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Abstract: In traditional Chinese medicine (TCM), artificial intelligence (AI)-assisted syndrome 

differentiation and disease diagnoses primarily confront the challenges of accurate symptom 

identification and classification. This study introduces a multi-label entity extraction model grounded 

in TCM symptom ontology, specifically designed to address the limitations of existing entity 

recognition models characterized by limited label spaces and an insufficient integration of domain 

knowledge. This model synergizes a knowledge graph with the TCM symptom ontology framework 

to facilitate a standardized symptom classification system and enrich it with domain-specific 

knowledge. It innovatively merges the conventional bidirectional encoder representations from 

transformers (BERT) + bidirectional long short-term memory (Bi-LSTM) + conditional random fields 

(CRF) entity recognition methodology with a multi-label classification strategy, thereby adeptly 

navigating the intricate label interdependencies in the textual data. Introducing a multi-associative 

feature fusion module is a significant advancement, thereby enabling the extraction of pivotal entity 

features while discerning the interrelations among diverse categorical labels. The experimental 

outcomes affirm the model’s superior performance in multi-label symptom extraction and substantially 

elevates the efficiency and accuracy. This advancement robustly underpins research in TCM syndrome 

differentiation and disease diagnoses. 
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language processing; artificial intelligence 

 

https://doi.org/10.3934/mbe.2024013


370 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 369–391. 

1. Introduction  

In natural language processing (NLP), named entity recognition (NER) is a cornerstone 

technology, particularly vital in traditional Chinese medicine (TCM). It focuses on the automated 

recognition and classification of entities with specific meanings within the text. In TCM, this 

technology is instrumental in annotating and classifying symptoms, facilitating symptom 

standardization [1], and plays a crucial role in classifying symptoms [2], categorizing relationships [3,4], 

and constructing knowledge graphs [5]. These advancements subsequently bolster support for 

auxiliary diagnostics [6,7]. 

However, the application of NER in TCM faces limitations due to the requisite for standardized 

categorization in TCM clinical entities [8–11] and named entities within TCM literature [12]. These 

texts often present challenges such as complex nomenclatures, ambiguous definitions, and arbitrary 

combinations of compound symptoms [13]. Despite recent advancements in the standardization of 

TCM symptoms [14] and information extraction about TCM symptoms [15]—emphasizing 

terminological and conceptual normalization [16,17], symptom classification and grading [18], 

standardized data collection, and clinical diagnostic relevance [19]—the existing public ontology sets 

remain inadequate. Recent research initiatives, such as Ma et al. [9], developed multi-granularity text 

feature encoders tailored for TCM literature’s NER. Similarly, Qi et al. [10] introduced an enhanced 

Tri-Training semi-supervised learning algorithm and a multi-neural network fusion model which 

significantly boosted the TCM entity recognition task performance, especially under the constraints of 

limited labeled data. However, these methods for extracting TCM entities are primarily restricted to a 

limited range of categories such as diseases, diagnoses, and medications, and most need to integrate 

domain-specific knowledge, thus curbing their overall effectiveness. The need for a comprehensive 

and scientifically robust TCM ontology framework is paramount. Such a framework would be a 

benchmark for a fine-grained classification and integrate structured TCM knowledge into models, 

thereby enhancing the accuracy and efficiency. 

A fine-grained entity type classification is crucial for accurately identifying semantic categories 

of entities in unstructured text [20,21], particularly in extracting symptom entities, constructing 

narratives, and retrieving critical information to reflect the complexity and specificity of conditions in 

TCM records. Ren et al. [22] proposed a two-stage approach for cleaning and leveraging distantly 

labeled data. Onoe et al. [23] introduced a probabilistic auto-relabelling method to address noise in 

fine-grained, entity-type recognition under distant supervision. Furthermore, Zhang et al. [24] enhanced 

the representation in noisy named entity type recognition through edge-weighted attention graph 

convolutional networks. Lastly, Ali et al. [25] presented a novel embedding framework to reduce label 

noise in entity-type recognition based on distant supervision. These methods transform fine-grained 

entity-type classification into a multi-label classification problem, aim to identify specific entities in 

text, predict their likelihood scores, and classify them based on either these scores or hierarchical-type 

structures. However, these approaches grapple with challenges such as category imbalance and the 

complexity of type hierarchies, often resulting in algorithms overfitting common categories, escalating 

inference difficulties, and increasing computational demands, sometimes leading to classification 

ambiguities. Advanced multi-label classification methodologies have been introduced to counter these 

issues. Prabhu et al. [26] enhanced scalability and maintained accuracy by developing a balanced label 

hierarchy. You et al. [27] presented an efficacious approach which utilized a multi-label attention 

mechanism coupled with a probabilistic label tree, thereby significantly improving the handling of 
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extensive label datasets. Zhang et al. [28] implemented a recursive fine-tuning strategy, thereby 

substantially expediting the training process within large label dimensions. These methods enhance 

the efficiency of large-scale label classification by semantically grouping many labels into meta-labels 

and utilizing hierarchical label, tree-based, multi-stage shortlisting for effective recursive clustering. 

Nonetheless, these multi-label classification strategies primarily focus on text classification, with 

the principal objective of assigning multiple labels to each input instance rather than directly extracting 

the entity information from texts. In applying these strategies to entity recognition tasks, there is a 

necessity to supplement them with entity-specific features. Our methodology integrates entity 

recognition models with multi-label classification techniques to extract essential entity information 

from texts. This integration effectively manages the diversity of entity categories and the intricacy of 

label structures. For instance, in analyzing a TCM diagnostic case such as “Present Illness History,” 

symptom entities such as “difficulty in falling asleep,” “frequent dreaming,” and “easily awakened” 

are extracted from relevant texts. The identified entities are converted into feature representations 

and, combined with contextual embeddings, are fed into subsequent multi-label classification 

modules. This process demonstrates the effective integration of entity recognition and multi -label 

classification in analyzing TCM texts, thus highlighting their complementary roles in enhancing 

the text analysis accuracy. 

This study offers a sophisticated approach to symptom entity recognition and classification within 

the field of TCM diagnostics, thereby proposing a multi-layered solution strategy. Initially, we 

establish a comprehensive TCM symptom ontology framework based on authoritative TCM literature, 

thereby integrating domain knowledge through knowledge graphs to enhance the accuracy of symptom 

descriptions and classifications. Subsequently, we effectively address the diversity of entity categories 

and the vastness of the label space by employing a two-stage entity classification process in tandem 

with multi-label classification methods. Finally, we have designed a correlated feature fusion module 

(CFFM) that amalgamates attention mechanisms and multi-layer perceptrons. This module optimizes 

the entity information extracted by the recognition model for multi-label classification and captures 

interdependencies between different category labels, thereby enhancing the model’s feature 

representation capabilities. Our contributions can be summarized as follows: 

1) The construction of an all-encompassing and precise TCM symptom ontology framework, 

which integrates multi-level classifications and four key dimensions, and is anchored in authoritative 

texts to ensure its high reliability and scientific validity. 

2) The implementation of our method strategically combines TCM knowledge with the model by 

merging the ontology framework with the model through knowledge graphs. This integration ensures 

a seamless fusion of domain-specific insights and model functionalities. This approach ensures that 

the model is driven by knowledge and dynamically updates the ontology framework in response to 

changes in text data. 

3) The development of the CFFM optimized for refining entity features extracted by the 

recognition model, thus enhancing the multi-label classification tasks. Moreover, by integrating 

knowledge graph embedding techniques, the CFFM efficiently refines inter-label correlation features, 

promoting the quality of the hierarchical label tree structure and significantly bolstering the model’s 

capacity to process complex label systems. 
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2. Related works  

In the last two decades, substantial progress has been made in the standardization of symptom 

terminology and classification within TCM [14]. Xiao et al. [29] applied machine learning techniques 

to extract symptom terms from over 1,900 clinical records, using technologies such as hidden markov 

models (HMM) and conditional random fields (CRF) to ensure comprehensive symptom descriptions. 

Zhang et al. [30] compiled diagnostic and symptomatic terms for epilepsy, thus establishing a symptom 

corpus and employing methods such as core symptom extraction to normalize terminology. Drawing 

from TCM texts, Li et al. [31] refined and organized symptom terms by developing a symptom lexicon. 

This study adopts analogous methodologies for TCM symptoms to guarantee the reliability of 

terminological standards, thereby systematically categorizing and classifying symptoms to affirm their 

thoroughness and integrity. 

In the sphere of NLP, traditional research areas like NER [32] and entity typing [33] have recently 

evolved to focus on fine-grained entity typing (FET) and ultra-fine entity typing (UFET) [34], aimed 

at accurately predicting the specific subtypes of entities. A significant challenge in this field is the 

effective management of hierarchical ontologies. Prior research has predominantly treated 

hierarchical typing as a multi-label classification task, thereby incorporating hierarchical 

structures in various ways and endeavoring to unearth more extensive label information [35,36] or 

to enhance label representation [37]. In multi-label classification, the typical selection of feature 

subsets encompassing label set information involves using filters, wrappers, and embeddings [38–41]. 

For managing extensive label quantities, these methods usually utilize filter methods for feature 

extraction, most notably constructing hierarchical label trees (HLT) using TF-IDF [28,42]. This 

strategy facilitates feature selection prior to model training, thereby significantly reducing the 

computational overhead and enhancing the model's interpretability. 

However, these methods encounter distinct challenges when applied to the specialized and 

intricate domain of TCM diagnostic texts, such as recognizing specific terminologies, navigating 

linguistic complexities, and overcoming data sparsity. Our research addresses these issues by 

implementing a CFFM integrated with domain-specific knowledge embeddings to effectively capture 

and interpret label-related features. Furthermore, our study extends the scope of multi-label 

classification in TCM texts, by focusing on assigning multiple labels to each input example. We utilize 

entity recognition methods to capture the vital entity information and integrate this with TCM 

knowledge for a more refined and detailed entity classification, thereby contributing to the precision 

and depth of TCM symptom identification. 

3. Materials and methods 

This research presents a sophisticated model comprised of three pivotal modules, as shown in 

Figure 1: the entity recognition module, the correlation feature fusion module, and the multi-label 

classification module. The exposition of this study commences with an articulate presentation of the 

TCM symptom ontology framework’s architecture, subsequently delving into an in-depth exploration 

of the functionalities and intricacies of each module. 



373 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 369–391. 

Multi-Label Classification Module

BERTLayers 1-5

Layer 6

Layer 7

Layer 9

Layer 8

Layer 10

Layer 11

Layer 12

HLT

 

Bi-LSTM

CRF

Entity3Entity1 Entity2

Input embeding

Ontological Framework 

Label 

Embeding
 

 

 

Label1 Label2

Position embedding：

Entity embedding：

Encoder Output：

++ +

Entity Relationship Network

Domain 

Knowledge 

Embedding

Label Correlation 

Extraction

+
Correlation Feature 

Fusion Module

Hg

r 

r  

 

Figure 1. Overall architecture. 

3.1. Traditional Chinese medicine symptom ontology framework 

This study aims to standardize TCM terminology by integrating diverse symptom descriptions 

derived from authoritative TCM texts, thus forming a comprehensive knowledge system. It categorizes 

symptoms from four distinct perspectives, as illustrated in Figure 2: “origin (new compilation of TCM 

diagnoses),” “disease (TCM et al.),” “observation (standard terms of common clinical symptoms in 

TCM),” and “specialty (practical training on four diagnostic skills of TCM).” 

Symptom

Source: (New 
Compilation 

of TCM 
Diagnostics)

Disease: 
(Differential 
Diagnosis of 

TCM 
Symptoms)

Observation: 
(Standard 

Terminology of 
Common Clinical 

Symptoms in 

TCM)

Specialty: 
(Training in the 
Four Diagnostic 

Methods of 
Traditional 

Chinese 
Medicine )

Interrogation 
Diagnosis

Olfactory 
Diagnosis

Observation 
Diagnosis

Palpation 
Diagnosis

Observing 
Spirit

Observing 
Color

Observing 
Physical 

Form and 
Posture Observing 

Head and 
Face

Observing 
Trunk 

and 
Limbs

Observing 
Facial 

Features

Smell

Sound

Sweating

Discomfort

Pain

Cold/Heat

Pulse 
Diagnosis

Palpation 
Diagnosis

Pediatric 
Disease 

Category

Surgical 
Disease 

Category

Dermatology 
Disease 

Category

Ophthalmolo
gy Disease 
Category

Gynecological 
Disease 

Category

Internal 
Medicine 
Disease 

Category

Otorhinolary
ngology 
Disease 

Category
Anorectal 
Disease 

Category

Symptoms 
Observed by 

Others

Self-Reported 
Symptoms

General 
Medicine

Pediatrics

Andrology

Gynecology

Head and 
Face

Male 
Symptoms

Physical 
Characteri

stics

Symptoms 
Related to 
Urination 

and 
Excretions

Female 
Symptoms

Limb 
Signs

Palpation 
Diagnosis

Palpation 
Diagnosis

Palpation 
Diagnosis

Palpation 
Diagnosis

Menstrual 
Abnormal

ities

Labor 
Abnormal

ities

Leukorrh
ea 

Abnormal
ities

Abnormal 
Penile 

Erection

Postpartu
m 

Abnormal
ities

Pregnanc
y 

Abnormal
ities

Children s 
Fingerpri

nts

Abnormal 
Growth 

and 
Developme

nt

Abnormal 
Voice

Local

Whole 
Body

 

Figure 2. Visual knowledge graph of traditional Chinese medicine symptom ontology framework. 
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We adopted a methodology from Sun et al. [43] to construct the symptom ontology framework 

and executed it in three stages. Initially, we excluded catalogs describing diagnostic methods and 

established a top-down categorization. Subsequently, we applied a bottom-up clustering approach 

rooted in the symptom terminology and the underlying knowledge system. Ultimately, we consolidated 

the findings to finalize the ontology categories. Given our team’s limited expertise in TCM, we 

diligently tried to preserve the original symptom names and classifications from the monographs, 

thereby ensuring the framework’s scientific rigor and validity. We meticulously edited the ontology 

using the Protege tool, which supports the Chinese language and is user-friendly, thereby offering 

detailed statistical insights into the various entity categories within the ontology structure (see 

Table 1). 

Table 1. The specific symptom information within the ontology architecture. 

 Source Disease Observation Specialty Total 

Number of categories 27 19 37 36 119 

Number of symptom entities 1056 684 840 923 3503 

3.2. Entity recognition module 

Currently, mainstream entity recognition models can only classify each entity separately. 

However, achieving multi-label entity classification in text requires more entity-related information. 

Therefore, we need to extract accurate and effective entity features to improve the efficiency and 

accuracy of multi-label entity extraction. For this purpose, to input sequences of TCM medical records 

X = {x1, x2, ⋯ , xn} , we extract entities E , entity embeddings 𝐸𝑖 , and entity position encoding 𝑝𝑖 

from the BERT + Bi-LSTM + CRF model. We obtain entity boundaries (𝐵𝑒 , 𝐸𝑒) through sequence 

labeling, utilize BERT embeddings (𝐵𝐸𝑅𝑇(𝐸𝑖)) to capture the semantic information of entities 𝑣𝑖, and 

compute entity position encoding𝑝𝑖 = 𝑓(𝐵𝑒 , 𝐸𝑒) to specify their scope within the text. 

We utilize CRF to model the entity extraction, and the loss function incorporates the log-

likelihood loss of CRF. The loss function can be represented as follows: 

𝐿𝑒𝑛𝑡𝑖𝑡𝑦 = −
1

𝑁
∑ log(𝑃(𝑦𝑖|𝑥𝑖; 𝜃)) + 𝜆 ∙ ‖𝜃‖2𝑁

𝑖=1                        (1) 

In this context, 𝜃 represents the model parameters, 𝑃(𝑦𝑖|𝑥𝑖; 𝜃) stands for the predicted label 

sequence, 𝜆  signifies the regularization parameter, and ‖𝜃‖2  corresponds to the square of the L2 

norm of the model parameters. 

3.3. Correlation feature fusion module 

TCM perceives diseases as holistic entities, where symptoms and signs are intricately 

interconnected and reflect multifaceted aspects of the disease; thus, discerning the interrelationships 

between entities is paramount. To generate feature representations of entity information and to focus 

on the interrelations among different category labels, we have implemented the CFFM. This module 

encompasses domain knowledge embedding, the entity relationship network (ERN), and a mechanism 

for extracting label relevance. Detailed elaborations of these components will ensue. 
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3.3.1. Domain knowledge embedding 

By transforming the TCM symptom ontology framework into a knowledge graph, we represent 

it as a graph G = (V, E). The core idea of the graph convolutional network (GCN) [44] is to update 

the feature representation of each node by aggregating information from its neighboring nodes. For 

each symptom node vi in the graph, with a feature representation hi, we calculate the updated feature 

representation hi
′ using the following formula: 

hi
′ = ∑

1

cij
∙ W ∙ hjj∈N(vi)                                 (2) 

where N(vi)  represents the set of neighboring nodes of node 𝑣𝑖 , 𝑐𝑖𝑗   is the normalization factor, 

typically the number of neighboring nodes of node 𝑣𝑖 , and W is the weight matrix used for linearly 

transforming the feature representations of neighboring nodes. We update the feature representation of 

each node through iterations until convergence, thus ultimately obtaining the embedding 

representation Hg. 

3.3.2. Entity relationship network 

The objective of this module is to generate characteristic representations of factual information 

and is primarily composed of the biaffine mechanism [45], attention, and MLP. First, we concatenate 

the entity embedding vi ∈ Rdv  and position embedding pi ∈ Rdp  to obtain the following 

comprehensive representation of the entity: 

ei
∗ = [vi; pi] ∈ Rdv+dp                                (3) 

Next, we use the biaffine mechanism to calculate the correlation scores between entities, denoted 

as zij: 

zij = biaffine(ei
∗, ej

∗) = ei
∗ ∙ W ∙ ej

∗                          (4) 

where zij represents the correlation score between the entity ei and the entity ej , and W represents 

the learnable parameter matrix. 

Next, we use the attention mechanism to compute the attention weight distribution of each entity 

towards the entire text sequence C, denoted as ai , where C = [He; Hg]: 

ai = Attention(ei
∗, C)                                (5) 

where ai ∈ RT  represents the attention weights of the entity ei  towards each position in the text 

sequence. The attention mechanism allows for adaptive focusing on different parts of the text sequence 

based on the entity’s information.  

Finally, we further process the obtained correlation score zij and attention weight distribution 
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 ai  using an MLP: 

r′ = MLP(zij, ai)                                (6) 

where r' represents the final correlation score between the entity ei and the entity ej. 

3.3.3. Label correlation extraction 

We calculate the attention weights between labels using the following formula: 

eij = ReLU(W1 ∙ concat(Li, Lj) + b1)                     (7) 

where Li is the embedding vector of label i, Lj is the embedding vector of label j, concat(Li, Lj) 

represents concatenating these two embedding vectors, W1 and b1 are the weights and bias parameters 

of the MLP, respectively, and ReLU is the activation function. Note that this is only to calculate 

attention scores, and further normalization is needed.  

To do this, we use the softmax function to normalize the attention scores and obtain the attention 

weights aij between label i and label j: 

aij =
exp(eij)

∑ exp(eik)N
k=1

                                  (8) 

Finally, we use the attention weights to calculate the correlation score r′′ between label i and 

label j: 

r′′ = aij ∙ (Ki ∙ Kj
T)                               (9) 

where Ki and Kj are the knowledge graph embedding vectors for label i and label j, respectively, 

and Ki ∙ Kj
T represents their dot product. After obtaining the entity correlation features and the label 

features, we use the biaffine mechanism to obtain the relevance scores S between the input embedding 

He and all correlation features R = [r′; r′′]: 

S = HeUR + b2                                (10) 

where S is the relevance score matrix obtained from a bilinear transformation, thereby correlating the 

input entity’s embedding He  with its associated features in R. He  encapsulates the entity’s 

characteristics within the ontology, while U modulates the interaction between He  and R, thus 

capturing their associative dynamics. The bias vector b2 introduces an offset to fine-tune the model’s 

activation levels, thereby enhancing the alignment of relevance scores with the semantic context. 

3.4. Multi-label classification module 

To tackle the challenge of label imbalance in multi-label classification tasks, we have adopted the 
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Cascade-XML model [42], which is guided by two principal considerations. First, Cascade-XML 

leverages a multi-tier resolution learning pipeline and a hierarchical label tree, thus effectively 

alleviating the label imbalance and boosting the classification accuracy for less-represented categories. 

Second, in the context of the complex corpora, including TCM diagnostic texts, the employment of 

the CFFM effectively captures the interrelationships between labels. This approach significantly 

diminishes the dependency on annotated datasets and concurrently augments the clustering efficacy of 

the HLT. 

Cascade-XML is underpinned by three pivotal components: 1) the employment of the pre-trained 

language model BERT to extract text representations across multiple levels and its integration with the 

BERT + Bi-LSTM + CRF entity recognition framework. This synergy maximizes BERT’s linguistic 

representation capabilities, thereby significantly enhancing the model’s overall performance; 2) the 

introduction of a hierarchical label tree, which meticulously refines the clustering of label spaces, 

thereby establishing an increasingly detailed hierarchical structure; and 3) a set of linear classifiers 

W(t), with each meta-classifier selecting a specific level a to extract features at a particular resolution. 

The final entity classification is achieved by computing scores (wl, ϕ(x)) for each label using label-

aware weight vectors wl. 

At each level of the tree hierarchy, the objective is to precisely recognize the most likely meta-

label; this can be accomplished by minimizing the one-minus-all loss: 

𝐿(𝑡)(𝑥, 𝑦) =
1

|𝑆(𝑡)|
∑ 𝐿(𝑡)

𝑙∈𝑆(𝑡) (〈𝑤𝑘𝑙
(𝑡)

, 𝑣(𝑡)(𝑥)〉 , 𝑅(𝑡)(𝑦)𝑙)                   (11) 

where 𝑆(𝑡) represents the label filtering space, v(x)
(t)

 denotes the corresponding classification features, 

and R(t)(y)l signifies the label set for each layer. 

Therefore, the overarching objective is as follows: 

𝐿𝑐𝑙𝑎𝑠𝑠 = ∑ 𝛼(𝑡)𝐿𝑡𝑇+1
𝑡=1 (𝑥, 𝑦)                        (12) 

where α(t) = |S(t)|/mint∈[T+1](|S(t)|) is used for rescaling the losses across multiple resolutions. 

Lastly, we collectively optimize the objectives during the training phase as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐿𝑒𝑛𝑡𝑖𝑡𝑦 + (1 − 𝜆)𝐿𝑐𝑙𝑎𝑠𝑠                     (13) 

We introduce the task weight parameter λ to modulate the contributions of the two tasks to the 

loss. During the model training process, we minimize the aforementioned loss function through back-

propagation and the Adam optimizer, thus iteratively adjusting the model parameters to steadily 

enhance its performance in the multi-label classification task. 

4. Experiments 

4.1. Datasets 

In this study, we meticulously constructed an experimental dataset by integrating a comprehensive 

symptom ontology framework derived from TCM. This dataset was developed systematically, 
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combining rule-based methodologies, manual annotations, and subsequent corrections. Specifically, 

we selected anonymized data from the Qi-Huang TCM electronic medical records, thus aligning our 

methodology with Yang et al. [46]. The dataset encompasses a substantial collection of 35,355 

electronic medical records rich in TCM diagnostic information, including symptoms, syndromes, and 

various physical examination details. Detailed data information is shown in Table 2. 

Table 2. Statistics for the dataset used in the experiment. 

Category 
Average Text 

Length 

Number of 

Entities 

Number of 

Labels 

Number of 

Texts 

Western Medicine 

Diagnosis 
9 12,994 7 6188 

Present Illness History 310 236,445 46 31,526 

Patient’s Complaint 105 73,834 29 13,931 

Chief Complaint 10 88,511 9 23,922 

Inspection Diagnosis 12 29,461 11 10,522 

Pulse Diagnosis 18 117,982 9 30,252 

Tongue Diagnosis 15 109,162 16 30,323 

Physical Examination 9 22,524 6 16,089 

Total - 690,913 133 162,753 

Our dataset selectively incorporated specific textual segments from these records. These segments 

encompassed a range of categories such as ‘Western Medicine Diagnosis,’ ‘Present Illness History,’ 

‘Patient’s Complaint,’ ‘Chief Complaint,’ ‘Inspection Diagnosis,’ ‘Pulse Diagnosis,’ ‘Tongue 

Diagnosis,’ and ‘Physical Examination.’ Altogether, this process resulted in extracting 690,913 

symptom entities for experimental purposes. In our pursuit of optimizing the model’s efficacy, we 

undertook a rigorous preprocessing routine. This involved the removal of stopwords and special 

characters tailored to accommodate the variable lengths of different text types. To maintain consistency, 

we truncated texts exceeding 400 words, such as those in the ‘Present Illness History’ segment, which 

typically detail the patient’s current symptoms, symptom progression, and treatments received. 

Conversely, we employed a concatenation approach for shorter texts such as ‘Inspection Diagnosis’ 

and ‘Pulse Diagnosis,’ thereby averaging approximately 12 and 18 words. 

The dataset was strategically partitioned using a multi-label stratified sampling technique, 

dividing it into an 80% training set and a 20% test set. This division ensured that each label 

combination was proportionately represented in both sets, thus facilitating a robust entity recognition 

and multi-label classification tasks. 

4.2. Baseline models 

To comprehensively assess our method’s performance and its advantages in both entity extraction 

and multi-label classification sub-tasks, we conducted the following set of comparative experiments: 

Bi-LSTM-CRF [47]: This model integrates the bidirectional long short-term memory (Bi-LSTM) 

and CRF to incorporate contextual information and distributed word representations for feature 

extraction. This enhances the recognition performance by maximizing the correlation between words 

and labels. 
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BERT + Bi-LSTM + CRF [48]: This model incorporates the attention mechanism of BERT, which 

improves the entity recognition accuracy for complex features and less evident components by 

leveraging pre-trained word vectors. 

Attention-XML [27]: An attention-based multi-label text classification model that effectively 

captures any crucial information in the text and semantic associations among labels, thus leading to a 

more accurate multi-label classification. 

SGM [49]: A multi-label classification sequence generation model that treats multi-label 

classification as a sequence generation problem. To address this challenge, it employs a sequence 

generation model with an innovative decoder structure. 

Cascade-XML [42]: An end-to-end multi-resolution learning pipeline that utilizes the multi-layer 

structure of transformer models to focus on various label resolutions, thus employing independent 

feature representations for an optimal label subset selection. 

4.3. Experimental setup 

To ensure the maximal efficiency and circumvent the risk of overtraining, we designed the 

training procedure to terminate if no improvement in the model was observed for more than 40 

consecutive checkpoints. The model development was executed using Python 3.8 within the PyCharm 

environment. We utilized the Adam optimization algorithm to tackle gradient challenges inherent in 

NLP tasks. A batch size of 100 was employed for model training, and the process was conducted on a 

robust computing system equipped with a 24-core RTX 3090 GPU. The training regimen encompassed 

50 iterations, thus establishing strategic checkpoints every 20 batches to secure the optimal model. 

4.4. Experimental results and analysis 

4.4.1. Comparison with baseline models 

Our research benchmarked the proposed model against five foundational models, specifically 

focusing on its efficacy in classifying symptom labels within an extensive label space. As detailed in 

Table 3, the results reveal that the multi-label classification methodology exhibits substantial 

superiority over conventional entity recognition approaches, such as Bi-LSTM-CRF and BERT + Bi-

LSTM + CRF. Notably, in comparison to the BERT + Bi-LSTM + CRF model, the Attention-XML 

and SGM, which is integral to our multi-label classification strategy, yielded an increase of 2.51 and 3.13% 

in Micro-F1 scores, respectively, coupled with a decrease of 0.58 and 1.77% in the Hamming Loss, 

respectively. This optimization can be ascribed to the traditional models’ challenge in managing intricate 

label spaces characterized by many label categories and complex interdependencies. Through the 

construction of HLT, our approach effectively navigates these challenges. 

Moreover, compared to the contemporary Cascade-XML model, our model registers considerable 

enhancements across all evaluative metrics. There was a notable reduction in the Hamming Loss by 0.39% 

and an increase in the Micro-F1 score by 1.6%. This marked performance improvement is attributed 

to the novel design of our model, which synergizes an ontological framework with the CFFM. This 

hybridization facilitates the extraction of pertinent entity features and adeptly captures the intricate 

relationships among labels. Furthermore, applying advanced multi-label classification techniques for 

processing entity features endows our model with a heightened efficiency and accuracy, particularly 
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in multi-label processing within TCM symptom texts. 

Table 3. Comparison of results between baseline models and our proposed approach. 

Model Hamming Loss (∗10−2) Accuracy Recall Micro-F1 

Bi-LSTM-CRF 6.790 0.7712 0.7636 0.7737 

BERT + Bi-LSTM + CRF 6.151 0.7954 0.7834 0.7852 

Attention-XML 5.571 0.8175 0.8032 0.8103 

SGM 4.381 0.8236 0.8094 0.8165 

Cascade-XML 3.329 0.8301 0.8282 0.8292 

Proposed 2.932 0.8388 0.8325 0.8452 

4.4.2. Ablation analysis 

In this section, we conducted ablation analyses to assess the contributions of various components 

within our model. Each experiment was configured as follows: 1) -w/o MER: excluding the entity 

recognition component; 2) -w/o CFFM: omitting the correlation feature fusion module; and 3) -w/o 

HLT: not utilizing the hierarchical label trees. Table 4 presents a summary of the performance results 

on the test dataset. 

Table 4. Results of ablation analyses for different components. 

Model Micro-F1 
Hamming Loss(∗10

−2) 

Proposed 0.8352 3.132 

-w/o MER 0.7903 (-0.0449) 6.148 (+3.016) 

-w/o CFFM 0.8124 (-0.0228) 4.369 (+1.437) 

 -w/o HLT 0.8098 (-0.0354) 5.534 (+2.402) 

A series of ablation studies were performed to rigorously assess the individual model components’ 

contribution. Removal of the NER component led to a notable decrement of 4.49% in the Micro-F1 

score and an increment of 3.016% in the Hamming Loss, thus underscoring the NER component’s 

critical role in crucial entity extraction and its integral impact on the overall model efficacy. Further 

analysis indicated that excluding the CFFM precipitated a 2.28% decline in the Micro-F1 and a 1.437% 

rise in the Hamming Loss, thus highlighting the CFFM’s vital function in the entity feature processing 

and in augmenting the handling of complex label interrelations. Lastly, the non-utilization of the HLT 

resulted in a 3.54% reduction in the Micro-F1 and a 2.402% increase in the Hamming Loss, thus 

emphasizing the HLT's significance in label classification management and in addressing label 

imbalance challenges. 

4.4.3. Class imbalance 

Upon analyzing the dataset, it was observed that prevalent symptom labels constituted 57% of 

the total samples, whereas rare labels comprised a mere 0.1%. The imbalance in label distribution is 

illustrated in Figure 3, thus highlighting a potential challenge for model training, especially in 

predicting infrequent symptoms. 
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Figure 3. Visualization of label imbalance results. 

A comprehensive set of experiments evaluated the model’s efficacy in addressing data imbalances 

and forecasting low-frequency class labels (see Figure 4). The findings revealed an increase in the 

Hamming Loss and a decrease in the F1 score following the removal of high-frequency labels. Without 

a HLT, the Hamming Loss escalated from 3.534 to 7.25, while the F1 score diminished from 0.8298 

to 0.6698. Conversely, implementing HLT resulted in more consistent model performance, with the 

Hamming Loss reaching 6.157 and the F1 score reducing to 0.6925. These results underscore the 

pivotal role of HLT in enhancing label hierarchy management. By establishing a structured hierarchical 

label framework, HLT significantly improved the model's responsiveness to minority class labels and 

mitigated the disproportionate impact of standard class labels on classification outcomes. 

 

Figure 4. The Impact of High-Frequency Labels on Model Performance. This chart 

illustrates the change in model performance as the most frequent labels are removed 

incrementally. The horizontal axis represents the number of high-frequency labels removed. 

In this study, we meticulously selected low-frequency labels representing varying proportions 
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within our data set and conducted a detailed visualization of their performance outcomes, as depicted 

in Figure 5. Upon a rigorous analysis, it became evident that implementing a HLT surpassed the 

efficacy of models that did not markedly incorporate HLT, particularly across all the minority 

category labels under examination. This was especially pronounced in categories with a shallow 

representation. For instance, in the “Symptoms of the Voice” category, which accounts for a mere 0.1% 

of the data, the application of HLT facilitated a substantial enhancement in the F1 score, elevating 

it from 0.445 to 0.615. This significant improvement underscores the HLT structure’s profound impact 

on augmenting the category recognition capabilities with a minimal occurrence. 

Furthermore, the HLT approach demonstrated its proficiency in strengthening the model 

performance across other diverse categories, such as “Symptoms of the Limbs,” “Symptoms of the 

Diet and Taste,” and “Body Constitution.” These findings robustly endorse the HLT’s utility in 

effectively balancing the distribution of categories within multi-label datasets. The HLT’s particular 

effectiveness in elevating the classification precision of the minority categories emerges as a pivotal 

aspect of our study, thus underscoring its potential for broader applications in multi-label data 

classification tasks. 

 

Figure 5. Performance Comparison of Low-Frequency Sample Labels. The labels include 

SCA (Symptoms of the Chest and Abdomen), SUD (Symptoms of Urination and 

Defecation), SWB (Symptoms of the Whole Body), SL (Symptoms of the Limbs), SDT 

(Symptoms of the Diet and Taste), SBC (Symptoms of the Body Constitution), and SV 

(Symptoms of the Voice). 

4.4.4. The influence of label quantity on model performance 

In our research, we explored the impact of label quantity on the performance of BERT + Bi-

LSTM + CRF (BBC), Cascade-XML, and our proposed model, as depicted in Figure 6. The data 

revealed that all three models exhibited performance fluctuations with an increase in the number of 

labels. The BBC model demonstrated a performance decrease from 0.83 with a single label to 0.78 

with the full spectrum of labels. The Cascade-XML model exhibited minimal performance variations, 

declining from 0.8388 to 0.8299, though essentially maintaining a level above 0.83. Notably, our model 

consistently surpassed the performance of these two models across various label counts. It achieved 
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an optimal performance of 0.8451 with a single label and sustained performance of 0.8379 with all 

labels, thus indicating a high degree of robustness to the escalation in label numbers. 

This stability is attributed to the strategic design of our model, which includes the implementation 

of an HLT for the efficient label management and the integration of a CFFM. The HLT effectively 

mitigates the complexity of handling numerous labels through its hierarchical structure. Concurrently, 

by exploiting the correlations between labels, the CFFM enhances the model's accuracy in recognizing 

and categorizing entities related to specific labels, especially in multi-label scenarios. 

It is essential to highlight that during the expansion of label sets, our model and Cascade-XML 

demonstrated a notable performance pattern characterized by an initial decline followed by a 

subsequent increase. This trend may be attributed to the model’s initial phase of adjusting to the 

challenges posed by minority categories within an imbalanced class distribution, which initially leads 

to decreased performance metrics. However, as the label set expands, the model likely develops and 

adapts new strategies to effectively address this imbalance by incorporating a more significant number 

of high-frequency labels. Consequently, this adaptation results in a notable recovery and potential 

enhancement in the model’s overall performance. This observation underscores the dynamic nature of 

the model’s learning process in response to evolving data landscapes and the complexity inherent in 

managing class imbalances. 

 

Figure 6. The impact of the number of labels on model performance. 

4.4.5. Correlation 

In our research, we deployed a multi-label classification algorithm that integrates an HLT based 

on quantitatively assessed correlations between labels. The CFFM embedded within the model is 

tailored to the extract label features from an ontological framework more effectively. A comparative 

analysis evaluated our model’s performance in capturing label relationships and constructing HLT 

against the TF-IDF-based Cascade-XML model, with label correlations visualized through heatmap 

luminance levels. 

As illustrated in Figure 7, results indicate that our model exhibits an enhanced sensitivity in 

detecting inter-label correlations compared to the Cascade-XML model. The heatmap highlights 

several highly correlated label pairs and groups with correlation scores around 0.5, thus demonstrating 
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our approach’s feature extraction efficiency. In contrast, the Cascade-XML model’s correlation scores 

were generally below 0.2 in processing complex label relationships within TCM texts. Our model 

significantly improved the performance in multi-label classification tasks by identifying and enhancing 

the training process with strongly correlated label pairs. This method increased the model’s precision 

in recognizing symptomatic entities and their latent connections within intricate TCM texts. Moreover, 

utilizing this visualization technique afforded a deeper understanding of the model's operational 

characteristics when handling specific TCM texts, thereby enabling us to refine its architecture and 

training methodologies and augment its overall performance. 

 

Figure 7. Label Correlation Visualization: On the left, the visualization of label 

correlations driven by knowledge is presented, while on the right, the data-driven 

visualization results are displayed. 

4.4.6. Knowledge fusion analysis 

A comprehensive comparative experiment was undertaken to ascertain the efficacy of the 

developed ontology framework. This experiment scrutinized the performance of three distinct models 

when applied to a uniform dataset of TCM symptoms: our model, which integrates the ontology 

framework; a model devoid of the ontology framework (-w/o Onto); and the conventional BBC model. 

The empirical analysis drew upon authentic case texts from Qihuang TCM electronic medical records, 

as depicted in Table 5. In the entity recognition comparative experiment conducted on the Qihuang 

TCM Electronic Medical Records dataset, the ontology framework integrated model (i.e., our model) 

demonstrated a pronounced superiority in detecting symptom entities. According to the statistical 

analysis, our model successfully identified all 13 listed symptom entities, whereas the model without 

an ontology framework integration (-w/o Onto) recognized 11, and the BBC model identified only 

seven. Notably, symptoms such as “Cold feet” and “Well-formed bowel movements” were exclusively 

detected by our model and did not appear in the recognition lists of the other two models, thus 

highlighting the significant role of the ontology framework in finely differentiating symptom entities. 

Moreover, the recognition of symptoms “Non-yellow urine” and “Difficulty in falling asleep” by our 

model was not observed in the BBC model, further corroborating the value of the ontology framework 

in capturing nuances and enhancing the comprehensiveness of the model. Overall, the experimental 
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outcomes conclusively affirm the significant advantages of the ontology framework in elevating the 

precision and completeness of the TCM symptom entity identification. 

Table 5. Case study analysis and model recognition outcomes. 

Case Example: Following postoperative treatment for urolithiasis, the patient reported a notable 

alleviation of dizziness, although slight vertigo persisted after movements. Sensitivity to cold and wind 

decreased slightly compared to before. However, the patient still experienced cold feet and lower limb 

coldness extending to the knees, occasionally necessitating the wearing of cotton trousers. The patient 

struggled to fall asleep, experienced frequent dreaming, and was easily awakened. Mild fatigue ensued 

after minimal exertion. No significant dry mouth was reported, and there was an average appetite; the 

patient experienced intermittent buzzing in the head. A sensation of comfort in the epigastric region 

was noted after consuming cold food, non-yellow urine, well-formed bowel movements, and 

Suboptimal mood. 

Symptomatic Entity our_model 
our_model 

-w/o Onto 
BBC 

Dizziness √ √ √ 

Sensitivity to cold √ √ √ 

Sensitivity to wind √   

Cold feet √ √  

Lower limb coldness √ √ √ 

Struggled to fall asleep √ √  

Frequent dreaming √ √ √ 

Easily awakened √   

Dry mouth √ √ √ 

Average appetite √ √  

Non-yellow urine: √ √  

Well-formed bowel movements √ √ √ 

Suboptimal mood √ √ √ 

Additionally, we assessed the efficacy of three models in fine-grained label recognition, as 

depicted in Figure 8. The traditional BBC model displayed the lowest performance in recall, precision, 

and F1 scores, thus indicating its limited capability in accurately identifying fine-grained labels within 

the TCM symptom dataset. In contrast, the model lacking the ontology framework (-w/o Onto) showed 

some improvement; however, the ontology-integrated model (i.e., our model) outperformed it. Our 

ontology-integrated model demonstrated superior performance across the recall, precision, and F1 

scores. It achieved exceptionally high or exact recall rates of one for specific labels, thus underscoring 

its precision and comprehensiveness in identifying symptom labels in real-case texts. 

Our ontology-integrated model showed a notable advantage in processing the TCM symptom 

dataset. By incorporating the ontology framework, with its structured symptom classification and 

relational network, we significantly enhanced the model’s precision in identifying and classifying 

symptom entities, especially those with complex semantics and nuanced distinctions. Moreover, the 

ontology framework strengthened our model’s ability to discern relationships between symptoms 

frequently encountered in TCM texts. This improvement was crucial for handling the combinations of 

symptoms typically found in TCM, thereby enhancing the model's effectiveness in multi-label 

classification tasks. 
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Figure 8. Model performance analysis: Fine-grained label recognition metrics including 

accuracy, recall, and F1 score. 

4.5. Discussion 

Ontology framework and standardization of TCM symptom nomenclature. Our study established 

a TCM symptom ontology derived from authoritative texts, thereby effectively addressing the non-

standardization challenge in TCM symptom terminology. This ontology significantly streamlines the 

dataset construction and annotation by providing a standardized symptom classification and a 

description framework. 

Integration of TCM knowledge with advanced modeling techniques. We bridged the gap in the 

existing studies regarding the integration of TCM knowledge. We significantly enhanced the model 

performance and annotation quality by translating our ontology into a knowledge graph and 

incorporating it into the model. Integrating this TCM expertise is crucial for improving symptom 

identification, classification accuracy, and efficacy. 

Enhanced symptom entity identification with CFFM. Our approach effectively overcomes the 

limitations of the current sequence labeling models in complex multi-label classification tasks. The 

CFFM we developed combines multi-label and entity recognition processes, thus optimizing symptom 

entity identification. This model demonstrated a superior performance in capturing extensive label 

correlation features and establishing a hierarchical label system. 
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Comparative analysis of model performance. Regarding model performance, while the BBC 

model showed proficiency with datasets with fewer label categories, its effectiveness decreased with 

increasing labels. In contrast, our model and Cascade-XML exhibited enhanced adaptabilities and 

robustness with larger label counts. This is attributed to their structured outputs and the ability to 

capture inter-label dependencies, thus effectively managing multi-label challenges. 

Limitations and future research directions. Despite these advancements, our study faces 

limitations. The primary constraint is the limited scope of the dataset, which was sourced from a single 

hospital and might affect the generalization of our model. Future research should focus on validating 

our model across more diverse datasets. Additionally, our study predominantly concentrated on 

symptom identification and classification, thus excluding treatment recommendations - a vital aspect 

of TCM diagnostics. This presents a promising avenue for future exploration. Moreover, while our 

ontology framework lays a structured foundation for symptom information, it is essential to enhance 

the depiction of symptom attributes for a more comprehensive understanding of TCM symptomatology. 

Future efforts will incorporate heterogeneous datasets and refine the ontology framework, thereby 

improving the accuracy of TCM clinical pattern differentiation and contributing more effectively to 

TCM diagnostics. 

5. Conclusions 

We present an innovative multi-label entity extraction model dedicated to symptom identification 

and classification, underpinned by a thorough TCM symptom ontology framework. This model 

synergizes the strengths of the TCM symptom ontology, knowledge graphs, classical entity recognition, 

and advanced multi-label classification techniques. A sophisticated multi-associative feature fusion 

module within the model significantly enhances the discernment of interconnections among symptom 

entities in textual data, thereby augmenting its ability to efficiently extract and interpret textual 

information. This integrative approach boosts the model’s overall efficacy and precision and aids in 

the meticulous recognition, categorization, and progressive evolution of symptom entities. There are 

plans to merge this framework with the ICPC3 Level-3 Directory and the OHDSI conceptual structure 

framework. This strategic alignment aims to bridge the gap between Eastern and Western medical 

practices and to continuously polish the TCM symptom ontology framework for broader applicability 

and impact. 
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