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Introduction: Interactions between circadian clocks and key mediators 
of chronic low-grade inflammation associated with fat consumption may 
be important in maintaining metabolic homeostasis and may pose a risk for the 
development of obesity-associated comorbidities, especially type 2 diabetes 
(T2DM).

Objective: The aims of the present study were to evaluate the effects of melatonin 
administration on diabetes risk markers according to dietary lipid profile (pro-
inflammatory versus anti-inflammatory) in excessive weight night workers, and 
to determine the effect of administration on fat consumption profile.

Methods: A randomized, controlled, double-blind, crossover clinical trial involving 27 
nursing professionals working permanent night shifts under a 12×36-hour system. 
The melatonin group (12 weeks) used synthetic melatonin (3 mg) only on days off and 
between shifts, while the placebo group (12 weeks) was instructed to take a placebo, 
also on days off and between shifts. For inflammatory characteristics, participants 
were divided into pro-inflammatory (saturated fats, trans fats and cholesterol) and 
anti-inflammatory (monounsaturated, polyunsaturated fats and EPA + DHA) groups 
according to fatty acid determinations. At baseline and at the end of each phase, 
blood glucose, insulin, glycosylated hemoglobin plasma concentrations were 
collected, and HOMA-IR was calculated.

Conclusion: Melatonin administration for 12  weeks had no effect on T2DM risk 
markers according to dietary lipid profile (pro-inflammatory or anti-inflammatory 
potential) in excessive weight night workers. Among the limitations of the study 
include the fact that the low dose may have influenced the results expected in 
the hypothesis, and individual adaptations to night work were not evaluated. The 
insights discussed are important for future research investigating the influence 
of melatonin and fats considered anti- or pro-inflammatory on glucose and 
insulin homeostasis related to night work.
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1 Introduction

Engaging in night shift work can impact biological rhythms and 
is often associated with alterations in sleep patterns, poor quality of 
life and reduced recovery (1). Circadian misalignment at eating times, 
as well as activity during the night among night workers, has been 
associated with an increased risk of developing diabetes mellitus 
(DM), hypertension, obesity and cardiovascular disease (1–4).

Diet composition, especially a high-fat and high saturated fat 
(SFA) diet, modulates the rhythmicity of the peripheral circadian 
clock in vitro and in vivo (5, 6). There is evidence of an increased 
preference for high-fat foods for breakfast (6), where this is because 
the timing of this meal is a potential zeitgeber, promoting interactions 
between the body’s central clock and nutrient sensory pathways (e.g., 
AMPK). In this context, highly palatable foods, such as fats, can 
directly signal the orexigenic centers and regions associated with 
hedonic stimulation, stimulating food-seeking behavior (7–10).

Some studies have identified a higher fat intake among night 
workers. Heath et  al. (11) found that fat intake by night workers 
exceeded the recommended level (with fat representing 20%–35% of 
total energy intake and comprising 15.5% saturated fat). In another 
study, of airline employees at high risk of developing type 2 diabetes 
mellitus (T2DM) and/or diabetics, the authors found that women over 
47.6 years of age who worked day and night shifts on board (flight), 
had higher energy intake from fat (at 33.9%, comprising 12.8% 
saturated fat) compared to women in the same age group who worked 
exclusively during the day (12).

The dysmetabolism seen in night workers can lead to changes in 
eating patterns or vice versa, such as an increase in daily energy 
consumption (13), greater hunger and longer duration of food intake 
(14). Excess adiposity, now recognized as a low-grade inflammatory 
state, can also reduce insulin responsiveness in insulin-sensitive 
tissues and promote the risk of T2DM through action on circulating 
cells (15). In addition, insufficient and poor sleep quality, often 
associated with night work, is also associated with a higher likelihood 
of obesity and DM, further increasing the risk of this group of workers 
(1, 16, 17). In situations of low-grade inflammation, such as obesity, 
the chronicity of in-flammation can lead to comorbidities, such as 
cardiovascular disease, insulin resistance, anemia, hyperlipidemia, 
metabolic syndrome, T2DM and cancer (18–20). Among the 
promising therapeutic strategies, it was recently demonstrated that 
melatonin, as the main product of the pineal gland, is considered a 
broad-spectrum antioxidant, can be applied in pathological conditions 
such as T2DM, mainly for its regulatory effects on the expression of 
the glucose transporter gene type 4 (GLUT4), glucose homeostasis 
and insulin sensitivity (21–23).

Another risk factor for night workers is a decrease in melatonin 
levels caused by exposure to artificial light during the work shift, a 
phenomenon associated with the risk of developing T2DM (24–28). 
The role of melatonin is mainly related to biological rhythms and the 
coordination of behavioral and physiological adaptations to the light–
dark cycle, i.e., the hormone acts as an important regulator of allostasis 
(29). Cipolla-Neto et  al. (30) suggested that supplementation or 
replacement could improve metabolic changes associated with 
reductions in serum melatonin levels, as occurs among night workers. 
Regarding glucose metabolism, a meta-analysis of 12 clinical trials 
showed that melatonin administration reduced fasting blood glucose, 
but had no influence on levels of glycated hemoglobin, insulin or 
insulin resistance (IR) (31). Subsequently, another meta-analysis with 

16 studies showed positive results for the administration of melatonin 
on glucose metabolism, with a dose ranging between 3 and 10 mg for 
up to 24 weeks of duration (32).

Melatonin administration, given its action on mechanisms of 
glycemic homeostasis, inflammation, and energy metabolism (33–35), 
can represent a therapeutic and/or preventive alternative for metabolic 
alterations associated with night work. Recent research has 
demonstrated that the administration of 3 mg of melatonin in 
overweight individuals reduced circadian misalignment, especially 
among the most misaligned (earlier chronotype) and reduced body 
weight and body mass index (BMI), without changing caloric intake 
or participants’ physical activity levels (36, 37). Animal models 
supplemented with melatonin and subjected to circadian 
misalignment associated with a high-fat diet showed significant 
improvement in fasting glucose, oral glucose tolerance and 
inflammatory profile (38, 39). However, no studies investigating the 
effect of melatonin administration on DM markers based on dietary 
lipid profile have been conducted in humans, specifically among 
night workers.

Thus, the aim of the present study was to evaluate the effects of 
melatonin administration on DM risk markers (glucose, insulin, 
glycosylated hemoglobin and HOMA-IR), according to dietary lipid 
profile (pro-inflammatory versus anti-inflammatory) in excessive 
weight night workers. Therefore, the study hypothesis holds that 
melatonin administration improves diabetes risk markers in excessive 
weight night workers who have a diet of predominantly anti-
inflammatory fats, and also decreases fat consumption.

2 Manuscript formatting

2.1 Study type

The present study is a randomized, controlled, double-blind, 
crossover clinical trial, evaluating the effect of melatonin on dietary 
lipid consumption and its influence on diabetes markers in night 
workers. The present project is part of a larger study, detailed 
in-formation on the original study is available from Marqueze 
et al. (36).

2.2 Population and sample

The participants of the present study were nursing professionals 
(nurses and nursing technicians) who worked permanent night shifts 
under a 12×36-hour system (12 h on, 36 h off) at a large private 
hospital in São Paulo, Brazil. The sample power was calculated a 
posteriori based on the test of difference of repeated measures (within-
between interaction), an effect size of 0.25, alpha error of 5%, two 
groups (consumption and intervention), and three measures (baseline, 
melatonin, and placebo). Thus, the study population of 27 participants 
had a sample power of 80% (G*Power).

2.3 Inclusion and exclusion criteria

Subjects that met the following criteria were included in the study: 
women; aged 20–50 years; body mass index (BMI) ≥25 kg kg/m2 
and < 40 kg/m2; working night shift for ≥6 months; who declared 
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having no intention of following any restricted diets and starting new 
physical activities while participating in the study. Individuals that met 
the following criteria were excluded from the study: women who were 
pregnant, nursing, had infants aged <1 year; were experiencing the 
climacteric or menopause period; held a second night job; were in 
regular use of medications or dietary supplements that influence sleep, 
alertness or the circadian timing system (barbiturates, antidepressants, 
benzodiazepines, melatonin, ritalin, modafinil, sleep aids); had a past 
history of neurological or psychiatric illnesses, or drug and alcohol 
abuse; circadian or sleep disorders; presented metabolic problems 
(except participants with T2DM and treated dyslipidemias or using 
statins and anti-triglycerides); cardiovascular diseases (except treated 
systemic arterial hypertension); clinically-diagnosed inflammation 
and/or chronic infections; eating disorders (bulimia, anorexia); had 
anemia or had donated >400 mL of blood in the three months 
preceding the study; had undergone major surgery in the last six 
months prior to participating in the research.

2.4 Data collection and data processing

Initially, the human resources sector of the institution was 
contacted and provided a list of all nursing professionals. A total of 
238 female professionals engaged in permanent night shifts under the 
12×36-hour system were identified. Shortly after this process, the 
nursing professionals were contacted, informed about the study, and 
invited to undergo screening according to the study inclusion and 
exclusion criteria.

Pre-screening took place from February to April 2018 and was 
carried out individually at participants´ workplace during their shift. 
Those professionals who met the inclusion and exclusion criteria 
(n = 46) were invited to participate in the survey and specific dates 
were scheduled for baseline data collection.

The clinical trial was conducted from April 2018 to August 2019. 
It is important to mention that seasonality was not a limiting factor in 
the present study, given that the length of days and nights are almost 
equivalent in Brazil, resulting in a photoperiod close to 12 h per day 
(40). After the collection of initial data (baseline), participants were 
randomized into two groups, with 23 women allocated to the first 
group (Melatonin Group – GM) and 23 to the second group (Placebo 
Group – PG) for a 12-week period. In the second phase of this 
crossover study (lasting three months), volunteers allocated to the 
intervention group in the first phase switched over to the control group 
for the second phase and vice versa (control group subjects switched 
over to intervention group). In the second phase, 19 volunteers (41.3%) 
discontinued the study during the protocol because they had started a 
second night job, became pregnant, changed shifts, or quit their job. 
Although we did not perform intention-to-treat analysis, which may 
be a limitation of the study, our final sample met the number necessary 
for good sampling power (80%).

Sociodemographic characteristics, along with work and health-
related aspects, were collected through self-administered 
questionnaires. Although questionnaires were completed by 
participants, a researcher was always available to clarify any doubts. 
All assessments took place at the participants´ workplace during their 
working hours, between 12:00 am and 05:00 am, according to the shift 
schedule provided by the institution. Assessments took place at 
baseline, in the last 10 days of the first phase, and in the last 10 days of 
the second phase, including the evaluation of biochemical parameters.

2.5 Protocol

Each participant followed the protocol for 25 weeks (12 weeks for 
intervention, 12 weeks for placebo, plus 1 week for baseline). The GM 
group used synthetic melatonin only on days off and between shifts, 
i.e., on days when they slept during the night. On night workdays, 
melatonin was not taken by the participants. All participants were 
instructed to take a fast-release 3 mg melatonin tablet (Aché 
Pharmaceutics®, Brazil), one hour before the desired time to go to 
sleep. Subjects filled out a diary with information on the time they 
took melatonin, as well as bedtime and waking times. It is important 
to mention that the melatonin administration has not been associated 
with adverse events to date; however, the volunteers were instructed 
to report any symptoms to the researchers so that the necessary 
referrals could be  made, but no symptoms or discomfort were 
reported by the participants.

The PG group was instructed to take a placebo pill identical in 
appearance to the melatonin pill, receiving the same instructions for 
use as the intervention group. The placebo pill resembled melatonin 
but contained no active ingredient, exerting no effect on the body 
(gluten-free and lactose-free). The study was double-blind, where 
neither the participants nor the lead researcher was aware of whether 
the study subjects were part of the intervention group or the control 
group. Over the three months of each phase, participants took 
melatonin for an average of 45 days (SD 10.3 days) and placebo for 
44.3 days (SD 8.2 days). The length of the study was 18 months, as not 
all participants started the protocol at the same time. The illustrated 
diagram of the study is presented in Figure 1. Marqueze et al. (36) 
present detailed information about the study protocol.

2.6 Dietary assessment

Monthly, study participants kept food diaries on a typical working 
day and a typical day off (for a total period of 7 months, with the first 
evaluation completed before commencement of the protocol). The 
time window for recording this data was from 7:00 pm to 7:00 pm the 
following day, for both working days and days off. Food diaries are a 
good method for assessing dietary patterns (41), and one-day records 
have previously been used in other studies (42, 43). The evaluations 
were conducted by a duly trained nutritionist, under the supervision 
of the research coordinator. It is important to mention that the 
assessment of the dietary pattern (one working day and one day off) 
was first performed at baseline and again for every month of the 
protocol thereafter (at three-time points), totaling seven months and 
14 days of food records. Importantly, participants had the option of a 
nutritionist-planned dinner provided by the hospital. In addition, all 
units had a pantry where they could store food brought in from 
outside the hospital and have meals.

The diaries were analyzed using the Nutrition Data System for 
Research (NDSR – United States Department of Agriculture – USDA), 
2007 version. Due to cultural differences between Brazilian and North 
American food consumption (with the US serving as the reference for 
the NDSR), the composition of typical Brazilian foods and 
preparations was added based on the Brazilian Food Composition 
Table (44) and on specific processed food labels. Only two participants 
reported using dietary supplements, which were included in the 
assessment of food consumption, and there were no significant 
monthly differences in food intake.
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The dietary lipid profile was determined based on saturated, 
monounsaturated and polyunsaturated fats, trans fats, cholesterol, 
eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) and total 
fat (grams). The evaluation of the dietary lipid profile regarding DM 
markers was based on total fat (≥ 35% E) (45). The dietary fatty acid 
profile, according to inflammatory status, was attributed by tallying 
the average intake (grams) of dietary lipid recorded for working days 
and days off over the study period, i.e., at baseline and the end of the 
first and second phases (3 timepoints) and grouping these according 
to the following classification (46, 47).

1. Pro-inflammatories = saturated fats, trans fats and cholesterol;
2.  Anti-inflammatories = monounsaturated and polyunsaturated 

fats, eico-spentaenoic acid (EPA) + docosahexaenoic acid (DHA).

The adequacy of the dietary pattern was estimated using the 
Dietary Reference Intakes (DRI) and in cases where these were not 
available, the Recommended Dietary Allowances (RDA), both 
established by the US National Academy of Sciences (45). Dietary 
profile was established based on: 1. Total caloric intake (kcal/day); 2. 
Carbohydrates (45-65%E); 3. Fats (20-35%E); 4. Proteins (10-35%E); 
and 5. Dietary fiber (14 g/1000 kcal) (45). For fat profile, the 
recommendations of the updated Brazilian Directive on Dyslipidemia 
and Prevention of Atherosclerosis – 2017 were used (48).

2.7 Risk markers for diabetes

For determination of plasma concentrations of blood glucose, 
insulin, glycosylated hemoglobin and HOMA-IR (Homeostasis Model 
Assessment of Insulin Resistance), blood collection was performed 
after a 12-h fast, before morning medication, with no consumption of 

alcoholic beverages the day before collection, and after a night’s sleep 
of at least six hours after the volunteers’ days off. Glycemic profile 
values were evaluated according to the criteria of the American 
Diabetes Association (49). The variables include the following criteria: 
blood glucose (≥100 mg/dL), insulin (≥23 ng/dL), glycosylated 
hemoglobin (≥5.7%) and HOMA-IR. The blood glucose and insulin 
values provided the basis for calculating the HOMA-IR index, using 
the formula: HOMA-IR = fasting glucose in mmol/l x fasting insulin 
in μU/mL/22.5 (50). According to the BRAMS study, a value of >2.71 
was adopt-ed to identify IR in adults (51).

2.8 Study variables

The dependent variables of the study were the diabetes risk 
markers (glycemia, insulin, glycosylated hemoglobin and the 
HOMA-IR index) and the profile of dietary lipids (saturated, 
monounsaturated, polyunsaturated, trans, cholesterol, EPA + DHA) 
consumed by the participants during the intervention. The 
independent variable was the inflammatory profile of dietary lipids 
(pro-inflammatory or anti-inflammatory). The adjustment variables 
included age, BMI and total time working nights. The descriptive 
variables were age, education, job role at hospital, weekly working 
hours (hours/week), net income, smoking status, weekly physical 
activity time (where ≥150 min of moderate or intense leisure-time 
activity per week was defined as physically active) (52, 53), dietary 
profile (described in dietary assessment) and anthropometric data 
(weight and height) measured according to Lohman et al. (54). Body 
Mass Index (BMI) in kg/m2 was calculated from the measurements of 
weight (kg) and height (m). For the classification of BMI for adults, 
the criterion recommended by the WHO was adopted, where a value 
>24.99 kg/m2 indicates overweight (55).

FIGURE 1

Illustrated diagram of the study.
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2.9 Statistical analysis

The Shapiro–Wilk test was applied to test the normality of the 
quantitative variables. Parametric variables were expressed as mean 
and standard deviation (SD) or standard error (SE), while 
non-parametric variables were expressed as median and interquartile 
range-IQR (P25%–P75%). The Wilcoxon test was used to observe 
differences in fat consumption on days off and on working days.

The effects of melatonin administration on dietary lipid profile 
and DM markers according to the inflammatory profile of dietary 
lipids was assessed using a generalized linear model (GLM) with the 
LSD (Least Significant Difference) post hoc test for the test comparing 
3 means (related samples) with two factors (intervention and dietary 
lipid pro-file). In all tests, a p-value <0.05 was considered significant. 
All data was analyzed using Statistica 12.0 and STATA 14.0 (Stata corp, 
Texas, United States) packages.

2.10 Ethical aspects

The project was approved by the Research Ethics Committee of 
the School of Public Health of the University of São Paulo (FSP-USP) 
(protocol no 2,450,682, December 20, 2017) and by the Ethics Board 
of the participating Hospital (protocol No. 2,489,636, February 7, 
2018). The study was registered with the Brazilian Registry of Clinical 
Trials (RBR-6pncm9) and on the International Clinical Trials 
Registry Platform of the World Health Organization (UTN no 
U1111-1238-7395). Participants were guaranteed confidentiality and 
anonymity, and the study was only carried out after participants had 
a clear understanding of the objectives of the study and signed the 
Free and Informed Consent Form, which complied with Resolution 
466/2012.

3 Results

At the end of data collection period, 27 volunteers had completed 
the intervention. Participants had a mean age of 37.1 years (SD 
5.9 years, IQR 32.1–42.6 years) and mean BMI of 29.9 kg/m2 (SD 
3.3 kg/m2), fifteen were overweight and twelve were obese. Mean time 
working at the hospital was 8.4 years (SD 4.4 years) and the median 
time working nights at the institution was 5.3 years (IQR 2–4 years). 
Most participants had attained postgraduate education, and more 
than half had an income >5,000 Brazilian reais (BRL) per month. For 
marital status, most participants reported having a partner (Table 1).

Regarding the reasons for working nights, most volunteers chose 
this shift to reconcile work with home care. A sedentary lifestyle (< 
150 min/week of moderate physical activity) was predominant among 
the study participants.

Participants had an average energy consumption of more than 
1,500 kcal/day, and the distribution of macronutrients (carbohydrates, 
proteins, and lipids) was within recommended values. Regarding 
dietary fiber, the volunteers had low consumption at baseline. Mean 
dietary cholesterol intake was within recommended levels (Table 2).

Mean values for glycemia, insulin, and HbA1c were all within 
recommended reference ranges, but the mean HOMA-IR index was 
high (Table 2), and the presence of IR at baseline was detected in 17 
(62.9%) volunteers. While none of the participants had values 

consistent with DM at baseline, 9 (33.3%) participants had glycemia 
indicative of pre-diabetes (≥100 mg/ dL).

Regarding total consumption of fats during the study, 
consumption levels of 81.5% of participants were within recommended 
ranges (20-35%E), with a median consumption of 56.4 g/day of fat 
(IQR 45.0–66.9 g/day). Notably, only four individuals had a high 
consumption of total fat (≥35%E) during the study period, but 
consumption of both saturated and trans fatty acids was high, whereas 
the intake of long-chain monounsaturated and polyunsaturated fatty 
acids was low (DHA + EPA) (Table 3).

The profile of fats consumed at each of the three timepoints is 
shown in Table 4. Results show that melatonin administration had no 
effect on the individual intake profile of each fat (saturated, trans, 
polyunsaturated, monounsaturated, EPA + DHA and cholesterol). For 
this evaluation, we chose not to separate consumption on days off and 
work because, as previously tested, we observed statistical differences 
only for saturated fat. Likewise, no effect on consumption was evident 
when grouped according to inflammatory characteristics or total 
fat (g).

Melatonin administration alone exerted no influence on the 
biochemical markers evaluated. Similarly, no effects of melatonin 
administration on level of total fat consumption, were found (Table 5). 
The assessment of fats dichotomized into pro-inflammatory and anti-
inflammatory groups also showed no isolated effect on glycemic 
parameters or interaction with exogenous melatonin (Table 6).

TABLE 1 Sociodemographic data of participants (n  =  27).

Variables n %

Education

High school 6 22.2

College incomplete or studying 5 18.5

Incomplete or ongoing 

postgraduate studies
5 18.5

Complete postgraduate studies 11 40.8

Family income (BRL month)

1,001–3,000 1 3.7

3,001–5,000 7 25.9

5,001–10,000 15 55.6

>10,000 4 14.8

Marital status

No partner 8 37.0

Partner 17 63.0

Reason for working at night

Required by service 1 3.7

Reconcile with another job 1 3.7

Reconcile with home care 11 40.7

Affinity for job 5 18.5

Supplement income 8 29.6

Do not know/Do not remember 1 3.7

Physical activity

Active 9 34.6

Sedentary 17 65.4
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4 Discussion

In the present study, melatonin administration promoted no 
improvement in risk markers for diabetes, according to the 
inflammatory profile of dietary lipids in excessive weight night 
workers and exerted no effect on dietary lipid profile. Some studies 

involving animal and human models have shown positive results after 
melatonin administration in terms of blood glucose and insulin 
resistance under various conditions (56–58). However, there is a 
dearth of clinical trials involving night workers. In animal models with 
female guinea pigs that received 10 mg/kg of melatonin and 45% 
dietary lipid and were exposed 24 h a day to artificial light, 
administration significantly improved oral glucose tolerance (39). In 
another study, of mice without circadian misalignment that received 
60% fat and were treated with melatonin, showed reduced fasting 
blood glucose (38). However, results of the present study failed to 
replicate these findings, where chronic circadian misalignment may 
have attenuated the effect of the intervention on common markers of 
glycemic homeostasis.

In another study, employing the same dose of melatonin 
administered in the present study (3 mg), Modabbernia et al. (58) 
supplemented 36 schizophrenic women (mean age 33 years) for eight 
weeks and observed no subsequent improvement in DM parameters 
(fasting glucose, insulin and HOMA-IR). By contrast, a meta-analysis 
by Delpino, Figueiredo and Nunes (32), nine out of the 15 studies 
showed a beneficial effect of melatonin on DM markers. Of the studies 
included in the analysis, two evaluated women only, with results 
showing improvement in insulin resistance and fasting glucose.

In the present study, it is important to consider the chronic 
circadian misalignment presented by the volunteers, who exhibited 
insulin resistance, even though their glucose and glycated hemoglobin 
levels were within the reference range. These factors might have 
prevented improvement in glucose intolerance and insulin resistance 
after melatonin administration (59, 60). To explain this effect, at the 
molecular level in Rizza et  al. (61), night workers have a high 
REV-ERBα/BMAL1 mRNA ratio (possible chronic circadian 
misalignment due to exposure to prolonged artificial light) associated 
with a significant correlation between HbA1c and the expression of 
IL-1β RNA in leukocytes, even with values of glycemic parameters 
within reference standards, very common in low chronic inflammation 
associated with the risk of T2DM (61).

Regarding total fat consumption in the present study, despite not 
reaching statistical significance, there was a tendency towards a 
reduction or maintenance of fasting glucose, insulin, glycosylated 
hemoglobin and HOMA-IR, after melatonin administration in the 

TABLE 2 Dietary pattern (average days off plus days at work) and diabetes 
markers at baseline of participants (n  =  27).

Variables Mean  ±  SD or 
Median [IQR]

Reference 
values

Energy (kcal) 1,575.2 [1,177.2–

2,057.6]

Macronutrients

Carbohydrates (%E) 52.2 ± 8.1 45–65%

Proteins (%E) 17.8 ± 4.1 10–25%

Total fat (%E) 29.4 ± 6.7 20–35%

Fibers (g) 15.1 [12.5–12.5] 14 g/1,000 kcal

Cholesterol (g) 194.49 [108.7–311.5] <300 mg/day

Breakdown of fatty acid intake

Saturated (%E) 10.3 ± 3.6 <10%

Trans (g) 1.4 [0.8–2.7] Exclude from diet

Monounsaturated (%E) 9.7 ± 2.9 15%

Polyunsaturated (%E) 6.7 ± 2.1 5–10%

DHA + EPA (g) 0.035 [0.022–0.085] > 0.5 g

Diabetes markers

Glucose (mg/dl) 95.6 ± 9.0 ≥100 mg/ dL

Insulin (μU/ml) 14 [8–20] ≥23 μU/ml

HbA1c (%) 5.3 ± 0.4 ≥5.7%

HOMA –IR 3.1 [2.0–4.8] >2.71

%E, percentage of energy; g = grams; mg = milligram; μg = microgram; [], Interquartile range 
(IQR); ±, Standard deviation (SD); HbA1c, glycated hemoglobin; HOMA-IR, homeostasis 
model assessment of insulin resistance.

TABLE 3 Fat profile (mean of baseline, melatonin and placebo) on days 
off and work days of participants during study (n  =  27).

Work days Days off

Fats Mean  ±  SD or 
median [IQR]

Mean  ±  SD or 
median [IQR]

p*

Saturated (g) 19.9 [12.4–23.8] 20.9 [14.6–24.9] 0.27

Trans (g) 2.1 [1.1–2.3] 2.4 [1.1–2.5] 0.02

Cholesterol (g) 0.12 [0.07–0.15] 0.14 [0.07–0.2] 0.92

Pro-inflammatory 

(total)

21.3 [13.6–26.0] 23.5 [16.5–27.2] 0.14

Polyunsaturated (g) 12.5 [7.8–15.8] 12.2 ± 4.3 0.89

Monounsaturated (g) 19.3 [12.1–22.8] 19.6 ± 6.4 0.72

DHA + EPA (g) 0.21 [0.03–0.3] 0.17 [0.02–0.20] 0.25

Anti-inflammatory 

(total)

31.9 [20.9–42.1] 31.9 ± 9.9 0.85

* Wilcoxon test. ±, Standard deviation (SD); g = grams; [], Interquartile range (IQR). 
DHA + EPA, eicospentaenoic acid + docosahexaenoic acid.

TABLE 4 Effect of melatonin administration on dietary lipid consumption 
profile of participants (n  =  27)*.

Fats Baseline Melatonin Placebo p**
Saturated (g) 21.10 ± 2.81 19.35 ± 1.24 19.60 ± 1.22 0.26

Trans (g) 1.55 ± 0.31 2.23 ± 0.18 2.46 ± 0.30 0.90

Cholesterol (mg) 224.80 ± 29.34 76.58 ± 9.95 101.20 ± 13.15 0.50

Pro-inflammatory  

(g/total)

22.86 ± 3.09 21.65 ± 1.31 22.14 ± 1.35 0.32

Polyunsaturated (g) 13.03 ± 1.45 11.72 ± 0.80 12.23 ± 1.01 0.52

Monounsaturated (g) 19.54 ± 2.28 19.23 ± 1.17 19.53 ± 1.37 0.62

EPA + DHA (g) 0.18 ± 0.07 0.18 ± 0.05 0.21 ± 0.05 0.21

Anti-inflammatory 

(g/total)

32.75 ± 3.43 31.12 ± 1.89 31.99 ± 2.29 0.57

Total (g) 58.92 ± 6.51 55.50 ± 3.24 56.44 ± 3.66 0.47

* Model adjusted for age, BMI and total time working nights. ** Generalized Linear Model. 
±, standard error. DHA + EPA, eicospentaenoic acid + docosahexaenoic acid.
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TABLE 5 Effect of melatonin on diabetes markers, according to consumption pattern, during intervention (mean baseline, melatonin and placebo) for total fats (%E) in excessive weight night workers (n  =  27)*.

Baseline Melatonin Placebo Baseline Melatonin Placebo Consumption Intervention Consumption × 
Intervention

Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) p**

% Energy ≥35% (n =  4) <35% (n =  23)

Glucose 96.0 (1.7) 94.7 (1.7) 95.6 (1.8) 89.7 (4.1) 90.0 (4.2) 87.0 (4.3) 0.36 0.08 0.24

HbA1c 5.3 (0.1) 5.3 (0.1) 5.4 (0.1) 5.2 (0.2) 5.5 (0.2) 5.3 (0.2) 0.79 0.17 0.49

Insulin 15.4 (1.4) 13.57 (1.1) 16.4 (2.7) 10.0 (3.4) 10.8 (2.6) 15.0 (6.4) 0.67 0.63 0.95

HOMA-IR 3.7 (0.4) 3.20 (0.4) 3.9 (0.6) 2.2 (0.9) 2.4 (0.6) 3.2 (1.5) 0.50 0.57 0.98

*Model adjusted for age, total time working nights and BMI. **p-values calculated by generalized linear model (GLM). p < 0.05 was considered significant. SE, standard error. HbA1c, glycated hemoglobin; HOMA-IR, homeostasis model assessment of insulin 
resistance.

TABLE 6 Effect of melatonin on diabetes markers, according to consumption pattern, during intervention (mean baseline, melatonin and placebo) for pro-inflammatory (g) and anti-inflammatory (g) fats in 
excessive weight night workers (n  =  27)*.

Baseline Melatonin Placebo Baseline Melatonin Placebo Consumption Intervention Consumption × 
Intervention

Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) p**
Pro-inflammatory Lower consumption (n = 13) Higher consumption (n = 14)

Glucose 98.6 (2.3) 96.1 (2.3) 96.7 (2.5) 92.1 (2.2) 92.1 (2.2) 92.1 (2.4) 0.93 0.22 0.91

HbA1c 5.4 (0.1) 5.4 (0.1) 5.4 (0.1) 5.2 (0.1) 5.4 (0.1) 5.4 (0.1) 0.83 0.23 0.06

Insulin 16.5 (1.9) 13.3 (1.4) 13.6 (3.4) 12.9 (1.8) 13.0 (1.4) 18.5 (3.3) 0.26 0.84 0.29

HOMA-IR 4.0 (0.5) 3.1 (0.3) 3.9 (0.8) 2.97 (0.5) 3.0 (0.3) 4.3 (0.8) 0.30 0.92 0.26

Anti-inflammatory Lower consumption (n = 14) Higher consumption (n = 13)

Glucose 92.6 (2.2) 92.1 (2.2) 90.9 (2.3) 97.7 (2.3) 96.1 (2.3) 98.0 (2.4) 0.39 0.11 0.40

HbA1c 5.2 (0.1) 5.5 (0.1) 5.4 (0.1) 5.34 (0.1) 5.4 (0.1) 5.3 (0.1) 0.59 0.15 0.37

Insulin 15.1 (1.7) 14.0 (1.4) 18.6 (3.3) 14.1 (1.8) 12.2 (1.4) 13.5 (3.4) 0.11 0.60 0.81

HOMA-IR 3.5 (0.5) 3.2 (0.3) 4.2 (0.8) 3.4 (0.5) 2.9 (0.4) 3.4 (0.8) 0.20 0.57 0.97

*p-values calculated by generalized linear model (GLM). p < 0.05 was considered significant. **Model adjusted for age, total time working nights and BMI. SE, standard error. HbA1c, glycated hemoglobin; HOMA-IR, homeostasis model assessment of insulin 
resistance.
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presence of adequate consumption of total fat in the diet. This same 
pattern, however, was not observed in participants with inadequate 
consumption. This suggests a possible improvement in subclinical 
glucose tolerance, suppressed by the inflammatory status caused by 
the chronic misalignment inherent to chronic night work (62, 63).

Given the importance of the composition of dietary lipids in the 
pathophysiology of chronic diseases, especially T2DM, in the present 
study, fats consumed were dichotomized according to the 
characteristics of inflammatory responses (pro-inflammatory or anti-
inflammatory), a well elucidated theory in the literature (64–66). 
Given the knowledge that night workers tend to have a more 
pro-inflammatory diet, the influence of the inflammatory profile of 
the fats present in the diet on melatonin response in the present study 
was explored (67, 68). However, no significant difference was found 
after dichotomizing dietary lipids regarding the pro-inflammatory 
factor. Explaining this effect, SFAs make up most of the 
pro-inflammatory component, and SFA ingestion is known to cause 
more marked lipemia than MUFAs or PUFAs, which can lead to a 
higher pro-inflammatory state exacerbated by low-grade inflammation 
and circadian misalignment (69–72).

Similarly, the amount of fats considered anti-inflammatory in the 
study proved unable to modify risk markers for DM following 
melatonin administration, even though blood glucose, insulin and 
HOMA-IR values were generally lower after administration. 
Consistent with the current study results, an isocaloric or ad libitum 
anti-inflammatory diet rich in mono and polyunsaturated fats (37% 
or 113 g of fat), with a saturated fat and cholesterol content below 
recommended levels, in individuals with DM and/or or pre-diabetes 
and obesity without circadian misalignment, was associated with a 
reduction in fasting blood glucose levels yet had no effect for insulin 
(73). On the other hand, in a controlled human model, exogenous 
melatonin alone influenced insulin sensitivity after a high-fat meal, 
with or without exposure to artificial light (62). This may explain the 
IR marker with higher values for placebo under all conditions in the 
present study.

The dietary profile found in the present study exhibits 
characteristics previously reported in the literature, demonstrating 
that night workers have more pro-inflammatory eating patterns 
compared to day workers, suggesting this may increase the risk of 
chronic diseases related to inflammation, such as DM (11, 74, 75).

Regarding the composition of fatty acids in the diet, consumption 
of saturated fat (%E) and trans fats by the study participants exceeded 
recommended levels, while low consumption of monounsaturated 
fatty acids and EPA + DHA was also observed, a profile commonly 
reported in studies assessing dietary intake among night workers (11, 
12, 76, 77). Toward explaining this phenomenon, in the presence of 
circadian misalignment, the most palatable foods such as fats, act as 
potential zeitgebers, having a rapid direct effect on the orexigenic 
centers and regions associated with hedonic stimulation/reward, 
influencing food-seeking behaviour (7–9, 78).

In this context, fluctuations in fat consumption occurred among 
the night workers assessed, regardless of their job role. Since the 
volunteers in the present study performed half of the working days of 
the month at night, this variation in food consumption can be very 
common. Thus, Hemiö et al. (76) demonstrated that, among women 
at risk for DM, despite adequate fat consumption (≤35%), an increase 
of just one night shift was associated with an increase in total fat and 
saturated fat intake. Recently, plasma markers of lipid and liver 
function were found to have endogenous circadian rhythms that 

changed in response to a combined light and isocaloric meal schedule 
(27%E) (79). Although the authors did not assess glycemic regulation, 
this result may reinforce the importance of the present study, given 
that a specific macronutrient associated with glycemic dysregulation 
was investigated.

From this perspective, the composition of fatty acids and 
cholesterol in the diet is influenced by food choices, which in turn may 
be  associated with circadian misalignment, leading to a greater 
preference for high-fat foods after night work. However, there is still 
no robust evidence on the relationship of melatonin administration 
with reduction in food consumption (6, 80).

The present study has several noteworthy strengths, including the 
assessment of the dietary profile every month throughout the 
intervention, the work in permanent shifts, i.e., the number of nights 
was the same among the participants, and also the fact that, to date, 
this is the only study that evaluates the influence of melatonin 
administration on DM risk markers in a double-blind randomized 
clinical trial under real-life conditions. The limitations of the study 
include the fact that the low dose may have influenced the expected 
results in the hypothesis, and individual adaptations to night work, 
circulating melatonin, and sleep assessments were not evaluated, 
factors that may have influenced the results. Although the study 
hypotheses were not confirmed, the insights discussed are important 
for future research investigating the influence of melatonin and fats 
considered anti- or pro-inflammatory on glucose and insulin 
homeostasis related to night work.

5 Conclusion

In summary, melatonin administration for 12 weeks had no effect 
on DM risk markers according to dietary lipids profile 
(pro-inflammatory or anti-inflammatory potential) in excessive 
weight night workers. Regarding fat consumption, melatonin 
administration promoted no change in consumption profile 
throughout the intervention for total fats, dichotomized into anti-
inflammatory or pro-inflammatory types, or for isolated fats (saturated 
fat, trans fat, cholesterol, monounsaturated fat and EPA + DHA).

In the present study, the total consumption of anti-inflammatory 
fats was higher than pro-inflammatory fats, although a high 
consumption of saturated and trans-fat was evident and, in parallel, 
a low intake of monounsaturated and EPA + DHA. Therefore, given 
the originality of the topic addressed in the present study, future 
studies should be encouraged that involve a longer administration 
time, individualized doses, and possibly concomitant 
dietary prescription.
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