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Abstract: An accurate passenger flow forecast can provide key information for intelligent 
transportation and smart cities, and help promote the development of smart cities. In this paper, a mixed 
passenger flow forecasting model based on the golden jackal optimization algorithm (GJO), variational 
mode decomposition (VMD) and boosting algorithm was proposed. First, the data characteristics of 
the original passenger flow sequence were extended. Second, an improved variational modal 
decomposition method based on the Sobol sequence improved GJO algorithm was proposed. Next, 
according to the sample entropy of each intrinsic mode function (IMF), IMF with similar complexity 
is combined into a new subsequence. Finally, according to the determination rules of the sub-sequence 
prediction model, the boosting modeling and prediction of different sub-sequences were carried out, 
and the final passenger flow prediction result was obtained. Based on the experimental results of three 
scenic spots, the mean absolute percentage error (MAPE) of the mixed set model is 0.0797, 0.0424 
and 0.0849, respectively. The fitting degree reached 95.33%, 95.63% and 95.97% simultaneously. The 
results show that the hybrid model proposed in this study has high prediction accuracy and can provide 
reliable information sources for relevant departments, scenic spot managers and tourists. 

Keywords: scenic passenger flow; golden jackal optimization; variational mode decomposition; 
boosting; hybrid ensemble model 

 

1. Introduction 

The prediction of passenger flow has a direct bearing on smart cities and intelligent transportation. 



301 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 300–324. 

Precise forecasting of passenger volume can aid in the logical design of public transportation routes, 
enhancing both the effectiveness of urban transportation and the well-being of individuals [1,2]. The 
province of Jilin considers tourism to be the main driver of economic growth. The Jilin International 
Rime Ice and Snow Festival, Changchun Ice and Snow Tourism Festival, and other annual events 
organized in Jilin Province in recent years have boosted the number of tourists visiting the province's 
tourist attractions. As a result, the creation of a tourist traffic forecast model aids in the formulation of 
scientific traffic management policies by tourism departments, therefore advancing the growth of smart 
cities in Jilin. 

Numerous forecasting models have been developed and proposed by researchers on the subject 
of passenger flow forecasting. These methods may be broadly classified into three categories: 
statistical model, machine learning and AI, and decomposition hybrid approaches. The autoregressive 
moving average (ARMA) model [3], autoregressive integrated moving average (ARIMA) model [4], 
and seasonal autoregressive integrated moving average (SARIMA) model [5] are some of the 
fundamental statistical models now in use. The statistical model, it is thought, falls short in explaining 
the nonlinear aspects of the passenger flow time sequence. 

As information technology advances, scientists are focusing more on AI and machine learning 
models as a solution to the issue that complex data shouldn't be analyzed using statistical approaches. 
For example, Chen et al. [6] referred to the theories of the support vector machine (SVM) and genetic 
algorithm (GA), and put forward a traffic flow forecasting model based on the least squares support 
vector machine (LS-SVM). Li et al. [7] constructed a new dynamic radial basis function (RBF) 
network to forecast the outward passenger flow. Gao et al. [8] constructed a scenic spot passenger flow 
forecasting method based on a convolutional neural network (CNN) and long-term and short-term 
memory (LSTM). This method considers various traffic flows around the scenic spot and has high 
accuracy and robustness. Lu et al. [9] constructed a forecasting method (GA-CNN-LSTM), which 
combined CNN and LSTM optimized by GA. Compared to other intelligent algorithms this method is 
more accurate at predicting the daily tourist flow of the Huangshan Scenic Area. Zou et al. [10] 
proposed a method to predict the passenger flow of bus lines by extreme gradient boosting (XGBoost). 
In comparison to the deep learning model LSTM and their benchmark models, XGBoost can obtain 
higher accuracy. Tan et al. [11] proposed a new two-stage heuristic algorithm based on an ant colony 
algorithm and established a mixed integer linear programming model. Liu et al. [12] combined deep 
learning with professional knowledge in the field of transportation to predict subway passenger flow. 
Liu et al. [13] proposed an optimization method for a driver's delivery route based on a language model. 

Following the development of prediction technology, the usage of data preparation in AI and 
machine learning models has been developing. The model based on data preprocessing uses empirical 
mode decomposition (EMD) [14], empirical wavelet transform (EWT) [15], ensemble empirical mode 
decomposition (EEMD) [16] and variational mode decomposition (VMD) [17] to decompose or the 
original data. A lot of research has proved the effectiveness of these algorithms. For example, Wei and 
Chen [18] combined EMD and a back propagation neural network (BPN) to propose a hybrid EMD-
BPN forecasting method. Liu et al. [19] put forward a mixed forecasting model, which combines 
wavelet transform and kernel extreme learning machine (KELM), and the model has been validated 
on Beijing subway data. Cao et al. [20] combined EEMD with LSTM to build a subway passenger 
flow forecasting model. The outcomes demonstrate that the EEMD-LSTM model has superior 
accuracy in projecting short-term subway passenger flow. The forecasting findings demonstrate that 
Cui et al.’s [21] model for forecasting tourist flow, based on EMD and gated recurrent unit (GRU), is 
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more accurate than recurrent neural network (RNN) and LSTM at predicting the volume of visitors to 
the Black Valley picturesque area. According to the aforementioned studies, breaking down the series 
before making a prediction can significantly increase its accuracy. In addition, as a newly developed 
method, VMD is very efficient in processing nonlinear signals and has good forecasting ability in wind 
speed forecasting [22], crude oil price forecasting [23,24], carbon price forecasting [25] and so on. 

Enlightened by the successful application of the models, this study builds a hybrid passenger 
flow forecasting model based on an improved variational mode decomposition and boosting algorithm. 
This model is used to study the tourist flow to well-known scenic locations in Jilin Province. 
Specifically, the original passenger flow sequence is preprocessed into various subsequences. The 
modified golden jackal optimization algorithm is applied to optimize the variational mode 
decomposition to prevent the improbability of arbitrarily specified parameters. Second, the 
subsequence is reconstructed and its complexity is estimated using sample entropy (SE). To 
dynamically decide the prediction submodels of the decomposition sequence and realize accurate 
point prediction, a prediction module with five submodels is then creatively built. The study’s 
conclusions are an invaluable resource for anybody carrying out development planning, upkeep of 
attractive regions and provision of intelligent tourism services. 

The following is an introduction to this paper’s significant contributions. 
(1) To predict tourist flow in picturesque areas, an original ensemble forecasting technique is 

developed. This study integrates the improved optimization algorithm, data pretreatment, 
subsequence reconstruction and reconstruction sequence prediction model to achieve accurate 
passenger flow prediction. 

(2) Aiming at the problem of artificially selecting the parameters of variational mode 
decomposition, the improved variational modal decomposition is constructed to realize the automatic 
selection of modal number and penalty factor. 

(3) Create the submodel prediction module and choose the proper predictor for the sub-sequence 
that has been broken down and rebuilt. Five benchmark predictors are used to predict the reconstructed 
subsequence. The best predictor is automatically selected based on the submodel selection module to 
improve the prediction performance of the integrated system. 

The following is the structure of the remaining portions of this study: Section 2 provides a detailed 
description of the main research approaches and theories. Section 3 describes the hybrid passenger 
flow forecasting model’s framework. Through empirical investigation, Section 4 confirms the hybrid 
model’s performance. The main conclusions of this study are outlined in Section 5. 

2. Data decomposition method 

2.1. Data decomposition method 

2.1.1. VMD 

VMD is a brand new non-recursive signal decomposition technique that is based on 
understandable mathematical concepts like frequency mixing, Wiener filtering, and the Hilbert 
transform. The baseband smooth eigenmode function is generated using this method after estimating 
the center pulsation frequency of each subsequence. The independence of each mode is guaranteed by 
this method of solution. VMD decomposes the original sequence f  into k  intrinsic mode functions 
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(IMF). In the iterative solution process, VMD will continuously solve the optimal center frequency 
and power spectrum center of each eigenmode function. Its objective function and constraint 
conditions are as follows: 
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where    represents the quadratic penalty term and    is the Lagrange multiplier. The optimal 
solution to Eq (2) is solved using the alternating direction method of multipliers (ADMM) [26]. To 
constantly update ku  and k , the subproblem is converted into the problem of finding the minimum 

value in Eq (3) and the optimal solution of ku  and k  is expressed as follows: 
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where n   denotes the number of iterations and ˆ ( )f   , ˆ ( )iu   , ˆ( )    and 1ˆ ( )n
ku   , respectively, 

represent the Fourier transforms of ( )f t , ( )u t , ( )t  and 1( )n
ku t . 

2.1.2. Golden jackal optimization based on the Sobol sequence 

A new swarm intelligence method called the golden jackal optimization (GJO) algorithm was 
presented in 2022. It was created by the cooperative hunting behavior of golden jackals [27]. The 
hunting process of jackals is mainly divided into three basic stages: (1) searching for prey and 
approaching it; (2) surrounding the prey and stimulating the prey until they stop moving; (3) 
attacking prey. 

The initial solution of GJO is uniformly and randomly distributed in the solution space, then: 

, ( ) ,n d d d dY l rand u l                                     (5) 
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where ,n dY  is the position coordinate of the d  dimension of the n  prey, n  is the number of prey, 

d   is the dimension, du   and dl   are the upper and lower bounds of each dimension coordinate, 
respectively and rand  is a random variable between (0,1) . 

The hunting process of golden jackals is dominated by the male jackals, and the female jackals 
follow the actions of the male jackals. Their mathematical models are as follows ( 1E  ): 

1( ) ( ) ( ) ( )M MY t Y t E Y t rl Prey t      (6) 

2 ( ) ( ) ( ) ( ) ,FM FMY t Y t E Y t rl Prey t      (7) 

where t   is the current iteration number, 1( )Y t   and 2 ( )Y t   are the updated positions of male and 
female golden jackals, ( )MY t   and ( )FMY t   are the positions of male and female golden jackals, 

( )Prey t  is the prey position and E  is the escape energy of prey. 

The formula for calculating the escape energy of prey is: 

1 0E E E   (8) 

0 2 1E r   (9) 

1 1 (1 ( / )) ,E c t T    (10) 

where 0E  represents the initial energy of prey, r  is a random variable between (0,1) , T  represents 

the maximum number of iterations, 1c  is the default constant set to 1.5 and 1E  means decreasing 

prey energy. 

In Eqs (6) and (7), ( ) ( )MY t rl Prey t    and ( ) ( )FMY t rl Prey t   , respectively, calculate the 

distance between the male jackal and the female jackal and the prey. rl  is the random number vector 
calculated by Levy’s flight function, mainly to avoid falling into local optimum during the solution. 
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where u  and v  are both random numbers between (0,1) ,   is the default constant set to 1.5 and 

( )   is the gamma function. 

Finally, the position of each prey is updated by the average value of Eqs (6) and (7); that is, 
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When prey is disturbed, its escape energy decreases and the mathematical model of golden jackals 

surrounding and devouring prey is as follows ( 1E  ): 

1( ) ( ) ( ) ( )M MY t Y t E rl Y t Prey t      (14) 

2 ( ) ( ) ( ) ( ) .FM FMY t Y t E rl Y t Prey t      (15) 

The initial population in the search space is produced by random number generation in the GJO 
process. The algorithm’s performance will be impeded by the low ergodicity and erratic population 
distribution of this initialization strategy. The initial population of golden jackals is mapped using the 
Sobol sequence to enhance the capability of the global search. To compare the spatial distribution of 
the Sobol sequence with that of the random distribution generating the initial population, a plot of the 
random number distribution of the population with a population size of 500 was generated for the 

ranges [0,1]x  and [0,1]y . 

 
    (a)                                (b) 

Figure 1. Sobol sequence and random sequence generation of individual distributions. (a) 
Sobol sequence; (b) random sequence. 

The Sobol sequence is more effective in processing high-dimensional sequences because it has 
fewer calculations and faster sample rates. The range of setting the optimal solution is [ , ]d dl u  and 
random number [0,1]nK   produced by the Sobol sequence. The starting position of the golden jackal 

population can be defined as: 

, ( ) .n d d n d dY l K u l     (16) 

The pseudo-code of the above GJO based on the Sobol sequence is shown in Algorithm 1. 
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Algorithm 1: GJO based on Sobol sequence 
Inputs: The population size N  and maximum number of iterations T  
Outputs: Initialize the random prey population using Eq (16) 
While ( )t T  

Calculate the fitness values of prey 

1Y =best prey individual (Male jackal position) 

2Y =second best prey individual (Female jackal position) 

for (Each prey) 
Update the prey escape energy according to Eqs (8), (9) and (10) 
Update the levy motion random number “ rl ” according to Eqs (11) and (12) 
if the Exploration phase ( 1E  ) 

Update prey position using Eqs (6), (7) and (13) 
if the Exploitation phase ( 1E  ) 

Update prey position using Eqs (14), (15) and (13) 
end for 

1t t   
end while 
return 1Y  

2.1.3. Improved variational modal decomposition (IVMD) 

According to the principle of the VMD algorithm, the penalty factor   and modal number k  
for decomposition need to be determined manually before signal decomposition. The incorrect 
values k  and   will lead to under-decomposition or over-decomposition of the original signal. 
This study applies the GJO based on the Sobol sequence to the automatic optimization of parameter 
combinations [ , ]k    of VMD to prevent undesirable outcomes produced by artificially setting 

parameters. Among them, the construction of fitness functions is a key step in the optimization 
process. Gao et al. [28] constructed the fitness function by combining SE, aggregation algebra, and 
the Pearson correlation coefficient. 

SE is independent of the length of the data and it measures the complexity of the time series by 
calculating the probability of new pattern generation. The smaller the SE value, the lower the 
complexity of the series. For a given original signal, the sample entropy is calculated as follows: 

1( , , ) ln ( ) ln ( ) .q qSampEn f q r B r B r   (17) 

In the formula, SampEn  is the sample entropy function, f  is the original time series, q  is the 

embedding dimension, r  is the similarity tolerance and B  is the proportion of the number of state 
vectors similar to the original signal. 

Aggregation algebra is the length of the best central frequency signal. The aggregation speed 
increases with decreasing value and the IMF frequency features become more pronounced. 
Aggregation algebra's calculation formula is as follows: 

( ) ,kOmega length   (18) 
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where Omega  represents the aggregation algebra of the optimal central frequency, and ( )klength   is 
the length of extracting the optimal k . 

The Pearson correlation coefficient can be used to measure the difference between the original 
signal and the reconstructed signal. The deviation is less the higher the value. Assuming that x  and
y  are two-time series of length N , the Pearson correlation coefficient is calculated as follows: 
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where P  is the Pearson correlation coefficient of x  and y ; x  and y  are the average values of 

x  and y . The fitness function is calculated as Eq (20): 

( , , )
min lg( ) ,

SampEn f q r
fitness Omega

P

    
 (20) 

Based on the foregoing, this work proposes the improved GJO algorithm to improve the VMD 
algorithm’s parameter [ , ]k  . The initial parameters are as follows: the initial population is set to 20, 

maximum iterations are set to 20, the value range for k  is set to [2,10]  and the value range for   
is set to [100,3000] . The procedure is depicted in Figure 2. 

2.2. Data prediction model 

2.2.1. Boosting algorithm 

The main goals of the boosting method, an integrated learning strategy, are to speed up the model's 
convergence and, therefore, raise the overall model’s stability and accuracy. The most widely spread 
algorithms of the boosting algorithm are AdaBoost algorithm and BoostingTree. 

• AdaBoost is an integrated algorithm for generating base learners in series [29]. By combining 
multiple base learners, the generalization performance is often better than that of a single learner, and 
it is not easily affected by over-fitting. 

• Gradient boosting decision tree (GBDT) is a branch of the iterative decision tree model [30]. 
Its main idea is to reduce residuals through continuous iteration and form many regression decision 
trees through gradient direction optimization. Finally, it accumulates the conclusions of all regression 
trees to get the final model. 

• Light gradient boosting machine (LightGBM) is an algorithm based on a gradient lifting 
decision tree, which is based on the unilateral sampling of the gradient when searching for the optimal 
segmentation point of the loss function [31]. For the sample, the smaller the gradient, the closer it is, 
so the weight can be lowered when searching for the segmentation point. 

• XGBoost is a boosting ensemble learning algorithm that improves GBDT [32]. Its traits 
include low computational complexity, great precision and quick processing speed. It quickly gained 
the support of competitors in important modeling competitions and produced excellent results. 

• CatBoost is a more effective gradient-lifting decision tree-based ensemble learning 
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technique [33]. In the training process, a group of decision trees is established continuously. Compared 
with the previous trees, each continuous tree reduces the loss. 

 

Figure 2 Improved variational modal decomposition flow chart. 

2.2.2. Evaluation metrics 

To boost the effectiveness of tourist flow forecasts, comprehensive evaluation metrics (CEM) 
are proposed to determine the reconstructed subsequence forecast model [34]. The specific steps are 
as follows: 

(1) Calculate the mean square error (MSE), root mean square error (RMSE), mean absolute error 
(MAE) and mean absolute percentage error (MAPE) of five boosting models of each reconstructed 
subsequence. Table 1 displays the evaluation metrics. 
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Table 1. Evaluation metrics. 

Evaluation metric Equation 
MSE  2
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Here, iy  and ˆiy  represent the actual value and the predicted value respectively, and n  is the 

number of samples. 
(2) Normalize the four evaluation indexes according to Eq (21): 
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max min
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where iM   is the normalized value of MSE, RMSE, MAE and MAPE of the i  submodel; M  is the 

abbreviation of evaluation metrics. 
(3) Calculate the comprehensive evaluation index of the i  submodel according to Eq (22): 

.
4

i i i i
i

MSE RMSE MAE MAPE
CEM

     
  (22) 

(4) According to the CEM value of each boosting algorithm, the prediction model of the 
reconstructed subsequence is determined. 

Finally, four metrics are employed to measure the prediction error to assess the performance of 
the suggested prediction model: RMSE, MAE, MAPE, and coefficient of determination (Rsquare). 
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, y  represents the average value of the actual value. 

3. The proposed hybrid passenger flow forecasting model 

This section provides a mixed passenger flow forecasting model based on the mixed passenger 
flow forecasting model to accurately predict the tourist flow in Jilin Province. The model includes four 
steps, as shown in Figure 3. 

Step 1: Expand data features. Collect the original passenger flow data and expand the features of 
the original time series data according to the historical time. Add four discrete variables such as 
“Weekday”, “Week”, “Weekend” and “Holiday”. See Section 4.2 for details. 

Step 2: Data decomposition. The parameters in the VMD algorithm are optimized using the GJO 
based on the Sobol sequence that was proposed in this study, and the original passenger flow time data 
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is decomposed into IMF. 
Step 3: IMF reconstruction. According to the sample entropy of each IMF, IMF with similar 

complexity is merged into a new subsequence. 
Step 4: Ensemble prediction. Four discrete variables are introduced, and the prediction model 

determination method including five submodels AdaBoost, GBDT, XGBoost, LightGBM, and 
CatBoost are adopted, and the optimal model of each reconstruction subsequence is determined 
according to the values. The final passenger flow prediction result is then obtained by integrating the 
reconstructed subsequence prediction. 

 

Figure 3. Framework diagram of the hybrid passenger flow forecasting model. 

4. Empirical analysis 

4.1. Data description 

The daily passenger flow data of Changbai Mountain, World Sculpture Park and Changchun 
Zoological and Botanical Park in Jilin Province are chosen as the source data to assess the validity of 
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the hybrid passenger flow forecasting model presented in this work. Each data set has 865 samples and 
covers all daily passenger flow data between August 2017 and December 2019. All data is provided 
by the Jilin Tourism Information Center. Data for this study is split into two sets: Training set and test 
set, which make up 90% and 10% of the total data, respectively. The overall trend of passenger flow 
data of the three scenic spots is shown in Figure 4. 

 

Figure 4. Daily passenger flow trend chart of three scenic spots. 

4.2. Extended data features 

This study adds four discrete variables—“weekday”, “week”, “weekend” and “holiday”—to the 
original daily visitor data of scenic spots because the original data are time series and provide less 
information. Where “Weekday” stands for the weekday and its value is 1~5, “Week” denotes the week 
of the current month. If the day is a Weekend, the field “Weekended” is filled with one, otherwise, it 
is filled with zero. The word “Holiday” designates whether or not the day is a holiday. Fill in one if 
it’s a holiday; otherwise, enter zero. 
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4.3. Decomposition and reconstruction of passenger flow data 

The original passenger flow data is nonlinear and non-stationary, as seen in Figure 4. To reduce 
the sequence complexity, three passenger flow datasets are decomposed using IVMD. The 
decomposition outcomes, using Changbai Mountain, Changchun Zoological and Botanical Park data 
as an illustration, are displayed in Figure 5. The passenger flow data from Changbai Mountain, 
Changchun Zoological and Botanical Park is decomposed by IVMD into seven IMF, which are 
arranged from low to high frequency. The trends and laws of the decomposed series are more obvious 
than those of the original series, which enables us to predict future trends and changes more accurately. 
IVMD divides the World Sculpture Park into 10 IMF, as shown in Figure 6. 

 

Figure 5. IVMD decomposition diagram of Changbai Mountain, Changchun Zoological 
and Botanical Park. 

In this study, the IMF is reconstructed according to the SE, and the SE of IMF is calculated as 
shown in Table 2 and Figure 7. To cut the cost of the calculation, reconstruct IMF with similar SE into 
a new subsequence. 

For Changbai Mountain, because the SE of IMF1 is small, it is divided into Sub1. The difference 
in the SE of other IMF is big enough for the division to be reconstructed using a difference of 0.07 
between the two IMF. For Sculpture Park, because the SE of IMF1 is small, it is divided into Sub1. 
The difference in the SE of other IMF is big enough for the division to be reconstructed using a 
difference of 0.08 between the two IMFs. For Zoological and Botanical Park, because the SE of IMF1 
is small, it is divided into Sub1. The difference in the SE of other IMF is small enough for the division 
to be reconstructed using a difference of 0.04 between the two IMF. The reconstruction results are 
shown in Table 3. 
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Figure 6. IVMD decomposition diagram of the World Sculpture Park. 

Table 2. The SE of IMF is obtained by IVMD. 

IMF Changbai Mountain Sculpture Park Zoological and Botanical Park 
IMF1 0.0285 0.0572 0.0884 
IMF2 0.1625 0.1963 0.2783 
IMF3 0.2691 0.5183 0.2523 
IMF4 0.3027 0.4589 0.2925 
IMF5 0.1036 0.3718 0.1749 
IMF6 0.1303 0.2546 0.2188 
IMF7 0.2812 0.3091 0.3568 
IMF8  0.3760  
IMF9  0.5326  
IMF10  0.4983  
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Figure 7. Different SE values of three scenic spots. 

Table 3. Sample entropy reconstruction results. 

Sub-sequence  Changbai Mountain Sculpture Park Zoological and Botanical Park

Sub1  IMF1 IMF1 IMF1 
Sub2  IMF2 

IMF5 
IMF6 

IMF2 
IMF6 

IMF2 
IMF3 
IMF4 

Sub3  IMF3 
IMF4 
IMF7 

IMF3 
IMF4 
IMF9 
IMF10 

IMF5 
IMF6 

Sub4   IMF5 
IMF7 
IMF8 

IMF7 

4.4. Prediction model 

The extended data characteristics of the original passenger flow are introduced, and the optimal 
prediction model of each reconstructed subsequence is determined according to the minimum CEM 
value. Table 4 shows the optimal model determined by each reconstruction subsequence of three scenic 
spots. The reconstructed subsequence prediction values are integrated and, finally, the passenger flow 
prediction results of three scenic spots are obtained. 
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Table 4. Subsequence optimal prediction model. 

Scenic spots Sub1 Sub2 Sub3 Sub4 
Changbai Mountain GBDT CatBoost XGBoost  
Sculpture Park LightGBM LightGBM LightGBM CatBoost 
Zoological and Botanical Park LightGBM CatBoost XGBoost LightGBM 

4.5. Empirical analysis 

Three comparative tests were conducted on three different datasets in this study to demonstrate 
how well the suggested hybrid passenger flow forecasting model performed. RMSE, MAE, MAPE, 
and Rsquare are the major metrics used to assess each prediction model's accuracy and error 
distribution. The closer the value of Rsquare is to one, and the smaller the values of RMSE, MAE, and 
MAPE, the better the model effect. The best evaluation index in each datasets is expressed in bold font. 

4.5.1. Experiment I 

In this experiment, the proposed hybrid passenger flow forecasting model is compared with five 
single models: AdaBoost, GBDT, LightGBM, XGBoost and CatBoost. Figure 8 and Table 5 display 
the experimental results, and the following inferences can be made: 

Table 5. Comparison results of hybrid passenger flow forecasting model and single model 
(Experiment I). 

Scenic spots Model RMSE MAE MAPE Rsquare 
Changbai Mountain Proposed 1255.2646 840.9776 0.0973 0.9533 

AdaBoost 2584.1524 2090.6806 0.2036 0.6551 
GBDT 2282.2439 996.3786 0.0986 0.8032 
LightGBM 1891.4336 982.1948 0.1011 0.8565 
XGBoost 2281.1860 998.6271 0.0988 0.8070 
CatBoost 1715.1293 1007.3454 0.1079 0.8817 

Sculpture Park Proposed 248.0198 166.1583 0.0469 0.9563 
AdaBoost 517.4270 347.6426 0.0964 0.8129 
GBDT 508.0752 326.4300 0.0919 0.8016 
LightGBM 498.2935 340.8674 0.0961 0.8068 
XGBoost 594.6087 367.1442 0.1054 0.7394 
CatBoost 570.8855 350.9350 0.0990 0.7497 

Zoological and 
Botanical Park 

Proposed 419.6541 272.2626 0.0674 0.9597 
AdaBoost 1092.3493 609.9704 0.1248 0.6755 

GBDT 878.3228 447.2242 0.1105 0.8038 
LightGBM 871.4553 521.2315 0.1246 0.7875 

XGBoost 967.0087 496.0344 0.1132 0.8179 

CatBoost 1018.5449 507.9593 0.1123 0.6616 
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Figure 8. Forecast results of passenger flow in Changbai Mountain, Sculpture Park and 
Zoological and Botanical Park (Experiment I). 

(1) For Changbai Mountain, RMSE = 1255.2646, MAE = 840.9776, MAPE = 0.0973 and Rsquare 
= 0.9533 of the hybrid forecasting model are all better than the single boosting model. Compared with 
these five single models, the RMSE, Mae and MAPE of the hybrid forecasting model average decrease 
by 895.5644, 374.0677 and 0.0247, respectively. The average increase of Rsquare is 0.1526, which 
shows that the proposed prediction model has high accuracy. 

(2) For Sculpture Park, the hybrid forecasting model has a better forecasting effect than the single 
model, RMSE = 248.0198, MAE = 166.1583, MAPE = 0.0469 and Rsquare = 0.9563. It can be found 
that for AdaBoost, GBDT, LightGBM, XGBoost and CatBoost models, the Rsquare of the model is 
increased by 0.1434, 0.1547, 0.1495, 0.2169 and 0.2066, respectively. The prediction accuracy of the 
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hybrid prediction model is greatly improved. 
(3) For Zoological and Botanical Park, the hybrid model’s prediction performance is also superior 

to that of the single AdaBoost, GBDT, LightGBM, XGBoost and CatBoost models, RMSE = 419.6541, 
MAE = 272.2626, MAPE=0.0674 and Rsquare = 0.9597. 

The suggested model outperforms the single model in terms of prediction effect and accuracy 
when the passenger flow data from three scenic locations are compared. It can not only avoid the 
shortcomings of a single model but also play a more comprehensive and effective prediction 
performance. 

4.5.2. Experiment Ⅱ 

In this experiment, the same IVMD decomposition method and different boosting algorithms are 
used as comparison models to verify the validity of the determination rules of the subsequence 
prediction model. Figure 9 and Table 6 display the experimental results, and the following inferences 
can be made: 

Table 6. Comparison results between the hybrid passenger flow forecasting model and 
other models (Experiment Ⅱ). 

Scenic spots Model RMSE MAE MAPE Rsquare
Changbai Mountain Proposed 1255.2646 840.9776 0.0973 0.9533 

IVMD-AdaBoost 1894.1526 1314.3118 0.1535 0.9014 
IVMD-GBDT 1631.6416 1075.1620 0.1096 0.9140 
IVMD-LightGBM 1653.8027 1068.6434 0.1132 0.9203 
IVMD-XGBoost 1527.3086 1034.8772 0.1073 0.9307 
IVMD-CatBoost 1564.2756 1076.5748 0.1164 0.9337 

Sculpture Park Proposed 248.0198 166.1583 0.0469 0.9563 
IVMD-AdaBoost 322.2607 227.3420 0.0659 0.9201 
IVMD-GBDT 268.8839 174.1970 0.0488 0.9448 
IVMD-LightGBM 261.4057 181.1175 0.0512 0.9506 
IVMD-XGBoost 293.7175 188.5079 0.0526 0.9318 
IVMD-CatBoost 310.3709 195.7910 0.0550 0.9243 

Zoological and Botanical Park Proposed 419.6541 272.2626 0.0674 0.9597 
IVMD-AdaBoost 588.4092 377.9069 0.0914 0.9102 
IVMD-GBDT 557.9405 323.6045 0.0752 0.9185 
IVMD-LightGBM 571.4954 323.9768 0.0742 0.9227 
IVMD-XGBoost 576.8548 328.4478 0.0752 0.9120 
IVMD-CatBoost 568.9798 334.7441 0.0790 0.9147 

(1) For Changbai Mountain, among all the models, the proposed hybrid forecasting model has the 
best effect, with the smallest values of RMSE, MAE, and MAPE and the largest value of Rsquare. The 
MAPE is 0.0973, which is 0.0562, 0.0123, 0.0159, 0.0010 and 0.0191 lower than IVMD-AdaBoost, 
IVMD-GBDT, IVMD-LightGBM, IVMD-XGBBoost and IVMD-CatBoost, respectively. 

(2) For Sculpture Park, among the six forecasting models based on IVMD, RMSE = 248.0198, 
MAE = 166.1583, MAPE = 0.0469 and Rsquare = 0.9563 of the hybrid forecasting model are superior 
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to other comparison models. 
(3) For Zoological and Botanical Park, the hybrid model proposed in this paper performs best, 

and its RMSE = 419.6541, MAE = 272.2626, and MAPE = 0.0674 are smaller than other comparative 
models. Rsquare = 0.9597 is higher than IVMD-AdaBoost, IVMD-GBDT, IVMD-LightGBM, IVMD-
XGBoost and IVMD-CatBoost. 

The subsequence prediction model determination rule chooses the best prediction model for each 
reconstructed subsequence in order to obtain the final passenger flow forecast value. By effectively 
exploiting the advantages of each prediction model, the hybrid prediction model raises the overall 
forecast accuracy. 

 

Figure 9. Forecast results of passenger flow in Changbai Mountain, Sculpture Park and 
Zoological and Botanical Park (Experiment Ⅱ). 
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4.5.3. Experiment Ⅲ 

This experiment will compare the proposed IVMD with EMD, VMD and complete ensemble 
extreme-point symmetric mode decomposition (CEESMDAN) and analyze the decomposition effect 
of IVMD. Among them, the subsequent prediction model of the comparison algorithm is the same as 
the proposed hybrid prediction model. C-EMD, C-VMD and C-CEESMDAN represent compositive 
models based on EMD technology, VMD technology and CEESMDAN technology. Figure 10 and 
Table 7 display the experimental outcomes. The inferences that can be made are as follows: 

Table 7. Comparison results between the hybrid passenger flow forecasting model and 
model (Experiment Ⅲ). 

Scenic spots Model RMSE MAE MAPE Rsquare 

Changbai 
Mountain 

Proposed 1255.2646 840.9776 0.0973 0.9533 
C-EMD 1379.8929 851.9099 0.0998 0.9286 
C-VMD 1462.2054 1034.4371 0.1077 0.9386 
C-CEESMDAN 1608.8527 920.4725 0.1005 0.8941 

Sculpture Park Proposed 248.0198 166.1583 0.0469 0.9563 
C-EMD 303.0183 208.3975 0.0566 0.9479 
C-VMD 342.1914 248.6966 0.0713 0.9160 
C-CEESMDAN 298.2045 231.8759 0.0664 0.9440 

Zoological and 
Botanical Park 

Proposed 419.6541 272.2626 0.0674 0.9597 
C-EMD 568.5320 344.2392 0.0829 0.9413 
C-VMD 668.4512 377.6705 0.0894 0.9082 
C-CEESMDAN 861.8965 599.7557 0.1686 0.8316 

(1) For Changbai Mountain, the RMSE = 1255.2646, MAE = 840.9776, MAPE = 0.0973 and 
Rsquare = 0.9533 of the hybrid forecasting model have a better forecasting effect on passenger flow. 
The prediction and evaluation indexes based on EMD are RMSE = 1379.8929, MAE=851.9099, 
MAPE = 0.0998 and Rsquare = 0.9286. The prediction and evaluation indexes based on VMD are 
RMSE = 1426.2054, MAE = 1034.4371, MAPE = 0.1077 and Rsquare = 0.9386. The prediction and 
evaluation indexes based on CEESMDAN are RMSE = 1608.8527, MAE = 920.4725, MAPE = 0.1005 
and Rsquare = 0.8941. It can be found that IVMD is superior to other decomposition methods. 

(2) For Sculpture Park, the MAPE of the hybrid forecasting model and the forecasting model 
based on EMD, VMD and CEESMDAN are 0.0469,0.0566,0.0713 and 0.0664, respectively. 
Compared with the forecasting model based on EMD, VMD and CEESMDAN, Rsquare = 0.9563 is 
increased by 0.0084, 0.0403 and 0.0122, respectively. 

(3) For Zoological and Botanical Park, the accuracy of the hybrid forecasting model based on 
IVMD is still higher than the other three decomposition methods. Compared with other models, the 
RMSE, Mae and MAPE of the hybrid forecasting model are average reduced by 279.9724, 168.2926 
and 0.0462, respectively. The average increase of Rsquare is 0.0660, which shows the effectiveness of 
IVMD in passenger flow forecasts. 

IVMD not only avoids mode aliasing but also decomposes the original passenger flow data into 
multiple IMF. Compared with VMD, IVMD also realizes the selection of optimal parameters, which 
helps improve the performance of the hybrid forecasting model. The forecasting error of the suggested 
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hybrid forecasting model is also noticeably lower than that of the forecasting models based on EMD, 
VMD and CEESMDAN. As a result, IVMD is a useful decomposition technique to increase the 
model’s prediction accuracy. 

 

Figure 10. Forecast results of passenger flow in Changbai Mountain, Sculpture Park and 
Zoological and Botanical Park (Experiment Ⅲ). 

5. Conclusions 

Accurate prediction of tourist flow in scenic spots is of great significance to the development of 
intelligent transportation and smart cities. It can not only enhance the tourist experience but also 
promote the intelligent development of the city. This study established a hybrid passenger flow 
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prediction model using the advantages of improved variational mode decomposition, sample entropy, 
and the boosting algorithm to enhance the prediction performance of the conventional passenger flow 
model. The original passenger flow data was divided into numerous IMF by IVMD and reconstructed 
into subsequences by sample entropy based on the properties of the original time series data. Each 
reconstructed subsequence’s best prediction model was identified and forecasted based on the CEM 
minimum value. The final forecast result of the visitor flow to scenic spots was generated by combining 
the prediction results from each rebuilt subsequence. 

The passenger flow data of Changbai Mountain, Sculpture Park, and Zoological and Botanical 
Park in Jilin Province were empirically studied to assess the reliability and applicability of the hybrid 
ensemble forecasting model. (1) The hybrid forecasting model outperformed the single model 
according to the findings. The RMSE of the model, using Changbai Mountain data as an example, is 
1255.2646, MAE is 840.9776, MAPE is 0.0973 and Rsquare is 0.9533. The study's use of passenger 
flow data increases by tens of thousands every day, so the results of RMSE are hundreds or even 
thousands. (2) According to Experiment II, the RMSE, MAE and MAPE of the hybrid prediction model 
based on the subsequence prediction model are lower than those of the contrast model on three datasets. 
The benefits of each prediction model can be efficiently incorporated into the hybrid model. (3) The 
passenger flow series is divided using the IVMD, which significantly raises forecast accuracy. In three 
datasets and four evaluation indexes, the hybrid prediction model was superior to the prediction models 
based on another decomposition algorithm.  

In summary, the proposed hybrid forecasting model was an effective, reliable and accurate 
prediction model, which shows great advantages in accurate prediction results. The hybrid forecasting 
model has a wide range of potential applications and can promote the intelligent and sustainable 
development of the city. The influencing elements taken into account in this article are not all-inclusive, 
and unknown reasons such as financial crises, unexpected events and natural disasters were not 
considered. Future studies will take these characteristics into account, thus improving the prediction 
performance of the model. 
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