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Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are

progressive neurological disorders that share neurodegenerative pathways

and features. The most prevalent genetic causes of ALS/FTD is the

GGGGCC hexanucleotide repeat expansions in the first intron region of

the chromosome 9 open reading frame 72 (C9orf72) gene. In this review,

we comprehensively summarize the accumulating evidences elucidating the

pathogenic mechanism associated with hexanucleotide repeat expansions

in ALS/FTD. These mechanisms encompass the structural polymorphism of

DNA and transcribed RNA, the formation of RNA foci via phase separation,

and the cytoplasmic accumulation and toxicities of dipeptide-repeat proteins.

Additionally, the formation of G-quadruplex structures significantly impairs

the expression and normal function of the C9orf72 protein. We also discuss

the sequestration of specific RNA binding proteins by GGGGCC RNA, which

further contributes to the toxicity of C9orf72 hexanucleotide repeat expansions.

The deeper understanding of the pathogenic mechanism of hexanucleotide

repeat expansions in ALS/FTD provides multiple potential drug targets for these

devastating diseases.

KEYWORDS

C9orf72, hexanucleotide repeat expansions, G-quadruplex, phase separation,
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurological disorder mainly characterized
by the degeneration of motor neurons, leading to symptoms including muscle weakness,
muscle atrophy and ultimately death from respiratory failure (Rowland and Shneider,
2001), while frontotemporal dementia (FTD) refers to a broad spectrum of neurological
disorders marked by progressive damage to the temporal and frontal lobes of the brain
(Graff-Radford and Woodruff, 2007; Rademakers et al., 2012). Presently, both ALS and
FTD are recognized as part of a broad neurodegenerative continuum that shares common
neurodegenerative pathways and features. This includes the presence of TAR DNA-binding
protein 43 (TDP-43) cytoplasmic inclusions within the central nervous system (Neumann
et al., 2006; Lillo and Hodges, 2009), which was considered as a potential biomarker for
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ALS/FTD (Majumder et al., 2018). Furthermore, both ALS and
FTD were genetically linked to the expanded GGGGCC (G4C2)
hexanucleotide repeats in the first intron region of the chromosome
9 open reading frame 72 (C9orf72) gene (Figure 1A). This genetic
abnormality was identified as the most common genetic cause of
familial ALS and familial FTD (DeJesus-Hernandez et al., 2011;
Renton et al., 2011; Majounie et al., 2012).

Tremendous progress and hypothesis have greatly contributed
to our understanding of the pathologic mechanism of C9orf72
hexanucleotide repeat expansions in ALS/FTD (Edbauer and
Haass, 2016; Gitler and Tsuiji, 2016; Haeusler et al., 2016; Goodman
et al., 2019). Both the C9orf72 hexanucleotide repeat expansions
and the transcribed RNA, were reported to adopt polymorphic
unusual secondary structures, such as G-quadruplexes and hairpin,
which were involved in the ALS/FTD pathogenesis via several
potential mechanisms (Fratta et al., 2012; Reddy et al., 2013;
Haeusler et al., 2014). Moreover, the non-ATG translation of
the hexanucleotide repeat expansions leads to the accumulated
production of cytoplasmic dipeptide-repeat (DPR) proteins, whose
toxicity is also considered as a contributing factor to the pathology
of diseases (Ash et al., 2013; Gendron et al., 2013; Mackenzie et al.,
2013; Mori et al., 2013a,c). These findings represent crucial steps
in unraveling the complex pathogenic mechanisms associated with
C9orf72 hexanucleotide repeat expansions in ALS/FTD.

In this mini review, we focus on the pivotal role played by
C9orf72 hexanucleotide repeat expansions in the pathogenesis
of ALS/FTD across multiple dimensions, as visually represented
in Figure 1. We present a comprehensive summary of recent
progress, highlighting the structural polymorphism observed in
both the DNA and transcribed RNA of C9orf72 hexanucleotide
repeat expansions. Additionally, we explore the mechanism of
the formation of RNA foci via phase separation, elucidating its
profound implications for the pathogenesis of ALS/FTD. Moreover,
we delve into the adverse effects of G-quadruplex formation,
which significantly impairs the expression and normal function
of C9orf72 protein. Meanwhile, we discuss the cytoplasmic
accumulation and toxicity of DPR proteins, as well as the role of
sequestered and enriched RNA binding proteins (RBPs) by G4C2
RNA, all of which contribute substantially to the overall toxicity
related to hexanucleotide repeat expansions in ALS/FTD.

2 Structural polymorphism of G4C2
repeat expansions of DNA

G-quadruplex refers to a unique four-stranded helical structure
which is formed by guanosine-rich DNA or RNA sequences
(Sen and Gilbert, 1988). The fundamental structural unit of a
G-quadruplex, known as a G-tetrad, is composed of four guanine
molecules arranged in a cyclic Hoogsteen hydrogen-bonded square
planar structure (Sannohe and Sugiyama, 2010). Two or more
G-tetrads stack to form a G-quadruplex, which is stabilized by
monovalent cations (Huppert, 2008). In the context of ALS/FTD, it
was reported that the guanosine-rich C9orf72 G4C2 hexanucleotide
repeat expansions can fold into polymorphic G-quadruplex in vitro
(Haeusler et al., 2014; Brcic and Plavec, 2015, 2018; Sket et al., 2015;
Zamiri et al., 2015; Zhou et al., 2015, 2018; Figure 1A). Notably,
the highly variable size of the hexanucleotide repeat expansions

(DeJesus-Hernandez et al., 2011; Renton et al., 2011; Haeusler et al.,
2016), as well as the complexity of the G-quadruplex formed by
G4C2 repeat sequence, give rise to a dramatic structural diversity
of G-quadruplex structures folded by the C9orf72 G4C2 repeat
expansions (Haeusler et al., 2014; Zhou et al., 2015, 2018).

In recent years, various biophysical methods have been
employed to elucidate the folding and structures of G4C2
repeat expansions with varying length, highlighting the structural
polymorphism of G4C2 repeat expansions and the potential
existence of multiple architectures. Using circular dichroism (CD)
and nuclear magnetic resonance (NMR) spectroscopy, Zhou et al.
(2015) investigated the structural heterogeneity of two, three, four
and five repeats of G4C2 DNA (referred to as d(G4C2)2, d(G4C2)3,
d(G4C2)4 and d(G4C2)4, respectively). They further employed
NMR to determine the topology of the G-quadruplex formed by
d(G4C2)4, revealing a monomeric chair-type G-quadruplex with
a four-layer antiparallel G-tetra core and three edgewise loops
(Zhou et al., 2015).

Brcic and Plavec (2015) carried out an in vitro
investigation involving several mutational variants of d(G4C2)4
oligonucleotides. Notably, they observed that d[(G4C2)3G4]
could adopt two predominant structures with antiparallel
topologies (Brcic and Plavec, 2015). To enhance structural stability,
they introduced a substitution of dG21 with 8-bromoguanine
(8Br-dG), a residue that favors a syn glycosidic conformation
(Sarma et al., 1974). Interestingly, they found that the folding
conditions, including solution pH and the rate of cooling,
exert a substantial influence on the structure. They solved the
structure of d[(G4C2)3G4] formed in a neutral pH solution with
slow cooling (referred to as NAN for neutral and annealing)
(Brcic and Plavec, 2015), as well as an alternative structure
formed in an acidic pH solution with fast cooling (termed AQU
for acidic and quenching) using NMR technique (Brcic and
Plavec, 2018). These investigations collectively demonstrate the
structural polymorphism of G-quadruplex formed by G4C2 repeat
expansions (Figure 1A).

Due to the structural diversity inherent in G-quadruplex
formed by G4C2 repeat expansions, Zhou et al. (2018) employed
biochemical purification methods to isolate and prepare these
G-quadruplex in vitro. Initial screening using CD and NMR
methods revealed that d(G4C2)2 could form mixed parallel
and antiparallel topologies (Zhou et al., 2015). Subsequently,
using anion exchange chromatography, they successfully separated
different conformations of d(G4C2)2. The various purified
fractions were subjected to CD melting experiments and NMR
spectroscopy, revealing distinct properties of each fractions (Zhou
et al., 2018). Notably, one of the major fractions, designated as the
F5 fraction, was successfully crystalized in a K+ solution (Zhou
et al., 2018). To solve the phase problem, d(G4C2)2 was annealed
in Ba2+ solution, leading to the crystallization of d(G4C2)2-Ba.
With the help of the anomalous signal of Ba2+, the structure of
d(G4C2)2-Ba was solved and subsequently used as the template
to solve the structure of d(G4C2)2-K by molecular replacement
method. The structure revealed that d(G4C2)2 folds into a novel
eight-layer parallel tetrameric G-quadruplex (Geng et al., 2021).
Interestingly, the crystal structure displayed two distinct forms
of tetrameric G-quadruplexes, referred to as Form-1/7 (where
the dG1 base in one dimeric block stacks with the dG7 base in
the opposite dimeric block) and Form-1/1 (where the dG1 base
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FIGURE 1

Pathogenic mechanisms of C9orf72 hexanucleotide repeat expansions in ALS/FTD. (A) Structural polymorphism of G4C2 repeat expansions of DNA.
(B) Formation of RNA foci via phase separation. (C) Multiple pathogenic mechanisms of G4C2 repeat expansions at protein level. (D) Schematic
diagrams showing the toxicities of dipeptide-repeat proteins.

in one dimeric block stacks with the dG1 base in the opposite
dimeric block) respectively. These novel multimeric G-quadruplex
structures formed by d(G4C2)2 underscore the complexity and
potential for oligomerization of G-quadruplexes generated by
G4C2 repeat expansions (Figure 1A).

In order to comprehend the functional consequence and
pathological implications of the structural polymorphism of

G4C2 repeat expansions, Haeusler et al. (2014) examined
the transcription of the G4C2 repeat expansions using an
in vitro transcription assay. Their findings unveiled a repeat-
length-dependent accumulation of transcripts that were
prematurely terminated within the repeat expansions. The
abortive transcription was also characterized in patient cells with
C9orf72 G4C2 repeat expansions. Moreover, they identified an
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essential nucleolar protein, nucleolin, which specifically binds
to these transcripts. This interaction led to impaired nucleolar
function and nucleolar stress in patient cells, thus it is considered
as one of the pathogenic mechanisms underlying C9orf72-linked
ALS/FTD (Haeusler et al., 2014) (see below). Nevertheless, it is
still unclear how the diverse structures formed by G4C2 repeat
expansions impact the specific pathogenic mechanisms.

3 Formation of RNA foci via phase
separation

It has been proved that the transcribed RNA from G4C2 repeat
expansions [termed r(G4C2)n] can indeed form various structures,
including G-quadruplexes (Fratta et al., 2012; Reddy et al., 2013;
Haeusler et al., 2014), hairpin structures (Su et al., 2014) and
duplex structures (Maity et al., 2021). These diverse structures have
been confirmed through topological investigations using gel-shift
assay, CD spectroscopy and NMR spectroscopy. Furthermore, it
has been observed that the equilibrium between G-quadruplex,
hairpin structure and duplex structure was regulated by factors
like pH and temperature (Bozic et al., 2020). This phenomenon
is reminiscent of the distinct G-quadruplex structures formed by
d[(G4C2)3G4], as previously discussed, influenced by pH and rate
of cooling (Brcic and Plavec, 2015, 2018). However, it’s important to
note that the detailed molecular structure of G-quadruplex formed
by r(G4C2)n has not been resolved yet.

The accumulation of RNA foci in the nucleus, formed by
transcripts containing the G4C2 repeat expansions, is a recognized
pathological hallmark shared by ALS/FTD. Phase separation of
biological macromolecules have been extensively studied, and plays
a crucial role in the formation and regulation of membraneless
organelles (Banani et al., 2017; Shin and Brangwynne, 2017; Wu
et al., 2020; Roden and Gladfelter, 2021), particularly in the
neurodegenerative diseases (Zbinden et al., 2020). Jain and Vale
(2017) made a significant discovery by observing that G4C2 repeat
expansions undergo a solution-gel phase separation in vitro at a
critical repeat number similar to what is observed in ALS/FTD
patients. The G4C2 repeat-containing RNA can form RNA foci
via phase separation in human cells, suggesting that the gelation
of G4C2 repeat-containing RNA contributes to the pathology of
ALS/FTD disease via phase separation (Fay et al., 2017; Jain and
Vale, 2017; Figure 1B).

Phase separation of biological macromolecules depends on
the multivalent intermolecular interactions (Banani et al., 2017;
Shin and Brangwynne, 2017). Given the tetrameric structure of
G-quadruplex formed by d(G4C2)2 (Geng et al., 2021), it is
reasonable to speculate that G-quadruplex formed by r(G4C2)2
is also multimeric. The multimeric organization provides the
specific multivalent intermolecular interactions, but not the weak
and unspecific interactions between RNA, necessary for the phase
separation of G4C2 repeat-containing RNA (Shen et al., 2023).
Furthermore, the phase separation of RNA occurs at a boundary
condition of increasing effective valence contributed by the
increasing repeat number and specific intermolecular interaction.
This could explain why ALS/FTD disease is triggered after the
G4C2 repeat expansions reach a certain threshold of repeat number
(Haeusler et al., 2016; Jain and Vale, 2017). Additionally, the

highly enriched condensates of r(G4C2)n can further recruit RNA-
binding proteins through phase separation. This contributes to
the formation of RNA granules, including the nuclear RNA foci
and cytoplasmic stress granules, all of which play a role in the
pathogenesis of the diseases (Fay et al., 2017; Figure 1B).

4 Multiple pathogenic mechanisms
of G4C2 repeat expansions at
protein level

4.1 Loss-of-function pathogenic
mechanisms

The C9orf72 protein interacts with Smith-Magenis syndrome
chromosome region candidate gene 8 (SMCR8) and WD repeat-
containing protein 41 (WDR41) (Amick et al., 2016; Sullivan et al.,
2016), forming a stable ARF GTPase-activating protein (GAP)
complex (Su et al., 2020, 2021; Tang et al., 2020; Norpel et al.,
2021). This ARF GAP complex was reported to be involved in
regulation of autophagy (Amick et al., 2016; Sullivan et al., 2016;
Yang et al., 2016), and is critical for microglial function (O’Rourke
et al., 2016) and the modulation of actin dynamic in motor neurons
(Sivadasan et al., 2016). The unusual secondary structures formed
by the G4C2 repeat expansions in the first intron region of C9orf72
gene significantly reduce the expression of C9orf72 protein by
the abortive transcription (DeJesus-Hernandez et al., 2011; Renton
et al., 2011; Haeusler et al., 2014; Shi et al., 2018). Additionally,
the epigenetic mechanisms, including the methylation of cytosine
and histone, also contribute to the reduction of C9orf72 expression
(Belzil et al., 2013; Xi et al., 2014). For the human induced motor
neurons, the exogenous restoration of C9orf72 expression can
rescue the survival of neurons (Shi et al., 2018), suggesting that
the decrease of C9orf72 protein contributes to the pathogenesis
of ALS/FTD. However, the C9orf72 loss-of-function mouse model
studies have found that the knock down or knockout of C9orf72
gene does not recapitulate ALS/FTD (Lagier-Tourenne et al., 2013;
Koppers et al., 2015; Atanasio et al., 2016; Burberry et al., 2016;
Jiang et al., 2016; O’Rourke et al., 2016; Sudria-Lopez et al., 2016;
Sullivan et al., 2016; Ugolino et al., 2016; Liu et al., 2022), although
some models showed mild motor or cognitive phonotypes or
reduced survival (Table 1; Atanasio et al., 2016; Burberry et al.,
2016; Jiang et al., 2016; Sudria-Lopez et al., 2016; Ugolino et al.,
2016; Batra and Lee, 2017; Balendra and Isaacs, 2018; Liu et al.,
2022). This indicates that C9orf72 loss of function is not sufficient
to lead to ALS/FTD, further highlighting the complex nature of
these neurodegenerative diseases.

4.2 Toxicity of dipeptide-repeat proteins

The transcribed r(G4C2)n can undergo a mechanism
called repeat-associated non-ATG dependent translation (RAN
translation), leading to the production of dipeptide-repeat (DPR)
proteins (Ash et al., 2013; Mori et al., 2013a,c; Zu et al., 2013). This
non-ATG initiated translation of the G4C2 repeat expansions from
all six potential reading frames can generate five different DPR
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TABLE 1 C9orf72 mouse models.

Methods Phenotypes

Loss of function C9orf72 depletion in the adult mouse CNS by ASO injection
(Lagier-Tourenne et al., 2013)

Normal

Neural-specific ablation of C9orf72
(Koppers et al., 2015)

Reduced body weight; Normal motor function.

Remove exons 2-6 of C9orf72
(Jiang et al., 2016)

Reduced body weight; Splenomegaly and enlarged lymph nodes; Decreased
hemoglobin and packed cell volume; Decreased percentage of lymphocytes;
Increased percentage of neutrophils in blood; Mild social interaction and
social recognition abnormalities; Mild motor deficits.

Knockout of C9orf72 full gene
(Atanasio et al., 2016)

Mild motor deficits; Lymphadenopathy and splenomegaly; Mixed
inflammatory infiltrates in multiple organs; Systemic lupus
erythematosus-like disease; Reduced survival.

Model 1: Remove exons 2-6 of C9orf72
Model 2: ZFN-mediated knockout of C9orf72
(O’Rourke et al., 2016)

Progressive splenomegaly and lymphadenopathy; Age-related
neuroinflammation

Full ablation of C9orf72
(Sudria-Lopez et al., 2016)

Reduced survival; Reduced body weight; Normal motor function; Enlarged
lymph nodes and splenomegaly.

CRISPR/Cas9-mediated knockout of C9orf72
(Sullivan et al., 2016)

No growth defects; Lymph node and spleen enlargement.

Model 1: Remove exons 2-6 of C9orf72
Model 2: Remove exons 2-6 of C9orf72 without selection cassette
Model 3: CRISPR/Cas9-mediated knockout of C9orf72
(Burberry et al., 2016)

Splenomegaly; Neutrophilia; Thrombocytopenia; High mortality rate.

Remove exons 2-6 of C9orf72 without selection cassette
(Ugolino et al., 2016)

Decreased life span; Splenomegaly; No obvious neuronal cell death in brain
or spinal cord.

Jackson Lab Stock No. 027068 (O’Rourke et al., 2016):
ZFN-mediated knockout of C9orf72
(Liu et al., 2022)

Motor deficits; Hyperactivity of Purkinje cells; Enhanced BK channel in the
cerebellum.

Gain of function Expression of (G4C2)66 throughout CNS by AAV-mediated
somatic brain transgenesis
(Chew et al., 2015)

Nuclear RNA foci; Inclusions of poly(GP), poly(GA) and poly(GR) DPR
inclusions; TDP-43 pathology; Cortical neuron and cerebellar Purkinje cell
loss; Astrogliosis; Reduced body weight; Behavioral abnormalities.

BAC containing exons 1-6 of human C9orf72 gene with∼500
repeats of G4C2 motif
(Peters et al., 2015)

Sense and antisense RNA foci; Poly(GP) DPR inclusions; No TDP-43
pathology; Survival, motor and cognitive systems are normal.

BAC containing human C9orf72 gene with∼100-1000 repeats of
G4C2 motif
(O’Rourke et al., 2016)

Widespread RNA foci; Poly(GP) DPR inclusions; Normal behavior; No
neurodegeneration.

BAC containing human C9orf72 gene with up to 500 repeats of
G4C2 motif
(Liu et al., 2016)

Decreased survival; Kyphosis, reduced activity, hyperactivity when provoked,
clasping and intermittent seizures; Motor neuron disease; Neurodegenerative
changes; Sense and antisense RNA foci; Poly(GA) and poly(GP) aggregates;
Nuclear and cytoplasmic TDP-43 aggregates.

BAC containing exons 1-5 of human C9orf72 gene with∼110 or
∼450 repeats of G4C2 motif
(Jiang et al., 2016)

Sense and antisense RNA foci; Cytoplasmic poly(GP), poly(GR) and
poly(GA) aggregates; Age-dependent cognitive impairment and anxiety-like
behavior; No TDP-43 mislocalization or aggregation with increased
phosphorylated TDP-43.

Expression of GFP-(GA)50 or GFP-(GA)50-mut in the CNS by
AAV-mediated somatic brain transgenesis
(Zhang et al., 2016)

Poly(GA) aggregation; Brain atrophy and neurotoxicity; Hyperactivity,
anxiety-like behavior, motor and cognitive deficits; rare phosphorylated
TDP-43 inclusions;

Expression of (GA)149, 31 amino acids corresponding to the 3′

region of the poly(GA) reading frame in patients and a C-terminal
CFP tag
(Schludi et al., 2017)

Poly(GA) inclusions; Mild TDP-43 phosphorylation; No TDP-43 inclusions
and mislocalization; Microglia activation without astrogliosis; Progressive
motor deficits.

Expression of 10 pure or 102 interrupted G4C2 repeats in the
brain by AAV-mediated somatic brain transgenesis
(Herranz-Martin et al., 2017)

RNA foci; Extensive DPR pathology; Disease-related NMJ pathology;
Progressive gait and behavioral deficits.

Conditional expression of GFP-(PR)28 in neurons
(Hao et al., 2019)

Poly(PR) aggregation; No TDP-43 inclusions; Decreased survival; Smaller
body size; Smaller brain volumes; Motor deficits, motor-related
neurodegeneration and gliosis for heterozygous mice; No cytoplasmic
TDp-43 inclusions.

Knockin of 80 G4C2 repeats with human flanking fragments
within exon1a and exon1b at the rat C9orf72 locus
(Dong et al., 2020)

Motor deficits; Loss of motor neurons; Hind limb paralysis for females.

Tet-on inducible expression of 36× pure G4C2 repeats with
100-bp upstream and downstream human flanking regions
(Riemslagh et al., 2021)

Sporadic sense DPR aggregates; No apparent neurodegeneration; No RNA
foci; No pTDP-43 pathology; Locomotor phenotype, rapid muscular
dystrophy and neuromuscular junction abnormalities.

(Continued)
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TABLE 1 (Continued)

Methods Phenotypes

Expression of ATG-driven FLAG-(GR)50-eGFP using FAST
cassette
(Verdone et al., 2022)

No TDP-43 pathology; No reduction in survival; No motor and cognitive
impairments; Mild motor neuron loss in males.

AAV-mediated expression of (G4C2)149
(Jambeau et al., 2022)

Poly(GA), Poly(GR) and Poly(GP) aggregation; Normal survival; Increases
in distance traveled, velocity of movement and time spent moving on an
open-field assay.

proteins: Gly-Ala (GA), Gly-Pro (GP) and Gly-Arg (GR) translated
by sense (G4C2)n RNA, as well as Pro-Gly (PG) (equivalent to
GP), Pro-Arg (PR) and Pro-Ala (PA) translated by antisense
(G4C2)n RNA. The accumulation of these unconventionally
translated DPR proteins leads to the formation of cytoplasmic
insoluble inclusions in neurons, which can be identified by specific
DPR antibodies (Ash et al., 2013; Mori et al., 2013c; Zu et al.,
2013). Thus, DPR proteins are considered as a pathognomonic
feature of ALS/FTD. Especially, the formation of polymorphic
RNA G-quadruplex formed by r(G4C2)n can trigger ribosomal
frame shifting during translation (Yu et al., 2014), leading to the
unconventional translation of DPR proteins.

Two of the Arg-containing DPR proteins, GR and PR,
were reported to bind to nucleoli, impede RNA biogenesis and
induce cell death, illustrating the toxic effects of DPR proteins
(Kwon et al., 2014; Figures 1C, D). Additionally, the Arg-
containing DPR proteins directly bind to proteins harboring low
complexity domains and impair the assembly, dynamics and
function of phase separation-mediated membraneless organelles
(Lee et al., 2016; Lin et al., 2016). In iPSC-derived motor neurons,
expression of poly(GR) increases oxidative stress and DNA
damage, and causes mitochondrial dysfunction (Lopez-Gonzalez
et al., 2016). Another DPR, poly(GA), forms ubiquitin/p62-
positive inclusions in neuronal cells, indicating the dysfunction
of ubiquitin-proteasome system (UPS) leads to the cytotoxicity
of DPR proteins (Yamakawa et al., 2015). Poly(GA) also forms
abundant inclusions in cells and cerebellar tissue of ALS/FTD
patients, and causes impairment of neurite outgrowth, endoplasmic
reticulum (ER) stress and neuronal death (Zhang et al., 2014).
The mouse model generated by the overexpression of poly(GA)
showed the sequestration of proteins involved in proteasomal
degradation and nucleocytoplasmic transport (NCT), leading
to the neurodegeneration and behavioral abnormalities (Zhang
et al., 2016). Overall, these toxic DPR proteins are a key
pathological aspect of ALS/FTD, adding to the complexity of these
neurodegenerative diseases (Figures 1C, D).

4.3 Other downstream pathogenic
mechanisms

Subsequently, the transcribed r(G4C2)n may sequester specific
proteins, which is a potential mechanism of toxicity associated
with hexanucleotide repeat expansions at the protein level.
Extensive studies have identified a series of proteins that bind
to the transcribed G4C2 repeat expansions through various
approaches, including adenosine deaminase RNA-specific B2
(ADARB2), nucleolin, purα, TDP-43 and several heterogeneous
nuclear ribonucleoproteins (hnRNPs) (Donnelly et al., 2013;
Mori et al., 2013b; Xu et al., 2013; Cooper-Knock et al., 2014;

Haeusler et al., 2014). In particular, many of these binding
proteins can interact specifically with r(G4C2)n with special
secondary structures, such as G-quadruplex and hairpin structures,
underscoring the structural specificity of RNA-protein interactions.
The interactions may lead to the accumulation of nuclear or
cytoplasmic RNA-protein aggregates (Ramaswami et al., 2013)
and RNA granules mediated by liquid-liquid phase separation
(Ramaswami et al., 2013; Maharana et al., 2018; Hallegger et al.,
2021; Yu et al., 2021; Lu et al., 2022), contributing to the toxicity
associated with hexanucleotide repeat expansions (Figure 1B).

Using the stable isotope labeling by amino acids in cell
culture (SILAC) method, Haeusler et al. (2014) identified nucleolin
specifically recognize the RNA G-quadruplex, which was further
confirmed by RNA pull down experiments. Nucleolin is a
principal component of the nucleolus (Abdelmohsen and Gorospe,
2012), which was found to mislocalize with the G4C2 RNA
foci in the neurons of the motor cortex of C9orf72 ALS
patients, leading to nucleolar stress and impaired nucleolar
function in patient cells. Importantly, treatment of wild type cells
with the 21-repeat-containing abortive transcripts recapitulates
the nucleolin pathology, indicating that the specific interaction
between nucleolin and RNA G-quadruplex is a fundamental
determinant of pathogenic mechanism for ALS/FTD (Haeusler
et al., 2014).

Another prominent downstream pathogenic mechanism for
ALS/FTD is the dysfunctional nucleocytoplasmic transport (Prpar
Mihevc et al., 2017). Using a Drosophila model-based screening,
Zhang et al. (2015) characterized that RNA G-quadruplex
formed by r(G4C2)n directly interacts with RanGAP and
impairs nuclear import, leading to the nuclear pore pathology
in the Drosophila model and ALS patient-derived iPSC cells.
In the other study, Freibaum et al performed a large-scale
genetic screen in a Drosophila model, and identified 18 genetic
modifiers that encode components of the nuclear pore complex
and the protein machinery for nucleocytoplasmic transport,
demonstrating the compromised nucleocytoplasmic transport in
the Drosophila model and C9orf72-linked patient-derived iPSC
cells (Freibaum et al., 2015).

4.4 C9orf72 gain-of-function mouse
models

Besides the C9orf72 loss-of-function mouse models (see above
and Table 1), adeno-associated virus (AAV) or bacterial artificial
chromosome (BAC)-mediated expression of C9orf72 gene with
large G4C2 repeat expansions or DPR proteins was used to generate
a number of gain-of-function mouse models (Table 1). With the
expression of C9orf72 gene with large G4C2 repeat expansions,
most of the mouse model developed both RNA foci and DPR
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inclusions (Chew et al., 2015; Peters et al., 2015; O’Rourke et al.,
2016; Herranz-Martin et al., 2017), while the mouse model with
tet-on inducible expression of 36x pure G4C2 repeats only have
sporadic sense DPR aggregates, but not RNA foci (Riemslagh et al.,
2021). The mouse models with the overexpression of DPR proteins
showed extensive DPR pathology, but not RNA foci (Zhang et al.,
2016; Schludi et al., 2017; Hao et al., 2019). TDP-43 inclusions
were not usually observed in the gain-of-function mouse models.
Only two of the mouse models, (G4C2)66 mice and C9-500 mice,
displayed TDP-43 inclusion pathology and neurodegenerative
phenotypes (Chew et al., 2015; Liu et al., 2016). It was noted that
another group reported the absence of survival and motor deficits
for C9-500 mice (Mordes et al., 2020; Nguyen et al., 2020a). Overall,
the gain-of-function mouse models indicate that large G4C2 repeat
expansions greatly contribute to the pathogenesis of ALS/FTD.

5 Potential therapeutic strategies

Understanding the pathogenic mechanism of hexanucleotide
repeat expansions in ALS/FTD not only sheds light on the
underlying biology of these diseases but also provides multiple
potential drug targets for the therapeutic interventions. Various
approaches have shown promise as potential treatments for
ALS/FTD targeting C9orf72.

5.1 Targeting genomic C9orf72
hexanucleotide repeat expansions

The most straight-forward target is the genomic C9orf72
hexanucleotide repeat expansions. CRISPR/Cas9-mediated
excision of G4C2 repeat expansions in neurons and mouse
models resulted in reduction of RNA foci and DPR inclusions
(Meijboom et al., 2022). Since CRISPR/Cas9-mediated genome
editing may result in the risk of creating indels (Selvaraj et al.,
2018), the combination of CRISPR/Cas9 genome editing and
homology-directed repair (HDR) completely repaired the C9orf72
G4C2 repeat expansions to the wild-type repeat size in iPSC cells
derived from ALS/FTD patient, and finally abolished pathological
phenotypes (Ababneh et al., 2020). The key points for the
development of CRISPR/Cas9-based therapeutic strategy should
be the efficient and effective delivery, as well as accurate editing of
CRISPR/Cas9.

5.2 Targeting transcribed RNA

As the accumulation of RNA foci is the pathological hallmark
and contributes to the pathology of ALS/FTD, the transcribed
r(G4C2)n as a potential drug target for C9orf72-linked ALS/FTD
has garnered considerable attention from researchers. One of
the therapeutic strategies is degradation of the RNA transcripts
using antisense oligonucleotides (ASOs) (Donnelly et al., 2013;
Lagier-Tourenne et al., 2013). ASO-mediated degradation of
repeat RNA decreased RNA foci and DPR inclusions, as well
as ameliorated behavioral deficits (Jiang et al., 2016). Another
promising development targeting transcribed r(G4C2)n is that a
small molecule, TMPyP4, was characterized to be able to distort the

G-quadruplex formation of r(G4C2)8, and ablate the interaction
between the G-quadruplex and its binding proteins (Zamiri et al.,
2014). Su et al. (2014) further designed and screened small
molecules targeting r(G4C2)n to inhibit repeat-associated non-
ATG translation and the formation of RNA foci. The findings from
their work suggest that small molecules targeting r(G4C2)n hold
promise as a potential therapeutic approach for C9orf72-linked
ALS/FTD (Su et al., 2014).

5.3 Targeting DPR proteins

The toxicity of DPR proteins is the essential part for ALS/FTD
pathogenesis, thus the immunotherapeutic approach targeting
DPR proteins is another potential therapeutic strategy. In cell and
mouse models, the antibodies targeting poly(GA) could reduce
poly(GA), poly(GP) and poly(GR) inclusions, improve behavioral
deficits, decrease neuroinflammation and neurodegeneration, and
increase survival (Zhou et al., 2017, 2020; Nguyen et al., 2020b;
Jambeau et al., 2022). On the other hand, it was reported that RAN
translation is highly regulated by PKR. The FDA-approved drug,
metformin, inhibited PKR, leading to decrease DPR proteins and
improve behavior deficits (Zu et al., 2020).

5.4 Targeting other downstream
mechanisms

Dysfunctional nucleocytoplasmic transport has been
characterized as a critical downstream mechanism for ALS/FTD
pathogenesis (Prpar Mihevc et al., 2017). KPT-276, the exportin
1 inhibitor, inhibits nuclear export to compensate for disrupted
import by the interaction between r(G4C2)n and RanGAP, and
suppresses the neurodegeneration in the fly eye (Zhang et al.,
2015). Thus, the modulation of nucleocytoplasmic transport
is also a potential therapeutic strategy for C9orf72-linked
neurodegenerative diseases. ER stress induced by DPR proteins is
one of the key downstream pathogenic mechanism. It was reported
the inhibitors of ER stress could provide rescue against poly(GA)-
induced ER stress and neurotoxicity in neurons (Zhang et al.,
2014). Furthermore, pharmacological or genetic suppression of
oxidative stress and cellular toxicity induced by poly(GR) decreases
DNA damage, indicating reducing oxidative stress is a potential
therapeutic strategy for C9orf72-linked ALS/FTD (Lopez-Gonzalez
et al., 2016). These advancements mark important steps toward
the development of targeted therapies for these debilitating
neurodegenerative diseases.

6 Conclusion

The hexanucleotide repeat expansions located in the first
intron of C9orf72 gene are the most common genetic cause of
ALS/FTD. Accumulating research emphasizes the critical role of
these hexanucleotide repeat expansions in the pathogenesis of the
diseases. The unique sequence of the hexanucleotide, GGGGCC,
facilitates the formation of polymorphic secondary structures
known as G-quadruplexes, both in the DNA and transcribed RNA.
These multimeric G-quadruplexes further promote the formation
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of RNA foci via phase separation, when the repeat number exceeds
a certain threshold. The formation of unusual secondary structures
in hexanucleotide repeat expansions greatly impairs the expression
of C9orf72 proteins. Furthermore, the accumulation of toxic
DPR proteins produced by unconventional translation (i.e., RAN
translation) generates inclusions in neuron, which is considered
as a distinctive pathognomonic feature of ALS/FTD. Finally, the
transcribed G4C2 RNA and its interaction with binding proteins
can trigger the formation of RNA granules via phase separation and
sequester specific proteins, contributing to the toxicity associated
with hexanucleotide repeat expansions.
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