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Peripheral nerve defects refer to damage or destruction occurring in the 
peripheral nervous system, typically affecting the limbs and face. The 
current primary approaches to address peripheral nerve defects involve 
the utilization of autologous nerve transplants or the transplantation of 
artificial material. Nevertheless, these methods possess certain limitations, 
such as inadequate availability of donor nerve or unsatisfactory regenerative 
outcomes post-transplantation. Biomaterials have been extensively studied 
as an alternative approach to promote the repair of peripheral neve defects. 
These biomaterials include both natural and synthetic materials. Natural 
materials consist of collagen, chitosan, and silk, while synthetic materials 
consist of polyurethane, polylactic acid, and polycaprolactone. Recently, 
several new neural repair technologies have also been developed, such as 
nerve regeneration bridging technology, electrical stimulation technology, 
and stem cell therapy technology. Overall, biomaterials and new neural 
repair technologies provide new methods and opportunities for repairing 
peripheral nerve defects. However, these methods still require further 
research and development to enhance their effectiveness and feasibility.
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Introduction

Peripheral nerve injuries (PNIs) refer to damage to the peripheral nervous system, 
which includes all nerves outside of the brain and spinal cord (1). A variety of factors, 
such as trauma, compression, and disease, can lead to these injuries (2–5). The prevalence 
of PNIsis approximated to be within the range of 13 and 23 individuals per 100,000 
annually in developed nations, causing either incomplete or complete deprivation of 
motor, sensory, and autonomic abilities in the affected regions of the anatomy (6, 7). The 
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importance of the nerve damage relies on the extent and intensity of 
the sensory or motor impairment, the length of time the clinical 
symptoms persist, and the individual affected by the nerve injury (1).

The nerves are encased by the epineurium, perineurium, and 
endoneurium, each playing a crucial role. The epineurium acts as a 
protective shield for the nerve against external stressors. Situated 
beneath the epineurium, the perineurium consists of a thin layer of 
flat cells with tight junctions, serving to control diffusion around 
individual fascicles and exhibiting high tensile strength. The 
endoneurium, which is characterized by a relaxed collagen matrix, 
envelops individual nerve fibers (8).

The process of nerve regeneration is intricate, encompassing 
multiple phases such as degeneration, sprouting, and reinnervation. 
In the wake of nerve injuries, axonal degeneration ensues, which is 
characterized by the disintegration of damaged axons and their myelin 
sheath. Schwann cells, located in the nerve’s distal segment, initiate the 
catabolism of myelin and phagocytosis of the debris. Within a day 
post-injury, the axonal sprouting commences from the injured nerve’s 
proximal stump. The growth cone of the sprouting axon progresses 
along the path of the unscathed basal lamina, a process influenced by 
neurotrophic and neurite-promoting factors. Assuming the 
endoneurial tube remains intact, the regenerating axon can follow a 
direct path to the end organ, migrating at an approximate rate of 1 mm 
per day. Neurotrophic factors are paramount in supporting peripheral 
nerve regeneration. Successful reinnervation activates both old and 
new motor end plates, facilitating muscle recovery. Given an 
appropriate route, peripheral axons have the capacity to regenerate 
and establish connections with their intended targets (9). However, in 
the absence of a suitable path, neuroma and scar tissue may form at 
the damaged nerve’s proximal end, obstructing nerve regeneration 
progress. The perineurium plays an essential role in maintaining 
axonal integrity; without it, axon fibers fail to proceed as expected. 
Axons are likely to deviate from their path once the perineurium 
sustains damage. Neuroinflammation is another pivotal factor in this 
process. When axons reach the extraperineurial space – an area 
already subjected to tissue damage – inflammation ensues. Substances 
secreted during this inflammatory response can contribute to the 
development of neuromas (5). Schwann cells and stem cells in the area 
affected by injury can preserve their survival through autocrine 
circuits, which inhibit apoptosis in dense environments, thereby 
enhancing the probability of axonal growth from the proximal area 
towards the distal stump (10). Regardless of this regenerative potential, 
peripheral nerve regeneration often results in suboptimal functional 
outcomes, largely due to the significant gap between severed injured 
peripheral nerves and their intended targets, which hampers 
reconnection (10, 11) (see Figure 1).

Neurotmesis corresponds to Sunderland’s classification of fifth-
degree injury, which denotes the most extreme type of peripheral 
nerve damage characterized by a total interruption of the nerve (12). 
Surgery is always required to treat neurotmesis. A nerve defect, also 
known as a large nerve gap, cannot be directly repaired by suturing. 
The timely diagnosis of peripheral nerve injuries holds significant 
importance in their subsequent treatment. Conventional methods like 
MRI and ultrasound have been extensively utilized for diagnosing 
peripheral nerve injuries. Nevertheless, the intricate nature of MRI 
interpretation poses challenges, thereby restricting its practical 
implementation in clinical settings. In light of this, a recent study has 
introduced an end-to-end learning framework that leverages 

automatic image segmentation technology to streamline the process 
of MRI interpretation (13).

For peripheral nerve gaps that are small in size (<5 mm), the 
traditional method of suturing repair, without the use of grafted 
materials, can be  employed (14). For longer nerve gaps, different 
methods of repair have been introduced in the medical field, with 
varying levels of achievement and acceptance among surgeons. This 
study aims to provide reference for clinicians in the field of repair 
techniques and graft materials (see Figure 2).

Graft materials

Autologous nerve

Autologous nerve grafts are considered the “gold standard” 
technique for repair of peripheral nerve defects. Up until now, 
auttologous nerve transplants have provided the most favorable 
outcomes in the regeneration of nerves under tension (15). A study 
reported that autologous nerve grafting provided functional motor 
recovery in mixed and motor nerve repairs, with meaningful motor 
recovery observed in 73% of cases (16). However, the availability of 
autologous nerve grafting is restricted due to limited tissue supply, the 
requirement for an additional surgical procedure to obtain graft tissue, 
morbidity at the donor site, loss of function and potential differences 
in tissue size and structure, etc. (17, 18).

To address the challenges associated with donor site complications, 
researchers (19) have been seeking an alternative that can match the 
efficacy of autologous nerves. In a study conducted on SD rats with a 
1 cm nerve deficit, the use of vascularized neurotubes for peripheral 
nerve treatment was investigated. After an eight-week period 
following the nerve repair procedure, the results revealed that 
vascularized neurotubes were more effective in promoting nerve 
regeneration compared to non-vascularized biodegradable conduits 
and autologous nerve grafts. However, it is important to note that the 
study had a limited sample size and expanding it will be necessary to 
enhance the reliability of the research. Additionally, functional 
recovery was not assessed in this investigation; only histological and 
electrophysiological markers of nerve regeneration were evaluated. 
Furthermore, the study did not delve deeply into the vascularization 
mechanism of the neurotubes, warranting further exploration.

In another study (20), researchers investigated the effectiveness of 
using minced nerve tissue as a filler within venous grafts to repair 1 cm 
nerve defects. The study’s findings concluded that incorporating 
minced nerve tissue into venous grafts significantly enhanced nerve 
regeneration, comparable to the outcomes of nerve transplantation, 
without causing complications at the donor site. Consequently, with 
additional support from experimental evidence and clinical trials, it 
can be considered a promising alternative for nerve defect repair, 
potentially replacing the need for autologous nerve grafts.

In peripheral nerve injuries, carefully selecting the most 
appropriate donor nerve is crucial for successful nerve reconstruction. 
Several key factors must be considered when choosing a donor nerve, 
including its function, location, number of branches, and axon count 
(21). The axon count is particularly important as it helps ensure the 
transferred nerve can adequately reinnervate the denervated muscle 
(22). Mackinnon et al. (23) underscored the importance of matching 
nerves of the appropriate size to optimize the functional outcome 
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following nerve repair, according to their study conducted on an 
animal model. The research involved nerve transplantation with 
precise ratios of 1:1, 2:1, and 2.5:1 (donor to recipient axon). In a 
detailed examination of the forearm, researchers reported [26] that the 
primary nerve branches of the flexor carpi radialis and the flexor carpi 

ulnaris had average axon counts of 746 and 659, respectively. These 
figures were found to align with the average axon counts of the 
extensor carpi radialis longus (704 axons) and brevis (745 axons). 
Within this group of wrist flexors and extensors, the extensor carpi 
ulnaris’ main nerve branch posted the minimum average axon count, 

FIGURE 1

Degeneration and regeneration after peripheral nerve injury (11).

FIGURE 2

Techniques for bridging peripheral nerve defects. The graphic details the specific advantage (green words) and limitation (red words) for each 
technique, including (A) autograft, (B) allograft, and (C) nerve conduits. Gf, growth factors; SCs: Schwann cells. Graft materials.
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at 543. Meanwhile, the primary nerve branches of the supinator, 
pronator teres, and pronator quadratus presented with average axon 
counts of 602, 625, and 824, respectively. Axon counts and cross 
sectional area for lower extremities also were also explored (Table 1).

Nerve allograft
In the past, allogenic nerve grafts need to utilize cadaveric or 

donor nerve tissue as an alternative to autologous nerve grafts (25). 
However, the disadvantage of using allografts is that it requires 
systemic immunosuppression lasting up to 18 months (26). In order 
to avoid the weak, Certain scientists have created modified nerve 
allografts, which have addressed certain limitations associated with 
allografts. Certain processing methods, such as multiple freeze–thaw 
cycles, radiation exposure, and prolonged storage, were utilized to 
render the allografts non-immunogenic (27). In certain instances, the 
procedure of identifying a suitable donor, preparing the graft, and 
subsequently scheduling the surgical intervention could be lengthy 
(28). Clinical data often suggests immediate surgical intervention 
yields better results compared to delayed nerve repair (29). 
Nevertheless, a research study (30) focusing on the application of 
processed nerve allografts (PNAs) in motor nerve repair unveiled that 
significant motor recovery was noted in 73% of subjects suffering from 
mixed and motor nerve injuries in the upper extremities, including 
the head and neck area. This recovery was observed regardless of 
whether the repair with processed nerve allografts was performed 
immediately or in a deferred manner. As an alternative to autologous 
nerve transplants, companies like Axogen are offering easily accessible 
frozen decellularized nerve allografts sourced from blood banks. 
These allografts, post-processing, are preserved at temperatures of 
either-80°C or 4°C. Recent research (31) suggests that the chosen 
preservation method could potentially influence motor recovery 
following nerve reconstruction, with allografts stored in cooler 
environments kick-starting regeneration earlier than their frozen 
counterparts. Moreover, the exploration of combining various 
processing and preservation techniques aims to create an optimal 
nerve allograft that boasts improved ultrastructural preservation and 
diminished immunogenicity (32). However, it’s necessary to highlight 
that acellular allografts necessitate the repopulation of host cells, a 
process which could potentially result in a delay in axonal regeneration 
(33). Nevertheless, the regenerative capabilities of extended acellular 
nerve grafts (processed nerve allografts) are restricted, because SCs do 
not provide the necessary support for the formation of a basement 

membrane that contains extracellular matrix (ECM) proteins, which 
are crucial for axonal growth and the creation of endoneurial tubes 
that facilitate the growth of regenerating axons (34). However, in 
clinical applications, decellularized nerve grafts have shown 
comparable or even superior outcomes compared to other types of 
transplants. A study conducted on children with obstetrical brachial 
plexus injury compared acellular processed nerve allograft (ALG) with 
sural nerve autograft (AUG) and found no significant differences in 
motor strength and functional components between the two 
groups (35).

Conduits
The rapid development of different materials as a substitute for 

nerve autografts in mending peripheral nerve injuries has been 
facilitated by advancements in biomedical techniques. Over the last 
few decades, research has primarily focused on the use of biomaterial-
based nerve conduits for repairing peripheral nerves. These conduits 
can be  made from various materials such as natural substances, 
non-degradable materials, and biodegradable synthetic material. 
These conduits possess a longitudinal arrangement that imitates the 
inherent composition of neural pathways. The conduits serve as 
pathways for axonal growth, directing regenerated axons to reconnect 
with their intended neurons. Nevertheless, the channels themselves 
do not significantly impact the result of neural restoration.

The successful healing of a damaged nerve relies on the gradual 
processof axonal regrowth and its accurate placement (26). The ideal 
nerve conduit should possess biocompatibility, biodegradability, 
flexibility, porosity, pliability, nerve inductivity, and neuroconductivity, 
with appropriate surface and mechanical properties (36). Most reports 
on series of nerve conduit reconstructions for digital nerve defects 
adhereto the boundary of 3 cm. Strauch et al. (37) conducted a study 
on rabbit sciatic nerve regeneration in which they compared the 
results of using vein conduits of lengths ranging from 1 to 6 cm. They 
found that regrowth and functionality were optimal for conduits of 
lengths ≤3 cm but deteriorated for lengths >3 cm. While nerve 
conduits are indeed widely used in the repair of certain peripheral 
nerve injuries, and are often considered effective for nerve gaps 
smaller than 3 cm, this does not mean that all types of nerve injuries 
adhere to this rule (38, 39). Firstly, the maximum effective length of a 
nerve conduit may vary depending on the type of nerve (sensory, 
motor or mixed) and the specific circumstances of the individual 
patient (39, 40). Secondly, the material, design, and manufacturing 
method of nerve conduit might also influence its efficacy in repairing 
longer nerve gaps (38, 39). Over the years, there have been notable 
progressions in the development of artificial nerve conduits. A diverse 
range of novel synthetic polymers and biopolymers have been assessed 
in terms of materials selection and design.

Natural materials
Extensive research has been conducted on the use of organic 

substances, such as muscle tissue or blood vessels for transporting 
materials. Natural materials provide greater biocompatibility, lower 
toxicity, and improved facilitation of cell migration in comparison to 
synthetic materials (41, 42). A study was conducted to determine 
whether Schwann cells migrate within nerve conduits used to repair 
substantial nerve gaps (43). The results revealed that endothelial cells 
formed a dense network of capillaries, which Schwann cells utilized 
for migration from both nerve stumps into the conduit. The 

TABLE 1 Cross sectional area and total axon count of potential nerve 
donors (24).

Nerve donors Area, mm2 Axons, n

Tibialis anterior 0.255 ± 0.111 3,363 ± 1997

Extensor hallucis longus 0.197 ± 0.302 2062 ± 2,314

Flexor hallucis longus 0.234 ± 0.147 1,557 ± 735

Latissimus gastrocnemius 0.256 ± 0.105 2,352 ± 1,249

Medial gastrocnemius 0.309 ± 0.101 2,834 ± 718

Popliteus 0.309 ± 0.101 3,317 ± 1,467

Soleus 0.700 ± 0.222 4,941 ± 1994

Tibialis posterior 0.348 ± 0.253 3,039 ± 1,528

Data presented as mean ± SD
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endothelial and Schwann cells gradually colonized the conduit. A 
week after the injury, a dense network of newly formed blood vessels 
was observed encircling both the proximal and distal stumps, with 
numerous Schwann cells in close proximity. The study concluded that 
angiogenesis was crucial within the nerve conduits, as it not only 
aided cell survival but also facilitated the migration of newly developed 
Schwann cells.

Abundant sources and a lower occurrence of acquired illnesses 
when collected are additional benefits of utilizing these organic 
substances. However, in longer nerve defects, the regenerative effects 
of these conduits on nerves may gradually decrease. In a retrospective 
case series, Jeon and colleagues assessed 11 patients, all of whom 
attained acceptable sensory restoration according to both SM2PD and 
Semmes-Weinstein monofilament examination (44). In their study, 
Stahl and colleagues examined 28 individuals (28) and discovered that 
32% of Siemionow and Sonmez (28) participants attained a sensory 
improvement of 5–9 millimeters during two-point discrimination 
testing (45).

Peripheral nerve repair also utilizes non-biodegradable substances 
like silicone, elastomer hydrogel, or porous stainless steel. The 
drawbacks of these include inflexibility and instability, potential for 
causing long-term foreign body reaction and inflammation caused by 
the formation of scar tissue. These limitations restrict their application 
in peripheral nerve repair (6). In recent decades, increased attention 
has been directed towards naturally derived materials utilized in the 
development of nerve guidance conduits (NGC), peripheral nerve 
wraps (PNW), and membranes.

These materials should demonstrate biological functionality, 
sufficient compatibility with living organisms, and the ability to break 
down naturally (6). Moreover, it is imperative that these substances 
create structures that closely resemble the extracellular matrix (ECM) 
and facilitate accelerated tissue regeneration (15).

Collagen conduit
Studies have focused on the use of environmentally-friendly 

substances, including collagen, polyglycolic acid, polylactic acid, 
polyesters, and chitosan (46). Collagen, a structural protein, is present 
in the connective tissues of both humans and animals, serving as the 
main constituent of the extracellular matrix. Implants, such as wound 
dressings and artificial skin, have made use of it. Natural and 
biodegradable with low antigenicity, it promotes nerve sprouting, 
regeneration, and maintains cellular biological functions (17, 38, 47). 
Among its features are fibers inserted into conduit lumens to function 
as fillers, as well as hydrogel formulations for the delivery of cells, 
drugs, and growth factors (17).

A study finding (48) revealed no significant disparities in 
electrophysiological and hand function outcomes between the 
collagen conduit and microsurgical neurorrhaphy groups after a 
24-month period. Yet, at the 12-month juncture, the collagen conduit 
group exhibited a statistically significant extension in distal motor 
latency and a noticeable reduction in compound muscle action 
potential. A broad-based recovery was observed in both motor and 
sensory conduction parameters from the 12th to the 24th month. The 
amplitudes of compound motor action potential regained about 50% 
of the control hand’s level, the distal motor latency continued to 
be 50% extended, and a roughly 15% reduction was noted in the 
motor conduction speed between the elbow and wrist. In conclusion, 
the data indicates that both collagen conduit and microsurgical 

neurorrhaphy serve as effective strategies for peripheral nerve repair, 
delivering comparable outcomes at the 24-month benchmark. In a 
retrospective case study, Thomsen et al. (49) evaluated 10 patients with 
collagen conduits for nerves. In the SM2PD test, 50% of patients were 
classified as “excellent” or “good” in terms of sensation recovery. 
According to the Semmes-Weinstein monofilament test, at least 80% 
of patients had recovered light touch sensation. There were no 
complications reported.

Chitosan conduit
The second most abundant natural polymer after cellulose, 

chitosan is a cationic biopolymer derived from alkaline 
deacetylation of chitin (50, 51). Recent years have seen extensive 
use of chitosan in various biomedical fields (51–56), mainly because 
of its biocompatibility, biodegradability, low toxicity and 
non-immunogenicity, low cost and large availability. An analysis of 
chitosan hollow tubes and autologous nerve grafts for reconstruction 
of peripheral nerve defects was reported by Stenberg L (57). Using 
chitosan hollow tubes, the authors found that peripheral nerve 
reconstruction of sciatic nerve in rats was comparable to autologous 
nerve grafts, the gold standard. According to a study (58), chitosan-
based nerve conduits can bridge nerve lesions up to 26 mm in the 
hand safely and effectively. During early regeneration, tactile gnosis 
improved significantly, and functional outcomes were similar to 
those obtained with autologous nerve grafts. Measurement of tactile 
gnosis using two-point discrimination was the primary outcome 
parameter. Additionally, a Semmens Weinstein Monofilament Test, 
self-assessed pain, and a patient satisfaction survey were used as 
secondary outcome indicators. As a result of complications 
associated with the chitosan nerve tube, one patient had to undergo 
revision surgery.

Polyglycolic acid conduit
Polyglycolic acid (PGA) is a synthetic polymer that is 

biodegradable and biocompatible. It has been used in various 
applications, including orthopedic implants, sutures, and nerve 
conduits (59). PGA is often used in combination with other 
materials to enhance its performance. Early studies on synthetic 
conduits were carried out with PGA. It is recycled, and considered 
to be more permeable and flexible compared to others, allowing 
diffusion to help with resorption and regeneration taking place in 
six months (60). In a prospective level IV case series, Mackinnon 
and Dellon (61) evaluated 15 patients with digital nerve gaps 
measuring 17 mm undergoing secondary nerve reconstruction. 
These researchers discovered that 53% of patients had a good 
recovery, 14% had a poor recovery, and 33% had outstanding 
sensory recovery. Sensory nerve grading scales from the British 
Medical Research Council were used for data collection. In order to 
qualify for excellent recovery, we  required the static two-point 
discriminability level to be  6 mm, and the moving two-point 
discriminability level to be  3 mm. These criteria are identical to 
those used in the commonly used S4 grading system (S0–S4). 
Movement between 4 and 7 mm and static two-point discrimination 
between 7 and 15 mm was considered good recovery. The absence 
of either static or moving two-point discrimination constitutes a 
terrible outcome. In one case, extrusion was described by 
Mackinnon and Dellon5, who came to the conclusion that in some 
sensory lesions less than 3 cm, PGA tubes can produce outcomes 
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comparable to those of the traditional nerve transplant without 
donor morbidity.

Although several studies mention positive outcomes, some point 
out that PGA alone has an unfavorable degradation rate for bigger 
nerve gaps (>3 cm). The method employed to construct the conduit 
presents another issue. The surface of PGA conduits displayed poor 
quality when extrusion was applied (62). Additionally, when it breaks 
down, acidic chemicals are released, causing the pH at the 
implantation site to drop, which can set off an immunological 
response. Dehnavi et al. (63) recently reported the findings of a study 
on the application of a novel neural guidance channel including PGA/
collagen/NBG for the enhancement of transected sciatic nerve in a rat 
animal model. According to the study, the manufactured conduit 
(bioglass conduit) is more successful in promoting nerve regeneration 
than PGA and PGA/collagen conduits and has the potential to 
enhance sciatic nerve regeneration.

The applications of biogradable materials mentioned above have 
shown similar effectiveness compared to traditional nerve grafts. 
However, it has been shown that the efficiency of nerve conduits for 
nerve repair is inferior to that of autograft and allograft when they 
are employed in digital nerve injury. Results of a systematic review 
and meta-analysis (64) on methods for repairing digital nerves 
revealed that all of them produce acceptable results. Nevertheless, 
autograft and allograft were both superior to conduit repair when 
treating digital nerve damage with gaps. For static 2-point 
discrimination (S2PD) outcomes, autograft repair outperformed all 
other forms of repair statistically, while allograft results generally 
exceeded neurorrhaphy and conduit repair but were not 
statistically significant.

Autograft repair statistically outperformed conduit repair and 
neurorrhaphy for Semmes-Weinstein monofilament testing (SWMF) 
results while being statistically comparable to allograft repair. 
Comparing moving 2-point discrimination (M2PD) performance to 
conduit repair, allograft performed statistically better. Nerve 
regeneration across large defect gaps has also been demonstrated to 
be facilitated by nerve conduit lumen fillers (15). As luminal fillers, 
natural polymers, such as fibrin, collagen, laminin, and agarose, are 
often used in solutions, hydrogels, filaments, and porous sponges due 
to their soft properties and biocompatibility. PNI repair and nerve 
conduit function can be effectively supported by these materials (65). 
The efficiency of luminal fillers can vary depending on the precise 
distance of the nerve lesion, despite the fact that many of them have 
been described. The fundamental criterion for them from the 
standpoint of clinical translation is that they be  conveniently 
producible and injected into the conduit (65).

Conduits with supportive cells
The nerve conduits have recently been improved using a variety 

of research strategies that speed up nerve regeneration and bridge 
wide nerve gaps. Supporting cells have been added to nerve conduits, 
which has attracted the greatest research attention (66, 67). Cell-
based therapy is an effective method for mending lengthy nerve 
defects and can foster the regeneration of peripheral nerves. There 
are several cell types of interest being studied in this project, 
including SCs, Olfactory ensheathing cells (OECs), bone marrow-
derived mesenchymal stem cells (BMSCs), and adipose-derived 
mesenchymal stem cells (ADSCs) (68). Augmenting conduits with 
cells, such as Schwann cells or stem cells, can enhance nerve 

regeneration by providing cellular support, guiding new nerve fiber 
growth assisting in myelination, and modulating immune responses 
(69, 70).

Schwann cells are the most significant and natural seed cells for 
the healing of peripheral nerve damage. Because they are both 
structural and functional cells and play a critical role in peripheral 
nerve regeneration. SCs produce neurotrophic factors such as Nerve 
growth factor (NGF), brain-derived neurotrophic factor (BDNF), 
ciliary neurotrophic factor, platelet-derived growth factor, and 
neuropeptide Y. These neurotrophic components may help injured 
axons survive longer and encourage their regeneration. It has been 
demonstrated that transplanting SCs seeds into a nerve conduit can 
improve axonal regeneration (71, 72). The utilization of autologous 
stem cells in clinical settings is limited due to various factors, such as 
the occurrence of morbidity at the donor site, challenges associated 
with acquiring and rapidly expanding a substantial quantity of stem 
cells, the requirement for sequential surgical procedures with short 
intervals (one for harvesting and expanding stem cells and another for 
nerve gap repair), and the decline in stem cell numbers with advancing 
age (73). There is a need for some readily available sources of seed cells 
having SCs properties. The current focus of cell-based therapy 
research for peripheral nerve injuries is on finding other approaches 
to SC usage.

It has been demonstrated that astrocytes and SCs share 
characteristics with olfactory ensheathing cells. Like SCs, OECs 
produce a variety of neurotrophic substances. In customary 
conditions, oligodendrocyte precursor cells (OECs) are present in 
both the peripheral and central nervous systems. Oligodendrocyte 
precursor cells (OECs) have been employed in clinical trials for the 
purpose of treating spinal cord lesions in individuals, as well as 
improving functional recovery in adolescents and young children 
affected by cerebral palsy. Until recently, their regeneration-promoting 
function for the peripheral nervous system was unknown (74, 75). The 
transplantation of olfactory ensheathing cells (OECs) at the time of 
microsurgical intervention was found to enhance axonal regeneration 
and improve functional outcomes, as assessed by the sciatic functional 
index (SFI), in the adult rat sciatic nerve (75). OECs exhibit greater 
migratory capabilities compared to SCs, and unlike SCs, they do not 
accumulate proteoglycans, which can result in the collapse of growth 
cones. As a result, OECs rather than SCs may make a better choice for 
cell-based regenerative therapy. However, more preclinical and clinical 
studies are required before OEC transplantation can be used to treat 
human peripheral nerve injuries (76). Due to their rapid multiplication 
and ability to integrate into the host in an immunologically safe 
manner, stem cells are a promising clinically viable alternative to cell-
basal therapy for PNI (77). Although embryonic stem cells have the 
potential to develop into any form of cell, including SC, there are 
moral questions regarding their usage in medicine. Therefore, 
researchers have looked for an effective replacement for embryonic 
stem cells. A more appealing alternative for stem cell therapy is adult 
stem cells.

A variety of adult tissues can be used to produce mesenchymal 
stem cells (MSCs), including skin, adipose tissue, bone marrow, and 
umbilical cord blood. The ability of MSCs to develop into neurons 
makes them a potential therapeutic target for neurogenesis and 
neuroprotection. The impact of pre-induced mesenchymal stem cells 
(MSCs) coated cellulose/collagen nanofibrous nerve conduits on facial 
nerve regeneration was investigated in a rat model through in vitro 
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and in vivo experiments, as determined by Cho et al. (78) in their 
published study.

The findings demonstrated that the regeneration parameters were 
greatly enhanced by the extra coating of pre-induced MSCs in the 
cellulose/collagen nanofibrous conduit. According to functional and 
histological evaluations, Group II, which underwent treatment with 
the pre-induced MSC-coated cellulose/collagen nanofibrous nerve 
conduit, exhibited the highest level of recuperation. In each of the 
three groups, the nerve gap was effectively restored in every rat, and 
after a period of eight weeks following the surgical procedure, 
observable degradation of the cellulose/collagen nanofiber 
commenced. Group II showed a slightly larger nerve diameter than 
the control group, but there were no neuromas formed, and there was 
no statistically significant difference in nerve thickness.

Studies have been done on the use of brain-derived neural stem 
cells (NSCs), in addition to MSCs, in the regeneration of damaged 
peripheral nerves. An NSC-loaded silicon conduit, which spans the 
10-mm gap between the nerve stumps in the study (79), was used to 
investigate the effects of neural stem cells on sciatic nerve injury in 
rats. The findings of this study indicate that neural stem cells (NSCs) 
possess the potential to promote the regeneration of the injured sciatic 
nerve. Consequently, incorporating NSCs into clinical trials for 
individuals suffering from nerve injuries could potentially yield 
improved clinical outcomes, as NSCs have the ability to enhance the 
expression of nerve growth factor (NGF) and hepatocyte growth 
factor (HGF) within the sciatic nerve.

Cell-based therapy holds substantial promise, but significant 
challenges persist in its application in current and future clinical 
contexts. One such challenge is ensuring the safety of cell 
transplantation, particularly concerning potential adverse reactions 
and issues arising in the brain, especially in the case of stem cell 
transplantation. These issues warrant further investigation. Another 
obstacle is the extended waiting period required to prepare these 
autologous cell sources, which could potentially result in missing the 
critical treatment window (68, 69). SCs and OECs appear to be the 
most promising due to their inherent roles in nerve function, but 
limitations include their availability and inconsistent results (80, 81). 
Mesenchymal stem cells (MSCs) offer a convenient source of cells, but 
their regenerative capabilities require further exploration (82). The 
potential of combinatorial approaches utilizing multiple cell types is 
also under investigation. More comparative research is still necessary 
to identify the optimal cell therapy approach (see Table 2).

A study (85) embarks on an exploration of chemical substances 
that could potentially foster peripheral nerve regeneration. It seeks to 

unravel methodologies that could amplify the capacity for nerve repair 
and regeneration. In addressing this complex issue, the research team 
meticulously combed through existing literature and experimental 
data, distilling a selection of chemical agents believed to be conducive 
to nerve healing, such as neurotrophic and growth factors, and 
cytokines. The conversation further delves into the realm of cell and 
tissue engineering therapies, spotlighting the use of nerve scaffolds 
and conduits, and the innovative application of stem and nerve cells. 
The culmination of this research is the illumination of clinical 
applications and future investigative paths, advocating for 
multidisciplinary and integrated treatment approaches and the 
exploration of varied therapeutic strategies tailored to different nerve 
injury scenarios. These research efforts aim to advance the field by 
enhancing the capacity for nerve regeneration and fostering the 
progression of nerve repair.

The field of nerve regeneration is witnessing significant 
advancements in the design and application of implantable 
biomaterials. Key strategies include the integration of neurotrophic 
factors, chemical guidance agents, and auxiliary solute factors to foster 
nerve tissue repair, as well as pioneering bioartificial nerve conduits 
as novel therapeutic avenues (86). Moreover, the refinement of 
therapeutic proteins through precise dosage control, optimized release 
kinetics, and targeted delivery is gaining momentum. Research is also 
delving into the distinct patterns of angiogenesis and the regeneration 
across different nerve fiber types. Collectively, these innovations aim 
to bolster the success rate of nerve regeneration therapies and present 
enhanced solutions for clinical deployment.

Technologies to stimulate nerve 
regeneration

Electrical stimulation

Electrical stimulation (ES) improves the intrinsic ability of 
neurons to regenerate in a clinically applicable manner (87, 88). 
Studies on the peripheral nervous system strongly imply that electrical 
stimulation has benefits for regenerating sensory and motor neurons 
(89). In one investigation, DRG cells from chick embryos exposed to 
an electric field exhibited enhanced neurite development (90). The 
enhanced growth of peripheral neurons is believed to be attributed to 
the upregulation of nerve growth-associated genes (such as GAP-43, 
preprotachykinin A, VEGF, NGF, ANGPT1, CCL11, VEGFC, and 
Myc proto-oncogene) (91–94), neurotrophic factors such as BDNFs 

TABLE 2 Summarization of various nerve conduits (39, 83, 84).

Material Advantages Disadvantages Animal trials Clinical application

Vein grafts Biocompatible, natural structure Risk of adhesion/Compression Dog, primate Clinical use as grafts

Silicone Inert, flexible stable Not biodegradable Rat, primate FDA approved

Collagen Biodegradable, supports regeneration Potential Immunogenicity, poor 

strength

Rat, rabbit dog Limited

Chitosan Biocompatible antimicrobial Poor mechanical strength Rat, rabbit, dog None

Polyglycolic acid (PGA) Biodegradable, available in fibers/tubes Acidic degradation products Rat, rabbit, dog, monkey Limited

Nerve conduits with 

supportive cells

Biocompatible, Supports Regeneration, 

secrete neurotropic and growth factors

Cell transplant safety, unfavorable 

reactions

Rat Limited
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(95), and glial cell line-derived neurotrophic factor (GDNF) (96) in 
dorsal root ganglia (DRGs). In an randomized controlled trial (RCT) 
(97), ES demonstrated significant postoperative improvements in all 
sensory modalities within 5–6 months for patients (n = 16) with 
completely transected digital nerves compared to those who 
underwent surgery alone (control subjects, n = 15). The cold detection 
threshold for ES patients nearly normalized, achieving 14.33 ± 0.46 
just-noticeable difference (JND) units, which was significantly lower 
than the control group’s 17.22 ± 0.44 JND (p < 0.001). Enhancements 
were also observed in tactile discrimination and pressure detection. 
Furthmore, the static two-point discrimination in ES patients 
improved to 4.71 ± 0.90 mm, notably better than the control group’s 
8.69 ± 1.05 mm (p < 0.001). The duration of electrical stimulation can 
indeed impact the regenerative capacity of neurons. This is particularly 
relevant in the context of peripheral nerve injuries, where electrical 
stimulation has been shown to enhance the intrinsic molecular 
pathways involved in regeneration, leading to accelerated axonal 
outgrowth and reinnervation of target tissue (98). However, the timing 
of electrical stimulation also plays a crucial role. For example, 
immediate onset of electrical stimulation following surgery has been 
found to improve functional recovery in cases of large nerve defects 
in diabetic animals (99). In the field of tissue engineering, electrical 
stimulation has demonstrated its influence on the behavior of adipose 
tissue-derived progenitor cells (ATDPCs) in 3D cultures. It promotes 
the formation of well-connected cellular networks and reduces the 
diameter of tissue constructs, all while maintaining cell viability and 
connectivity (100).

In summary, research has demonstrated that electrical stimulation 
(ES) plays a significant role in promoting axonal regeneration and 
functional recovery, as well as modulating the biological activity of 
Schwann cells (SCs), which are essential for nerve regeneration. ES 
enhances this process by promoting neuronal differentiation, 
proliferation, neurite outgrowth, and axonal elongation/regeneration, 
leading to varying degrees of functional recovery in both animals and 
humans (101). Furthermore, ES influences the behavior of SCs, 
encouraging their migration, adhesion, elongation, and enhancing 
their neuronal expression. Interestingly, some studies have found that 
a direct current of 10 mV is particularly beneficial for the growth and 
proliferation of SCs (102). It’s important to note, however, that 
although these studies provide valuable insights, the optimal physical 
parameters for electrical stimulation, including frequency, intensity, 
and duration, may vary depending on the specific circumstances and 
are still subjects of ongoing research (103). Therefore, further studies 
are needed to establish standardized protocols for the application of 
electrical stimulation in the context of neuronal regeneration.

Optogenetic stimulation

In neuroscience engineering, optogenetic stimulation has become 
a powerful technique. Its great selectivity and lack of invasiveness may 
exceed the stimulation methods used by its competitors. According to 
the evidence from various groups, optogenetic activation encourages 
neurite development (104). Optical pulses and exposure time 
influence neurite outgrowth and axonal regeneration (104). The study 
conducted by Park et  al. (105) involved the examination of 
optogenetics, specifically utilizing transgenic Thy1-ChR2-YFP mice 

expressing ChR228 to generate light-sensitive entire DRGs. The 
objective of this investigation was to assess the potential enhancement 
of neurite outgrowth through optically induced neural activity. The 
researchers explored the impact of various optical stimulation 
frequencies and exposure durations on neuronal development. In 
addition, they discovered that the development of optically sensitive 
neurites was enhanced and skewed in one direction, demonstrating 
the cell-specific targeting of optogenetics. Indeed, a significant 
challenge in the application of optogenetic stimulation is its restricted 
penetration depth, a factor that becomes particularly limiting when 
addressing peripheral nerve injuries. The ability of light to penetrate 
tissue is inherently limited, confining the use of optogenetics primarily 
to superficial structures unless invasive techniques are employed to 
direct light towards deeper tissues. This constraint becomes especially 
formidable when trying to stimulate peripheral nerves, which often 
reside deep within the body. Consequently, while optogenetics 
presents substantial potential for investigating and treating a range of 
neurological conditions, its utility in the context of peripheral nerve 
injuries is presently constrained by the limited depth of light 
penetration (106).

Conclusion

For nerve reinnervation, autografts continue to be superior to all 
bioengineered grafts. However, the drawbacks that result from this 
point to the requirement for the creation of substitute strategies. In 
short nerve gaps, the performance of nerve guide conduits made from 
various materials is comparable to autologous nerve grafts. Most of 
the bioengineering approaches have been found to focus only on the 
development of nerve conduits that promote neuronal guidance 
and growth.

Repairing long nerve gaps remains a significant challenge in the 
field of nerve regeneration. While there have been advancements in 
the development of nerve conduits made from various novel materials 
and the addition of supportive cells, these methods have not yet 
resulted in a breakthrough for long nerve gap repair.

Additionally, peripheral nerve regeneration techniques using 
electrical, optogenetic, and magnetic stimulation are showing promise. 
One possibility is electrical stimulation. However, the standardized 
parameters for ES have not been established.

While the precise mechanisms underlying the beneficial effects 
of magnetic stimulation on neurons are not fully understood yet, 
this technique holds promise as a non-invasive therapy for various 
neuronal disorders. Furthermore, combining nerve conduits with 
other peripheral nerve regeneration techniques, such as electrical 
or magnetic stimulation, could potentially improve the outcomes 
of long nerve gap repair. However, further research is still needed 
to optimize these combination approaches, fully elucidate their 
mechanisms of action, and translate the findings to viable 
clinical therapies.
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