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Abstract: The epigenetic modification of DNA N4-methylcytosine (4mC) is vital for controlling DNA 
replication and expression. It is crucial to pinpoint 4mC’s location to comprehend its role in 
physiological and pathological processes. However, accurate 4mC detection is difficult to achieve due 
to technical constraints. In this paper, we propose a deep learning-based approach 4mCPred-GSIMP 
for predicting 4mC sites in the mouse genome. The approach encodes DNA sequences using four 
feature encoding methods and combines multi-scale convolution and improved selective kernel 
convolution to adaptively extract and fuse features from different scales, thereby improving feature 
representation and optimization effect. In addition, we also use convolutional residual connections, 
global response normalization and pointwise convolution techniques to optimize the model. On the 
independent test dataset, 4mCPred-GSIMP shows high sensitivity, specificity, accuracy, Matthews 
correlation coefficient and area under the curve, which are 0.7812, 0.9312, 0.8562, 0.7207 and 0.9233, 
respectively. Various experiments demonstrate that 4mCPred-GSIMP outperforms existing prediction tools. 

Keywords: DNA N4-methylcytosine; multi-scale convolution; selective kernel convolution; global 
response normalization 
 

1. Introduction  

DNA methylation is a process in which methyl groups are added to a DNA molecule. This process 
can alter the activity of a DNA segment without changing the sequence of the DNA [1,2]. The most 
commonly occurring form of methylation takes place at the 5-carbon atom of cytosine, which produces 
5-methylcytosine (5mC) through the action of enzymes and substrates [3]. 5mC is the primary form 
of DNA methylation among eukaryotes and is generally present in CpG islands, which are specific 
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regions of DNA characterized by a high frequency of CpG dinucleotides [4]. CpG islands are 
frequently located in or near the promoter regions of genes within mammalian genomes. The presence 
of 5mC on these islands is associated with gene regulation and transcriptional activity. When 
methylation occurs on the promoter of a gene, it usually inhibits the transcription of the gene. The 
methylation level of CpG islands can regulate the binding of transcription factors, thereby changing 
the transcriptional activity of genes [5–7]. It is worth mentioning that some regions in the bacterial 
genome are different from the surrounding DNA sequence, called genomic islands. Genomic islands 
are clusters of genes introduced by horizontal gene transfer, which contain some functional genes that 
are different from the host. Compared with other parts of the genome, they have different G + C content. 
Genomic islands facilitate gene exchange and evolution among different species, leading to greater 
genome diversity and adaptability [8–10]. 

In addition to the common 5mC, there are several other types of DNA methylation, such as N6-
methyladenine (6mA), N4-methylcytosine (4mC) and 5-hydroxymethylcytosine (5hmC). These forms 
of methylation have distinct functions and distributions in different organisms. 5hmC is an oxidized 
product of 5mC and is involved in active DNA demethylation and gene regulation. It facilitates the 
promotion of gene expression after DNA demethylation and serves as a marker to recruit proteins to 
specific DNA sites, altering gene expression and acting as an epigenetic mark [11]. 6mA is the most 
common form of DNA methylation in prokaryotes, such as bacteria. It is involved in various biological 
processes in prokaryotic genomes, such as DNA replication, transcription, repair, recombination and 
others. The distribution and functional implications of 6mA in prokaryotic genomes differ from those 
in eukaryotic genomes. It is usually not associated with CpG islands but with the coding regions of 
genes [12,13]. 4mC is another form of DNA methylation, which is naturally present in bacteria and is 
also related to eukaryotic DNA. Recent studies have found that 4mC can act as an epigenetic mark in 
eukaryotic genomes, and the underlying enzymatic mechanism has been characterized [14,15]. 

To identify DNA methylation, traditional experimental techniques like bisulfite sequencing [16] 
and single-molecule real-time sequencing (SMRT) [17] can detect the modified sites from the DNA 
signal directly or indirectly. However, these methods are not suitable for large-scale analysis because 
they are time-consuming and labor-intensive. Thus, developing computational methods is essential to 
gain insight into the mechanism and function of DNA methylation. Some machine learning-based 
models have shown progress in predicting methylation sites [18–22], but there is room for 
improvement. These models typically use artificially designed and selected DNA sequence features 
and traditional classification algorithms to generate predictions. However, these artificial features 
require significant domain knowledge and experience. However, the limited research on methylation 
makes it challenging to identify effective features with a reliable ability to predict sites. Furthermore, 
conventional classification algorithms fall short in capturing high-order features and semantic 
information, impeding the accuracy and reliability of predictions. 

Deep learning is a cutting-edge technique that surpasses the constraints of conventional 
computational approaches and enhances the precision of models predicting methylation sites [23–36]. 
Furthermore, deep learning can combine feature fusion methods to further optimize the prediction 
effect. Several tools currently utilize deep learning and feature fusion methods to detect methylation 
sites, including iCpG-Pos [30], iPromoter-5mC [31], iRG-4mC [32] and m6A-NeuralTool [33]. These 
tools’ feature fusion methods are primarily categorized into two groups. The first category is the fusion 
of various feature encoding methods like One-hot, electron-ion interaction pseudopotential (EIIP), 
nucleotide chemical property (NCP) and Nucleotide density (ND). These encoding methods extract 
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diverse information from DNA sequences, including composition, physicochemical properties, 
periodicity and distribution. Combining encoding methods increases feature diversity and 
dimensionality, ultimately enhancing feature expressive ability. For instance, the iPromoter-5mC 
accurately predicts 5mC sites within DNA promoter regions of the genome. The tool employs two 
feature encoding methods, namely One-hot and DPF, to extract local and global sequence order 
information from DNA sample sequences. These two features are then fused, and a deep neural 
network (DNN) is used to construct a prediction model. The second category involves the fusion of 
various network structures or algorithms, like convolutional neural network (CNN), Long Short-Term 
Memory (LSTM), DNN, or other machine learning methods. These network structures or algorithms 
can extract and integrate sequence features from various levels and perspectives, including local or 
global, spatial or temporal and linear or nonlinear aspects. The fusion of diverse network structures or 
algorithms can enhance the complexity and adaptability of the model, thereby improving its fitting 
ability. For instance, m6A-NeuralTool serves as a tool to detect m6A sites in a range of species. The 
tool employs a one-dimensional convolutional layer and a majority voting strategy, combined with an 
ensemble model of a fully connected layer, support vector machine and naive Bayes, to extract and 
integrate sequence features. 

To our knowledge, there is currently no feature fusion tool designed specifically for the mouse 
genome. There are some deep learning-based predictors for predicting 4mC sites in the mouse 
genome [29,37–40]. 4mCPred-CNN [37] employs one-hot encoding and a CNN to extract features 
from DNA sequences. On the other hand, Mouse4mC-BGRU [38] and i4mC-GRU [40] utilize 
bidirectional gated recurrent units (GRU) and sequence embedding features to capture contextual 
information. These predictors can capture intricate nonlinear relationships, but they fail to fully make 
use of the various scales of information within DNA sequences, leading to limited model 
expressiveness. Recently, MultiScale-CNN-4mCPred [39] presented a computational method for 
predicting 4mC sites in the mouse genome using a multi-scale CNN and adaptive embedding. By 
employing different sizes of convolutional kernels, the method captures various scale sequence features, 
thus enhancing the flexibility and precision of feature representation. Nonetheless, this method has some 
limitations, including a fixed number and size of convolutional kernels which cannot be dynamically 
adjusted according to the data. Thus, it is essential to devise a new feature fusion tool capable of 
integrating various features to enhance the prediction accuracy of 4mC sites in the mouse genome. 

To solve these problems, we propose a prediction method based on deep neural networks named 
4mCPred-GSIMP.  The method combines the two types of fusion methods, feature encoding fusion and 
network structure fusion, using One-hot, EIIP, NCP and ND four encoding methods to encode the input 
sequence, to obtain multiple types of features, and then using multi-scale convolution (MSC) [41] and 
improved selective kernel convolution (SKC) [42] to achieve adaptive extraction and multi-scale 
fusion of multiple types of sequence features while combining convolutional residual connection, 
global response normalization (GRN) [43] and pointwise convolution (PWC) [44] techniques to 
optimize the model. Compared with existing methods, 4mCPred-GSIMP captures DNA sequence 
features from multiple perspectives, rather than relying on the limitations of one or two encoding 
schemes, and the unique network structure achieves multi-scale adaptive feature extraction and 
fusion, than using fixed size and number of convolutional kernels, or only using a single network 
structure. 4mCPred-GSIMP has better prediction performance and provides a valuable reference 
for follow-up research. 
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2. Materials and methods 

2.1. Benchmark dataset 

To evaluate 4mCPred-GSIMP and compare it with other predictors, we used the benchmark and 
independent dataset adopted by i4mC-Mouse [20]. This dataset was originally constructed by 
4mCpredEL [18] from the MethSMRT database [45], where the DNA sequence window was set to 41 
base pairs (bp), with the central position being experimentally validated 4mC sites (positive samples) 
or unmethylated cytosines (negative samples). To avoid overestimating the prediction model, i4mC-
Mouse used a more stringent CD-HIT (70%) [46] to filter the samples. After filtering, they were 
randomly divided into training and independent datasets at a ratio of 8:2, where the training dataset 
contained 746 positive (4mC) and 746 negative (non-4mC) samples, and the independent dataset 
contained 160 positive and 160 negative samples. Using these balanced datasets of positive and 
negative samples, we can eliminate the impact of class imbalance on model performance, that is, avoid 
the model bias towards predicting the more abundant class, thereby reducing the prediction accuracy 
and robustness. In this way, the model will perform more stable and reliably in the test set and the real 
environment, and also make the evaluation metrics such as accuracy, recall, etc. more meaningful. 

2.2. Model construction 

Figure 1 illustrates the three major components of 4mCPred-GSIMP: The feature encoding 
module, the Multi-scale Adaptive Feature Extraction and Fusion module (MSAFEF) and the prediction 
module. The feature encoding module converts DNA sequences into numerical feature matrices that 
serve as inputs for the next component. MSAFEF consists of three layers of sub-models that extract 
and fuse features from multiple scales and dimensions of the input matrix, enhancing their 
expressiveness and resolution ability. The prediction module uses the final features to perform binary 
classification, determining whether the DNA sequence contains 4mC sites or not. 

2.2.1. Feature encoding module 

We use a hybrid encoding scheme that combines One-hot, EIIP, NCP and ND encoding methods 
to represent DNA sequences. These four encoding mothods produce feature matrices with the same 
column dimension (41), which allows us to fuse them. As shown in Figure 1(A), for a DNA sequence 
fragment of length 41 bp, we can obtain feature matrices of sizes 4 × 41, 1 × 41, 3 × 41 and 1 × 41 
using One-hot, EIIP, NCP and ND encoding methods, respectively. Then, we concatenate these four 
matrices to form a 9 × 41 feature matrix. Finally, we feed this 9 × 41 feature matrix into a bias-free 
linear layer that performs a linear transformation in the first dimension, converting the 9 × 41 feature 
matrix into an N × 41 feature matrix. The purpose of the last step is to make the feature matrices 
generated by different hybrid encoding schemes have the same size for subsequent module processing.  
It is important to note that this operation requires each encoding method to use a numerical vector to 
represent the nucleotides at each position in the sequence. Consequently, the encoding can generate a 
feature matrix of size L × 41, where L is any positive integer. 
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Figure 1. The architecture of 4mCPred-GSIMP. (A) Feature encoding module. The input 
sequence is encoded by a hybrid of four encoding s: One-hot, EIIP, NCP and ND, resulting 
in a 9 × 41 feature matrix. Then, a bias-free linear transformation is applied to adjust its 
dimension to N × 41. (B) Multi-scale adaptive feature extraction and fusion module. It is 
composed of three stacked multi-scale adaptive convolution units (MSACU). Each unit 
consists of global GRN, MSC, improved SKC, PWC and residual convolution. (C) 
Prediction module. The feature matrix is flattened into a feature vector, which is fed into a 
fully connected neural network to predict whether there is a 4mC site. 

1) One-hot encoding 
One-hot [36] encoding is considered a feasible encoding method due to its feasibility, efficiency 

and ability to ensure that each nucleotide letter is encoded independently. This encoding method 
encodes each nucleotide letter into a four-dimensional vector, where only one dimension is 1 and the 
rest are 0. For example, given a DNA sequence of length n  bp, S ൌ 𝑠ଵ𝑠ଶ … 𝑠௡ , we can construct a 
function f: S → 𝑅ሺ𝟜ൈ௡ሻ, where 𝑠௜ ∈ ሼA, C, G, Tሽ. The specific formula is as follows: 

 𝑓ሺ𝑆ሻ ൌ ሾ𝑓ሺ𝑠ଵሻ 𝑓ሺ𝑠ଶሻ ⋯ 𝑓ሺ𝑠௡ሻሿ，𝑓ሺ𝑠௜ሻ ൌ

⎩
⎪
⎨

⎪
⎧ሺ1,0,0,0ሻ், 𝑠௜ ൌ 𝐴
ሺ0,1,0,0ሻ், 𝑠௜ ൌ 𝐶
ሺ0,0,1,0ሻ், 𝑠௜ ൌ 𝐺
ሺ0,0,0,1ሻ், 𝑠௜ ൌ 𝑇

  (1) 

This way, we get a 4 × n feature matrix, where each column corresponds to the one-hot encoding 
of a nucleotide letter. 
2) NCP encoding 

DNA sequences are composed of four nucleotides, which are adenine (A), cytosine (C), guanine 
(G) and thymine (T). They have different chemical properties, such as ring structure, hydrogen bond 
strength and chemical function. These properties can affect the interactions between nucleotides, thus 
affecting the structure and function of DNA. To utilize this information, we can use the NCP [21,47,48] 
encoding method to represent the chemical properties of each base with a three-dimensional vector, 
where each dimension uses 0 or 1 to distinguish the category of a certain property of the base. Table 1 
shows the chemical properties and NCP encoding of the bases. 
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Table 1. Chemical properties and NCP encoding of nucleotides. 

Nucleotide Ring structure Hydrogen bond strength Chemical function NCP 
A Purine  Weak  Amino (1,1,1) 
C Pyrimidine  Strong  Amino (0,0,1) 
G Purine  Strong  Keto (1,0,0) 
T Pyrimidine  Weak  Keto (0,1,0) 

3) ND encoding 
ND [49] encoding calculates each nucleotide as a scalar based on the cumulative frequency 

distribution of nucleotides up to that position in the DNA sequence. This encoding method can reflect 
the density changes and distribution patterns of nucleotides in the sequence, thereby improving the 
expression ability of features. The calculation formula for the ND value is as follows: 

 𝑑௜ ൌ
ଵ

௜
෍ 𝑓൫𝑅௝൯

௜

௝ୀଵ
,𝑓൫𝑅௝൯ ൌ ൜

1, if 𝑅௝ ൌ 𝑅௜
0, otherwise

, 𝑖 ൌ 1, … , 𝐿  (2) 

where L is the sequence length, 𝑅௜  is the nucleotide at the 𝑖 -th position, and f൫R୨൯  is an indicator 

function, which is 1 when the nucleotide at the 𝑗 -th position is equal to 𝑅௜ , and 0 otherwise. For 
example, in Figure 1(A), for a DNA sequence of 41 bp, the fourth position has a “T” nucleotide, and 
there are four nucleotides from the beginning to this position, among which only one is “T”, so the ND 
value at this position is 1/4 = 0.2500. 
4) EIIP encoding 

Similar to ND encoding, EIIP [49] encoding is also a method of representing each nucleotide in 
a sequence with a single value. EIIP encoding uses the EIIP values directly to represent the nucleotides 
in the DNA sequence. The EIIP values are calculated from the energy of delocalized electrons in the 
nucleotides, which are A: 0.1260, C: 0.1340, G: 0.0806 and T: 0.1335, respectively. Therefore, given 
a DNA sequence of length n bp, we can obtain an n-dimensional numerical vector to represent the 
sequence, where each element is an EIIP value of a nucleotide. 

2.2.2. Multi-scale adaptive feature extraction and fusion module 

As shown in Figure 1(B), the multi-scale adaptive feature extraction and fusion module (MSAFEF) 
consists of three layers of stacked MSACU. Each MSACU can extract local features, and by stacking 
three layers of units, the MSAFEF can fit the global features of the entire sequence. As mentioned 
earlier, a 41 bp DNA sequence generates an N × 41-dimensional feature matrix through the feature 
encoding module. The role of MSAFEF is to extract and capture high-order features and semantic 
information from the input feature matrix. 
1) MSACU 

MSACU is a submodule of MSAFEF, which can perform multi-level, multi-scale and multi-
dimensional feature extraction and fusion on the input feature matrix and maintain the integrity and 
consistency of the features through residual connection and pointwise convolution. 

As shown in Figure 1(B), for a 𝐶 ൈ 𝐿 feature map 𝒳, where 𝐶 represents the number of channels, 
𝐿 represents the sequence length. First, we apply GRN 𝐺𝑅𝑁ሺ⋅ሻ to 𝒳, obtaining 𝒳෡. This technique can 
enhance the diversity and competitiveness of different channels in the feature map and does not change 
the size of the feature map. 
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After that, to achieve multi-scale feature extraction, we perform MSC 𝐹௠௦௖ሺ⋅ሻ. The idea of this 
operation is to pass the input feature map 𝒳෡ through three one-dimensional convolution layers with 
different scales (1,3,5), respectively obtaining three feature sub-maps, and then concatenate them in 
the channel dimension to form a rich output feature map 𝒳෡௠௦௖: 

 𝒳෡௠௦௖ ൌ 𝐹௠௦௖൫𝒳෡൯ ൌ σ௛൫ൣ𝑓ଵ൫𝒳෡൯,𝑓ଷ൫𝒳෡൯, 𝑓ହ൫𝒳෡൯൧൯  (3) 

where 𝑓ଵ,𝑓ଷ, 𝑓ହ are one-dimensional convolution operations with scales of 1, 3 and 5, respectively, 
ሾ⋅ሿ is the concatenation operation, and σ௛ is the Hard-Swish activation function [50]. 

Improved SKC 𝐹iskcሺ⋅ሻ  is used to further fuse features of different scales. This is an adaptive 
convolution method that can dynamically adjust the size and shape of the convolution kernel according 
to the local information of the input feature. Since the stride of the improved SKC is 2, it will halve 
the sequence length of the input feature map. When the sequence length 𝐿 of the input feature map is 
not a multiple of 2, zero padding is also required at the end to ensure that the sequence length of the 
output feature map 𝒳෡௜௦௞௖ is an integer. Where 𝐿ᇱ ൌ ⌈𝐿/2⌉, ⌈⋅⌉ represents rounding up. 

The pointwise convolution [44] layer is a method used to fuse and reduce features in the channel 
dimension. It only uses 1 × 1 convolution kernels, which can reduce computation and parameter 
amounts. Through a pointwise convolution layer, channel dimension changes from 3𝐶  to 2𝐶 , σ௥ 
represents ReLU activation function: 

 𝒳෡௣௪ ൌ 𝐹௣௪൫𝒳෡௜௦௞௖൯ ൌ σ௥ ቀ𝑓ଵ൫𝒳෡௜௦௞௖൯ቁ  (4) 

To retain the original information of the input feature map 𝒳, we perform residual connection [51] 
between it and 𝒳෡௣௪. This is a common technique that can prevent gradient disappearance and overfitting. 
To achieve residual connections, we first perform a convolution operation 𝑓௖ሺ⋅ሻ on 𝒳 with a kernel 
size of 3 and a stride of 2. This can make its output feature map have the same dimension as 𝒳෡௣௪ so 
that they can be added. In this way, we complete an MSACU, which can extract and fuse features of 
different scales and shapes from the input feature map, enhancing model performance. After sorting 
out, MSACU’s formula is as follows: 

 𝑈௠ሺ𝒳ሻ ൌ σ௥൫𝑓௖ሺ𝒳ሻ൯ ൅ 𝐹௣௪ ൬𝐹௜௦௞௖ ቀ𝐹௠௦௖൫𝐺𝑅𝑁ሺ𝒳ሻ൯ቁ൰  (5) 

2) GRN 
A novel feature normalization technique called global response normalization (GRN) [43] seeks 

to enhance feature competition among channels in convolutional neural networks, which enhances the 
effectiveness and generalizability of the model. It enables contrast and selectivity between different 
channels by aggregating, normalizing and calibrating the feature maps on each channel with the global 
L2 norm. Specifically, given an input feature map 𝑋 ∈ 𝑅ுൈௐൈ஼ , GRN layer first computes the L2 
norm on each channel: 

 𝒢ሺ𝑋ሻ ൌ ሼ∥ 𝑋ଵ ∥, ∥ 𝑋ଶ ∥, … , ∥ 𝑋஼ ∥ሽ ∈ ℛ𝒞 ,𝒢ሺ𝑋ሻ௜ ൌ∥ 𝑋௜ ∥  (6) 

Then, it divides this value by the average norm over all channels, obtaining a relative importance score: 

 𝒩ሺ|𝑋௜|ሻ ≔ |𝑋௜| ∈ ℛ → |௑೔|

∑ |௑ೕ|ೕసభ,…,಴
∈ ℛ  (7) 

This score is used to modulate the original feature map’s response: 

 𝑋௜ ൌ 𝑋௜ ∗ 𝒩ሺ𝒢ሺ𝑋ሻ௜ሻ ∈ ℛℋൈ𝒲  (8) 
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In addition, to facilitate optimization, two additional learnable parameters γ , β  are added and 
initialized to zero. Also, a residual connection is added between the input and output of the GRN layer, 
resulting in the final GRN block: 

 𝑋௜ ൌ γ ∗ 𝑋௜ ∗ 𝒩ሺ𝒢ሺ𝑋ሻ௜ ሻ ൅ β ൅ 𝑋௜  (9) 

This setting allows the GRN layer to initially perform an identity mapping function and gradually 
adapt during training. 

GRN has some differences and connections with other feature normalization methods. It is similar 
to Local Response Normalization [52], but GRN does not normalize the responses within a small 
window of neighboring neurons, but rather normalizes the responses over the entire layer. This can 
leverage global information to enhance channel-wise competition. Unlike Batch Normalization [53] 
or Layer Normalization [54], GRN does not perform standardization or scaling operations on each 
neuron, but rather performs importance evaluation and modulation operations on each channel. This 
can preserve the distribution and structure of the original feature map. 

In order to make the GRN applicable to feature matrices encoded in nucleotide sequences, the 
input feature X ∈ 𝑅ுൈௐൈ஼  is adapted to 𝑋 ∈ 𝑅஼ൈ௅ , and the global feature aggregation, feature 
normalization and feature calibration are changed. This allows the aggregation and normalization 
operations to be performed on vectors of length L on each channel, instead of performing these 
operations on the 2D matrix of 𝐻 ൈ𝑊 . This adaptation maintains the original design intent and 
function of the GRN layer, which is to improve the quality of the representation by enhancing feature 
diversity and competitiveness between channels, while adapting to the structure of the feature matrix 
encoded by the nucleotide sequences. 
3) Improved SKC 

Motivated by the fact that the receptive field size of human visual neurons can adapt dynamically, 
Li et al. [42] proposed selective kernel convolution (SKC), which can dynamically select convolution 
kernels according to the multi-scale information in the features. SKC consists of three steps: Split, 
Fuse and Select. In the Split phase, convolution kernels of different sizes convolve the input feature 
maps to generate multiple feature sub-maps. In the Fuse phase, these feature sub-maps are combined 
and aggregated to obtain a global and comprehensive representation of the weights. In the Select phase, 
feature sub-maps of different kernel sizes are aggregated based on the selection weights.  

We improved the original SKC, and the structure diagram is shown in Figure 2. In the Split phase, 
we replaced dilated convolution with regular convolution with the same kernel size and used Hard-
Swish [50] as the activation function. Although dilated convolution could reduce the model parameters 
and run time, it caused information loss due to the discontinuity of the convolution kernel and the 
reduced amount of information. In addition, in the original SKC, in the Fuse phase, the dimension of 
the feature with channel size after global average pooling was compressed into a compact feature 
descriptor by a simple fully connected layer. However, while dimensionality reduction could reduce 
model complexity, the direct correspondence between channel features and attention weights in the 
Select phase was destroyed by it. This approach of projecting channel features into a low-dimensional 
space and then mapping them back made the correspondence between channels and their weights 
indirect, which hurt the acquisition of attention weights, and the acquisition of dependencies was 
inefficient and unnecessary. Therefore, in the Fuse phase, we did not perform dimensionality reduction 
on the channel features after global average pooling to maintain a direct correspondence between 
channel features and attention weights in the selection step. It should be noted that, as with GRN, to 
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make SKC suitable for feature matrices encoded by nucleotide sequences, we replaced two-
dimensional convolution with one-dimensional convolution (PyTorch). Furthermore, we removed all 
batch normalization operations, as in some cases adding batch normalization would destroy the 
distribution structure of the feature data, resulting in information loss and thus reducing the predictive 
performance of the model. In summary, with our improvements, SKC reduced information loss during 
feature extraction, and enhanced the inter-channel interactions and dependencies, improving feature 
richness and expressiveness. 

 

Figure 2. Construction of improved SKC. 

2.2.3. Prediction module 

Finally, in the prediction module, we used a fully connected neural network as a classifier to 
generate prediction results. Figure 1(C) shows the structure of this module. After extracting high-level 
features, we use nn.Flatten (PyTorch) to flatten the feature matrix into a vector, which is then input to 
the fully connected neural network, where the dropout rate of each layer is 0.5, the first two layers use 
a Hard-Swish activation function, and the final output layer uses the softmax function to calculate the 
prediction probability of 4mC sites. 

2.3. Performance evaluation 

To develop and train our model, we used Python 3.9.16 and torch 2.0.0 + cu118 as tools and 
evaluated and tested the performance of the model using 10-fold cross-validation. Our classifier was 
trained for 200 epochs with a batch size of 28 in each fold, fitting on the training set and tuning on the 
validation set. We adopted cross-entropy as the loss function, used Adam as the optimizer and set the 
learning rate to 8 × 10−5. To avoid overfitting, we terminated the training process when the maximum 
Matthews correlation coefficient (MCC) value on the validation set did not improve for 40 consecutive 
epochs. To measure our model performance, we chose the following five evaluation metrics: 
Sensitivity (Sn), specificity (Sp), accuracy (Acc), MCC and area under the curve (AUC) [55]. These 
metrics reflect the model’s performance on the classification problem, and their formulas are as follows: 

 

𝑆𝑛 ൌ ்௉

்௉ାிே

𝑆𝑝 ൌ ்ே

்ேାி௉

𝐴𝑐𝑐 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே

𝑀𝐶𝐶 ൌ ்௉ൈ்ேିி௉ൈிே

ඥሺ்௉ାிேሻൈሺ்ேାிேሻൈሺ்௉ାி௉ሻൈሺ்ேାி௉ሻ

  (10) 
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where TP, FP, TN and FN denote the number of true positives, false positives, true negatives and false 
negatives, respectively. AUC is calculated by plotting Sn versus (1-Sp) for different threshold settings 
and computing the area under the receiver operating characteristic curve. The higher the metric values, 
the better the model performance. 

3. Result and Discussion  

3.1. Comparison of different features coding schemes 

Feature engineering is one of the critical steps in building an adequate model, so it is essential to 
choose an appropriate encoding method to represent feature data. In this study, four encoding techniques 
are involved, namely, One-hot encoding, NCP encoding, EIIP encoding and ND encoding. We designed 
nine encoding schemes. Specifically, the first encoding scheme uses all four encoding techniques, the 
second to fifth encoding schemes remove one encoding technique each time and use the remaining three, 
and the sixth to ninth encoding schemes use each encoding technique separately. We feed the feature 
matrices generated by the nine encoding schemes into our 4mCPred-GSIMP network framework, conduct 
experiments on both training and independent test datasets and measure the model performance using 
various metrics, where we repeated ten-fold cross-validation ten times on the training dataset and take the 
average of the results. The experimental results are shown in Figure 3, where we use the four letters O, P, 
E and D to represent One-hot, NCP, EIIP and ND, respectively, for simplicity. The results show that the 
first encoding scheme performs best on most performance metrics, indicating that each encoding method 
has its contribution and that the combination of the four encoding techniques can achieve the best results. 
Therefore, we adopted the first encoding scheme as the final encoding method in this study. 

 

Figure 3. Performance comparison of different feature encoding schemes on training and 
independent test datasets. 

3.2. Comparison with or without GRN model 

To improve the prediction performance of the model, we introduce GRN in 4mCPred-GSIMP, 
which is a technique that can enhance the contrast and selectivity between feature map channels. We 
evaluate the effectiveness of GRN by using repeated ten-fold cross-validation ten times and 
independent test and analyze its impact on model prediction performance. Figure 4 shows the results 
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of the two validation methods. Compared with the model without GRN, the model with GRN on the 
training dataset increased Sn, Acc, MCC, and AUC by 2.67, 0.88, 1.47, 0.53%, respectively, while 
decreasing Sp by 0.93%. The model with GRN on the independent test dataset improved Sp, Acc, 
MCC and AUC by 4.37, 0.31, 1.28 and 0.21%, respectively, while Sn decreased (3.76%). Overall, the 
models with GRN achieve better prediction results in both cross-validation and independent test. 

 

Figure 4. Performance comparison of models with and without GRN on training and 
independent test datasets. 

3.3. Effectiveness of improved selective kernel convolution 

To verify the effectiveness of our improvement, we conducted comparative experiments between 
the Improved SKC and the original SKC. We used two evaluation methods: repeated ten-fold cross-
validation ten times and independent testing and compared the two schemes from the perspectives of 
Sn, Sp, Acc, MCC and AUC. The results are shown in Figure 5. On the training dataset, the Improved 
SKC improved Sp, Acc, MCC and AUC by 5.38, 1.92, 3.44 and 0.33%, respectively, compared to the 
Original SKC, while Sn decreased by 1.37%. On the independent test dataset, the Improved SKC 
improved Sn, Acc, MCC and AUC by 11.87, 4.68, 7.34 and 3.17%, respectively, compared to the 
Original SKC, while Sp slightly decreased by 2.51%. Based on the data and figure, we can see that the 
Improved SKC can predict the positive and negative samples more balanced and has higher Acc, MCC 
and AUC, demonstrating the effectiveness of our improvement. 

 

Figure 5. Performance comparison of the improved SKC and the original SKC training 
and independent test datasets. 
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3.4. Comparison of 4mCPred-GSIMP with existing predictors 

To demonstrate the effectiveness of 4mCPred-GSIMP, we compared it with several existing predictors, 
including 4mCpred-EL, i4mC-Mouse, Mouse4mC-BGRU and MultiScale-CNN-4mCPred. As mentioned 
earlier, different computational techniques are used for these predictors and will not be described here. We 
performed ten-fold cross-validation on the training dataset and performance evaluation on the independent 
test dataset, where cross-validation was repeated ten times. Tables 2 and 3 show the specific values of 
different evaluation metrics for the two validation methods. As can be seen from the table, 4mCPred-
GSIMP shows some advantages in cross-validation, especially in Acc, which achieves the highest 
score of 0.8178, indicating that it can predict DNA 4mC sites accurately. Moreover, it also achieves high 
scores on Sn and Sp, which are 0.8080 and 0.8292, respectively, surpassing the threshold of 0.8. In the 
independent test, 4mCPred-GSIMP performed best in all metrics except Sn. Compared with the current 
optimal predictor MultiScale-CNN-4mCPred, 4mCPred-GSIMP has 9.37, 0.93 and 1.55% higher Sp, 
Acc and MCC, respectively. In addition, we also compared 4mCPred-GSIMP with 4mCPred-CNN, 
which is implemented on a user-friendly web server: http://nsclbio.jbnu.ac.kr/tools/4mCPred-CNN/. 
We uploaded the independent test dataset to the web server of 4mCPred-CNN for prediction and 
counted the prediction performance at different thresholds, and also listed the performance of 
4mCPred-GSIMP at different thresholds, as shown in Table 4. It can be seen that 4mCPred-GSIMP is 
better than 4mCPred-CNN in terms of Acc and MCC values. Moreover, Figure 6 shows the ROC curve 
of 4mCPred-GSIMP on the independent test dataset, with an AUC value of 0.9233. These results 
confirm that 4mCPred-GSIMP is an effective and advanced tool for predicting DNA 4mC sites. 

Table 2. The performance over the 10-fold cross-validation. 

Predictor Sn Sp Acc MCC 

4mCpred-EL 0.8040 0.7870 0.7950 0.5910 

i4mC-Mouse 0.6831 0.9020 0.7930 0.6510 

Mouse4mC-BGRU 0.7940 0.8400 0.8100 0.6200 

MultiScale-CNN-4mCPred 0.8008 0.8294 0.8166 0.6335 

4mCPred-GSIMP 0.8080 0.8292 0.8178 0.6389 

Table 3. The performance over the independent test. 

Predictor Sn Sp Acc MCC 

4mCpred-EL 0.7572 0.8251 0.7910 0.5840 

i4mC-Mouse 0.8071 0.8252 0.8161 0.6330 

Mouse4mC-BGRU 0.8000 0.8500 0.8250 0.6510 

MultiScale-CNN-4mCPred 0.8563 0.8375 0.8469 0.6939 

4mCPred-GSIMP 0.7812 0.9312 0.8562 0.7207 
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Table 4. Comparison with 4mCPred-CNN over the independent test for various thresholds. 

Predictor 
4mCPred-CNN 4mCPred-GSIMP 

Sn Sp Acc MCC Sn Sp Acc MCC 
0.1 0.9250 0.3438 0.6344 0.3302 0.9875 0.3125 0.6500 0.4066 
0.2 0.8500 0.6063 0.7281 0.4704 0.9563 0.6187 0.7875 0.6108 
0.3 0.7875 0.7375 0.7625 0.5257 0.8813 0.7688 0.8250 0.6542 
0.4 0.6813 0.8000 0.7406 0.4847 0.8313 0.8625 0.8469 0.6941 
0.5 0.6125 0.8625 0.7375 0.4906 0.7812 0.9312 0.8562 0.7207 
0.6 0.4938 0.9125 0.7031 0.4474 0.6625 0.9563 0.8094 0.6473 
0.7 0.3813 0.9438 0.6625 0.3931 0.5188 0.9688 0.7437 0.5459 
0.8 0.2688 0.9750 0.6219 0.3443 0.4125 0.9937 0.7031 0.4992 
0.9 0.1563 0.9875 0.5719 0.2586 0.2875 1.0000 0.6438 0.4097 

 

Figure 6. ROC curves for 4mCPred-GSIMP on independent test dataset. 

3.5. Generalization ability of 4mCPred-GSIMP 

To assess the predictive accuracy of 4mCPred-GSIMP for different DNA methylation types and 
species, we utilized 17 datasets sourced from the web application of Lv et al. [56]. The datasets 
encompass three methylation types across various species: 4mC, 6mA and 5hmC. Specifically, the 
species of 4mC include C. equisetifolia (732), F. vesca (31579), S. cerevisiae (3958) and 
Tolypocladium (30654); the species of 6mA include A. thaliana (63746), C. elegans (15922), C. 
equisetifolia (12132), D. melanogaster (22382), F. vesca (6204), H. sapiens (36670), R. chinensis 
(1200), S. cerevisiae (7572), T. thermophile (215200), Tolypocladium (6759) and Xoc BLS256 (34430); 
the species of 5hmC include H. sapiens (4688) and M. musculus (7358). The numbers in parentheses 
indicate the total number of samples in each species’ corresponding dataset. 

In these datasets, the sample number of the training dataset and the independent test dataset for 
each dataset is 1:1, and the number of positive and negative samples is also 1:1. Each sample of each 
dataset is a 41 bp long DNA fragment, and the target site is located at the center position. We trained 
4mCPred-GSIMP using the training dataset and evaluated its performance using the independent test 
dataset. To further evaluate its performance, we compared it with two other transformer-based [57] 
methods, iDNA-ABF [27] and MuLan-Methyl [28]. Both of these methods use transfer learning and 
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adversarial training to improve generalization ability and accuracy, but MuLan-Methyl uses the 
average probability of five language models as the final result, and combines species classification 
information as an additional feature. 

Figure 7 illustrates the Acc and AUC of three methods across 17 datasets. The prediction 
performance of 4mCPred-GSIMP varies based on different methylation types. Regarding 4mC, 
4mCPred-GSIMP yields higher Acc and AUC than iDNA-ABF and MuLan-Methyl on most datasets. 
For 6mA, 4mCPred-GSIMP also exhibits the optimal or nearly optimal level in various datasets except 
for C. equisetifolia, R. chinensis and Tolypocladium. However, the prediction performance of 
4mCPred-GSIMP for 5hmC still falls short when compared to iDNA-ABF and MuLan-Methyl. At the 
species level, 4mCPred-GSIMP holds greater predictive advantages for plants and fungi over animals, 
and only in three animal datasets (5hmC_M.musculus, 5hmC_H.sapiens, 6mA_H.sapiens), both AUC 
and Acc are lower than the other two methods. 

 

Figure 7. Comparison with iDNA-ABF and MuLan-Methyl on 17 datasets. 

4. Conclusions  

In this paper, we address the problem of predicting DNA 4mC sites in mouse genomes and 
proposes a new method based on deep learning, named 4mCPred-GSIMP, which can effectively 
improve prediction accuracy. The method uses four feature encoding methods, namely One-hot, EIIP, 
NCP and ND, to obtain various types of sequence features, and then adopts a combination of MSC and 
improved SKC, to achieve adaptive feature extraction and fusion from different scales, thereby 
enhancing the feature representation and optimization capabilities. In addition, the method also 
introduces convolutional residual connections, GRN and pointwise convolution techniques, to further 
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optimize the model structure. The experimental results on the mouse genome dataset show that 
4mCPred-GSIMP outperforms the existing methods in terms of prediction performance. To verify the 
generalization ability of 4mCPred-GSIMP on different species and different DNA methylation types 
of modification sites, we also tested it on 17 datasets involving multiple species and three methylation 
types (4mC, 6mA and 5hmC). The results show that 4mCPred-GSIMP has good generalization 
performance, and can achieve a high level of prediction on different species and different methylation 
types of sites. Compared with existing prediction tools, 4mCPred-GSIMP can capture the features of 
DNA sequences from multiple perspectives, rather than relying solely on the limitations of one or two 
encoding schemes, and its unique network structure can achieve multi-scale adaptive feature extraction 
and fusion, rather than using fixed size and number of convolutional kernels, or only using a single 
network structure. The limitation of 4mCPred-GSIMP is that due to the over-parameterization of the 
deep learning network, it is prone to overfitting on the datasets with fewer samples, which limits the 
generalization performance on the independent test set, and it also lacks sufficient interpretability for 
the prediction results. In our future work, we plan to improve our model, explore the combination of 
transfer learning or meta-learning techniques, optimize the model performance on small samples and 
enhance its interpretability. 
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