilities of each 
residue. The main function of MLP is to generate prediction results based on the encoded features. 
Through the combination of multiple hidden layers and nonlinear activation functions, MLP can learn 
the complex mapping relationship between encoded features and output predictions: 

O σ 𝑊 k 𝑏         (14) 

where k is the output processed by the Feature Extraction Module. WMLP is a collection of matrices, 
with each matrix corresponding to the connections between neuron layers, and bMLP is a vector, where 
each element corresponds to a neuron. The σ function transforms the raw output to obtain probability 
values within the range of 0 to 1. 

2.4. Training and evaluation 

2.4.1. Loss function 

The loss is a metric used to quantify the disparity between the model’s predicted outcome and the 
actual labels. Throughout the training process of deep learning methods, our objective is to minimize 
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this loss. For the problem addressed in this study, binary cross-entropy loss is effective in measuring 
the disparity between predicted values and actual labels: 

ℒ 𝑦, 𝑃 ∑ 𝑦 log 𝑃 1 𝑦 log 1 𝑃 |𝛩|     (15) 

where yi and Pi are the true labels and predicted values, respectively, for the i-th residue in the DNA-
binding protein sequences. The symbol λ represents the regularization parameter controlling the 
complexity of the model. Θ is a vector or matrix that contains weights and biases. Moreover, to 
find better classification boundaries and improve classification accuracy, the Adam optimizer is used 
in this work. 

2.4.2. Hyper-parameter-tuning 

There are multiple modules included in our work, and each module contains many parameters. 
The variation of parameter values in the modules can lead to certain differences in model performance. 
We conducted a parameter search to explore the optimal value for performance. 
1) The number of layers of the Transformer encoder: A deeper encoder can capture more complex 

semantic and dependency relationships in DNA-binding protein sequences, thereby improving the 
modeling ability of the model for input data. However, too many layers will result in more 
computational resources and time. Therefore, when choosing the number of layers for a 
Transformer encoder, a proper balance needs to be struck. We explored layer values ranging from 1 
to 5 and discovered that the model achieved its optimal performance when employing 2 layers. 

2) The number of attention heads: Multi-head attention can capture more diverse feature 
representations at different levels. Each attention head can focus on different aspects of the input 
sequence, thus extracting a variety of features. After experimenting with different numbers of 
attention heads (1, 2, 4 and 8), the results demonstrated that employing 4 attention heads led to the 
most favorable outcomes. 

3) The number of hidden units in BiLSTM: The quantity of hidden units affects the capacity and 
representational power of the model, thereby influencing its learning. By altering this parameter 
across {16, 32, 64, 128, 256, 512}, it was observed that the model achieved its peak performance 
when equipped with 256 units.  

2.4.3. Evaluation measurements 

In DNA-protein binding residue identification samples, the majority of residues are non-binding, 
with only a minority being binding residues. This presents an imbalanced classification problem and 
implies that the more robust Matthews Correlation Coefficient (MCC) can better assess the classifier’s 
performance because it takes into account various classification scenarios. In addition to this, Accuracy 
(ACC) is indicative of the proportion of accurately identified residues to the overall residue count. 
Specificity (SP) and Sensitivity (SN) are used to measure the classifier’s performance in identifying 
non-binding and binding residues, respectively, with the calculations as follows: 

SN           (16) 
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SP           (17) 

ACC          (18) 

MCC       (19) 

where TP, TN, FP and FN stand for true positives, true negatives, false positives and false 
negatives, respectively. 

3. Results 

3.1. BiLSTM improves model performance 

To demonstrate the beneficial impact of BiLSTM on model performance, models with different 
architectures were subjected to ten-fold cross-validation on the PDNA-543 dataset. The protein amino 
acid features utilized in the three sets of experiments are identical. The results of the three sets of 
experiments are clearly presented in Table 2. We can observe that models based on the Transformer 
encoder exhibit commendable performance, with MCC, SP, SN and ACC values of 0.336, 95.23%, 44.16% 
and 92.79% respectively. Its performance significantly outperformed the BiLSTM architecture model. 
This result aligns with our expectations since the Transformer encoder, which utilizes self-attention 
mechanisms, takes into account all positions within the sequence, whereas the step-by-step processing 
of BiLSTM fails to capture long-range dependencies. The combined model architecture approach 
showed improvements over the Transformer encoder architecture model in terms of MCC, SN and ACC, 
with increases of 0.005, 2.87 percentage points and 0.27 percentage points, respectively. Figure 2 
illustrates the receiver operating characteristic (ROC) curves for three different models. In most cases, 
our model’s curve lies above the curves of both the BiLSTM and Transformer models. The results 
indicate that the method that combines the advantages of Transformer encoder and BiLSTM can 
achieve better performance in DNA-protein binding residue identification task. 

Table 2. The performance of models with different architectures in ten-fold cross-valida-
tion on PDNA-543. 

Network MCC SP (%) SN (%) ACC (%) 

BiLSTM 0.315 85.78 41.46 83.61 

Transformer 0.336 95.23 44.16 92.79 

Transformer 

+BiLSTM 
0.341 95.16 47.03 93.06 
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Figure 2. The ROC curves of models with different architectures in ten-fold cross-valida-
tion on PDNA-543. 

3.2. Performance comparison for different convolutional kernel sizes 

In this work, after encoding the protein sequences with the Encoder Module, we utilized 
convolutional kernels of size S*S to process the features of the target residue along with its (S-1)/2 
neighboring residues on both sides. We observed variations in the model’s performance when different 
values of S were chosen. In order to identify the optimal model parameters for achieving the best 
results, we conducted ten-fold cross-validation experiments on PDNA-543, altering the S value in the 
range of 1 to 7, incrementing it by 2 each time. Table 3 displays the varying performance of the model 
with different values of S. When S is set to 1, it implies that neighboring residues of the target residue 
are not considered. At this point, the model has already exhibited favorable performance. When we 
increase the value of S to 3, the model achieves its optimal performance, with an MCC value of 0.341 
and a SN value of 47.03%. As we further increase the value of S, the model’s MCC, ACC and SN 
noticeably decrease. Throughout the entire process, the SP value remains relatively stable. This 
indicates that, after processing by the encoder, considering the target residue and its adjacent residues 
on both sides has minimal impact on the identification of negative samples. However, within a certain 
range, taking these residues into account contributes to improving the model’s identification 
performance for positive samples. Here, we utilize a combination of BiLSTM and Transformer encoder 
as Encoder Module architecture. 

Table 3. Performance comparison under different values of S. 

Value of S MCC SP (%) SN (%) ACC (%) 

1 0.338 95.30 43.38 92.67 

3 0.341 95.16 47.03 93.06 

5 0.339 95.18 46.10 92.99 

7 0.334 95.23 43.95 92.78 
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3.3. Comparison of overall performance with previous methods 

When independently tested on PDNA-41 against the currently prominent methods, our approach 
demonstrated favorable performance with MCC, SP, SN and ACC scores of 0.349, 96.50%, 44.03% 
and 94.59%, respectively. These methods encompass several sequence-based approaches, namely 
BindN [31], ProteDNA [32], DP-Bind [33], BindN+ [34], MetaDBSite [35], TargetDNA and DNAPred, 
as well as a structure-based method called DNABind. The comparison results are shown in Table 4. 
The SP value of the ProteDNA method is 99.84%, slightly higher than our method, but its SN value is 
approximately one-tenth of our method’s. This implies that our method exhibits significant 
improvement in positive class classification, and a higher MCC value suggests that our approach is 
more balanced and robust. DNAPred (with FPR set approximately at 5%) reached an SN value of 44.7%, 
but there was only a marginal improvement of 1.52% compared to our method. Our method 
demonstrated superior experimental outcomes, with notable enhancements of 3.56% in MCC, 1.69% 
in SP and 2.37% in ACC. 

Table 4. Performance comparison of our approach versus previous methods on PDNA-41. 

Method MCC SP (%) SN (%) ACC (%) 

BindN 0.143 80.90 45.64 79.15 

ProteDNA 0.160 99.84 4.77 95.11 

BindN+(SP ≈ 95%) 0.178 95.11 24.11 91.58 

BindN+(SP ≈ 85%) 0.213 85.41 50.81 83.69 

MetaDBSite 0.221 93.35 34.20 90.41 

DP-Bind 0.241 82.43 61.72 81.40 

DNABind 0.264 80.28 70.16 79.78 

TargetDNA (SN ≈ SP) 0.269 85.79 60.22 84.52 

TargetDNA (SN ≈ 95%) 0.300 93.27 45.50 90.89 

DNAPred (FPR ≈ 5%) 0.337 94.9 44.7 92.4 

Our method 0.349 96.50 44.03 94.59 

3.4. Case study 

To visualize the superiority of the proposed method, we selected a protein-DNA complex, 
4XR0_A (PDB ID = 4XR0, Chain: A), from the PDNA-41 dataset. We employed the trained model 
to predict this instance. Figure 3 presents a comparison of the DNA binding site prediction results 
between our proposed method and TargetDNA (SP ≈ 95%). This protein chain comprises a total 
of 308 residues, including 34 DNA-binding residues. Our method identified 19 TP instances, 15 FN 
instances and 27 FP instances. Moreover, the prediction results for TargetDNA include 15 TP 
instances, 19 FN instances and 26 FP instances. From Figure 3, it can be observed that our method, 
as compared to TargetDNA, exhibits minimal changes in the red and gray regions, while the green 
region significantly increases and the blue region notably decreases. It can be inferred that our method 
shows almost no difference compared to TargetDNA in identifying negative samples, while there is a 
significant improvement in its ability to recognize positive samples. 
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Figure 3. Visualization of an instance (PDB ID: 4XR0, Chain A) from the PDNA-41 
dataset predicted by our method and TargetDNA (SP ≈ 95%). Green, red, yellow and 
gray represent TP, FP, FN and TN, respectively. 

4. Conclusions and discussion 

In this research project, a method for identifying DNA-protein binding residues is introduced, 
which takes into account the interconnections between global residues and the local feature 
information of target residues. This method can effectively capture features at both a broader, global 
scale and a more focused, local level. When representing protein features, we not only utilize the 
protein’s evolutionary information through PSSM but also leverage the protein’s spatial information, 
namely its secondary structure, to enrich its feature representation. Our method is simple and user-
friendly, requiring only the input of protein sequences of arbitrary lengths, without the need for feature 
preprocessing at the individual residue level, to obtain results. Our method achieved favorable 
performance on the PDNA-41 dataset, with an MCC of 0.349, SP of 96.50%, SN of 44.03% and ACC 
of 94.59%. Compared to previous work, it is a classifier that excels in both positive and negative class 
classification, offering a more robust and balanced performance. 

Considering that the interaction between proteins and DNA often involves specific domains or 
conformations, this information can be reflected in the three-dimensional structure of proteins. Three-
dimensional structural information will be considered for further advancements in our research. 
Additionally, considering the successful applications of GNN in many bioinformatics domains, we 
will attempt to represent amino acids as graph nodes, with the attention level between amino acids 
serving as the edge weights. This transformation aims to convert the problem into a graph node 
classification problem. 

Furthermore, we are attentive to the crucial role of the interactions between long non-coding RNA 
(lncRNA) and microRNA (miRNA) in various biological processes such as cell metabolism [36,37] 
and gene regulation [38,39]. Research in this area will provide valuable insights into gene markers 
associated with COVID-19 and diabetes. This has sparked significant research interest for us. Currently, 
many researchers have achieved promising results in this field [40,41]. For example, Wang et al., 
aiming to overcome the limitations of graph convolutional network (GCN) in predicting potential 
relationships between lncRNA and miRNA, proposed GCNCRF to infer the relationship between 
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lncRNA and miRNA. This method begins by constructing a heterogeneous network based on known 
interaction information, similarity networks and the LncRNA/miRNA feature matrix in the database. 
Subsequently, the initial embeddings are obtained and updated using a GCN with a conditional random 
field. Ultimately, predictive scores are generated. Zhang et al., aiming to address the gap in high-
precision, high-performance computational models, proposed NDALMA based on distance analysis. 
This method is constructed through two types of similarity networks, including similarity networks of 
lncRNAs and miRNAs, as well as a Gaussian interaction profile kernel similarity network. 
Subsequently, a distance analysis is performed on the integrated network. The preliminary work of the 
researchers has provided us with a solid theoretical framework and technical paradigms. We hope to 
draw inspiration from their achievements and make significant contributions to the forefront of 
biomedical research, building on their success and achieving more exciting progress. 
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