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Enhancing EEG-based 
attachment style prediction: 
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domains
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Introduction: Attachment styles are crucial in human relationships and have 
been explored through neurophysiological responses and EEG data analysis. 
This study investigates the potential of EEG data in predicting and differentiating 
secure and insecure attachment styles, contributing to the understanding of the 
neural basis of interpersonal dynamics.

Methods: We engaged 27 participants in our study, employing an XGBoost 
classifier to analyze EEG data across various feature domains, including time-
domain, complexity-based, and frequency-based attributes.

Results: The study found significant differences in the precision of attachment 
style prediction: a high precision rate of 96.18% for predicting insecure 
attachment, and a lower precision of 55.34% for secure attachment. Balanced 
accuracy metrics indicated an overall model accuracy of approximately 84.14%, 
taking into account dataset imbalances.

Discussion: These results highlight the challenges in using EEG patterns for 
attachment style prediction due to the complex nature of attachment insecurities. 
Individuals with heightened perceived insecurity predominantly aligned with the 
insecure attachment category, suggesting a link to their increased emotional 
reactivity and sensitivity to social cues. The study underscores the importance 
of time-domain features in prediction accuracy, followed by complexity-based 
features, while noting the lesser impact of frequency-based features. Our 
findings advance the understanding of the neural correlates of attachment and 
pave the way for future research, including expanding demographic diversity 
and integrating multimodal data to refine predictive models.
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1 Introduction

Attachment styles offer profound insights into human behavior and neurophysiological 
responses, representing the intricate interplay between emotional and behavioral dynamics 
within close relationships (Vrtička and Vuilleumier, 2012; Sadikaj et al., 2015; Sheinbaum et al., 
2015). Recent advances in electroencephalogram (EEG) research have unraveled the neural 
underpinnings of attachment styles. For instance, Verbeke et al. (2014) found that social 
contexts significantly influence cortical activity, particularly in individuals with anxious 
attachment styles, unveiling enhanced alpha, beta, and theta band activity in the presence of 
others, hinting at potential implications for social behavior and relationships. Simultaneously, 
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Sloan et al. (2007) linked attachment anxiety with the presence of 
alpha waves during sleep, and Rognoni et  al. (2008) unveiled 
associations between adult attachment styles and EEG frontal 
asymmetry, shedding light on emotional responses. Individuals with 
avoidant attachment exhibited reduced arousal and right frontal 
asymmetry to positive stimuli, while preoccupied individuals 
displayed heightened arousal and increased left frontal activation, 
indicating the profound impact of attachment experiences on 
emotions and neural activity.

In the context of ERPs, Ma et al. (2017) emphasized the role of 
early caregiver-infant interactions in shaping attachment styles and 
attention biases. Secure attachment correlated with accurate 
perception and response to infant signals, while anxiously attached 
individuals exhibited heightened P300 amplitudes when exposed to 
angry infant faces during a facial recognition task, revealing 
attachment style differences in brain responses to infant face 
perception. Additionally, Zuckerman et al. (2023a) highlighted how 
attachment style influences defensive responses, moderating the 
attachment system during the flanker task in the context of P200 and 
P400 ERPs.

Nonetheless, despite these valuable contributions, a conspicuous 
gap remains in the literature: the underexplored realm of AI models 
for predicting attachment styles based on EEG data. While attachment 
styles are fundamental to understanding human interaction, the field 
of emotion recognition, though closely related (Mikulincer and 
Shaver, 2005; Vrtička et al., 2012; Akhavan-Abiri et al., 2018; Zhang 
et al., 2023), has garnered more attention. Within emotion recognition, 
researchers have diligently explored a multitude of methodologies to 
harness EEG data for detecting emotional states and responses. These 
methodologies encompass comprehensive analyses of EEG signals, 
including time-domain and frequency-domain approaches, as well as 
advanced techniques like wavelet transforms, principal component 
analysis, and independent component analysis (Li et  al., 2018; 
Alhalaseh and Alasasfeh, 2020; Liu et al., 2020; Jaswal and Dhingra, 
2023; Vempati and Sharma, 2023). Moreover, recent studies have 
highlighted the potential of EEG-based emotion recognition, shedding 
light on its significance, particularly through the utilization of 
advanced techniques like Empirical Mode Decomposition (EMD), 
serving as an effective feature extraction method for capturing the 
complexity of emotional states from EEG signals (Zhuang et al., 2017; 
Mert and Akan, 2018; Wang and Wang, 2021).

While considerable advancements have been made in 
understanding emotional states through EEG data, the specific 
application of these techniques for predicting attachment styles, 
particularly through responses to cognitive tasks like the Flanker task 
(Eriksen and Eriksen, 1974), has not received the same level of 
attention. Addressing this research gap, our study aims to examine the 
potential of EEG responses to feedback in the Flanker task as 
distinguishing markers for secure and insecure attachment styles. 
Inspired by the work of Simon-Dack et al. (2021), who identified 
distinct EEG patterns associated with avoidance in a non-social 
context of the Flanker task, we  seek to extend this inquiry. Our 
approach involves analyzing a variety of EEG features elicited by 
feedback in the Flanker task. This analysis is aimed at identifying EEG 
patterns that might distinguish secure from insecure attachment 
styles. We hypothesize that different attachment styles may manifest 
distinct EEG responses during the task, especially in relation to 
feedback processing, which could range from tendencies toward 

self-criticism to adaptability. By exploring these EEG patterns in the 
context of a cognitive task traditionally used for assessing performance 
monitoring (Overmeyer et al., 2023), our study endeavors to provide 
novel insights into the neural correlates of attachment styles.

We next turned our attention to the analytical methods employed 
in our study. Our research employs the XGBoost classifier for 
predicting attachment styles using EEG data. This methodological 
approach is notably scarce in attachment style literature, representing 
a significant utilization of the complexity inherent in EEG data for this 
specific context. The choice of XGBoost is based on its proven efficacy 
in managing the non-linear characteristics (Wang et  al., 2021) 
inherent in EEG data, challenging for conventional analytical 
techniques (Chen and Guestrin, 2016) especially linear ones (Elgart 
et al., 2022). Our approach aligns with current trends in neuroscience 
and psychology, where ensemble machine-learning methods have 
shown effectiveness in interpreting complex neural patterns (Rahman 
et al., 2022; Li et al., 2023). Our study is focused on examining a broad 
range of EEG features, totaling 45  in number, which encompass 
elements from the time domain (Al-Fahoum and Al-Fraihat, 2014; 
Zuckerman et al., 2022, 2023b), frequency-based analyses (Mizrahi 
et al., 2022a,b, 2023a), and complexity measures (Sheehan et al., 2018; 
Ramadoss et al., 2022; Mizrahi et al., 2023b). The aim is to utilize these 
features to predict whether an individual has a secure or insecure 
attachment style and to assess the specific contribution of each feature 
to this prediction.

Building on our foundational work (Zuckerman et al., 2023b), our 
current study employs these diverse EEG features for a comprehensive 
analysis. This selection, encompassing a broad spectrum of domains, 
was chosen for its demonstrated significance in our previous research. 
In that study, most of the features, with a p-value of less than 0.0001, 
showed notable differences between secure and insecure attachment 
styles, except for three features. However, to ensure a comprehensive 
exploration of EEG patterns in attachment styles, all 45 features were 
included in the current analysis. Our present study adopts a predictive 
modeling approach, contrasting with the comparative focus of our 
earlier work (Mizrahi et al., 2023a; Zuckerman et al., 2023a,b). By 
using the XGBoost model, we aim to predict individual attachment 
styles based on the EEG features, moving beyond simple comparisons 
to a more nuanced understanding of the data. This methodological 
shift enhances our ability to accurately predict attachment styles and 
provides deeper insights into the neurophysiological patterns 
associated with these styles.

2 Methods

2.1 Data collection and participant 
recruitment

Our study was conducted in two phases. Initially, we recruited a 
group of 96 participants aged between 20 and 35 (mean = 24.25 years, 
SD = 2.0673), comprising 46 females, who were fourth-year 
engineering students. All participants were right-handed and reported 
no neurological symptoms. To assess their attachment styles, 
participants completed the ECR-R (Sibley and Liu, 2004; Sibley et al., 
2005) questionnaire, a widely used self-report instrument consisting 
of 36 items grouped into anxiety and avoidance subscales. In our 
analysis of the ECR-R questionnaire results, we concentrated on two 
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key dimensions: avoidance and anxiety, each scored on a scale from 1 
to 7. In this scoring system, higher scores correspond to increased 
levels of insecurity within these dimensions. Participants characterized 
by lower scores were associated with secure attachment, while those 
with higher scores in both dimensions were indicative of fearful 
avoidant or disorganized attachment types. To avoid arbitrary 
thresholds for classifying these attachment types, we  utilized the 
k-means clustering algorithm (Ahmed et  al., 2020) to objectively 
determine natural groupings in our dataset. The k-means method 
effectively partitions data into clusters based on feature similarity. To 
determine the optimal number of clusters for k-means clustering, 
we employed the Elbow method, a widely-used heuristic in cluster 
analysis (Umargono et al., 2020). This method involves assessing the 
within-cluster sum of squares (WSS) against different numbers of 
clusters (k) (Grgic and Podobnik, 2021). WSS measures the 
compactness of clusters and decreases as k increases. The Elbow 
method identifies the point where increasing the number of clusters 
leads to diminishing returns in terms of decreasing WSS, typically 
signified by a noticeable ‘elbow’ in the trend. This ‘elbow’ point 
represents a balance between the number of clusters and the 
homogeneity within them. Our application of this method revealed 
k = 4 as the optimal number of clusters. Thus, our analysis, in line with 
established literature, indicated that four clusters – securely attached, 
anxiously attached, avoidant, and fearful avoidant/disorganized – were 
optimal. This classification, validated against existing demographic 
patterns (Magai et  al., 2001), ensured the credibility of 
our methodology.

For the EEG recording phase, 27 participants, representing the 
four identified attachment styles, were selected from an initial sample 
of 96 college students. The k-means algorithm (k = 4) classified these 
into a secure group of 6 and an insecure group of 21 (9 anxiously 
attached, 7 avoidant, 5 fearful avoidant) (Figure  1). Despite the 
resultant imbalanced cluster sizes, this distribution was necessary for 
ecological validity. By ensuring that the distribution of attachment 

styles in our sample closely resembled those found in broader, real-
world populations, we  aimed to enhance the applicability and 
relevance of our results. Such a representation, despite leading to 
unequal group sizes, was crucial in reflecting the actual prevalence 
and variation of attachment styles in a natural setting. We addressed 
potential impacts of this imbalance on our results, such as precision 
rates between groups, by using balanced accuracy (see Section 3.2) to 
evaluate our model’s performance accurately.

In our study, we strategically grouped attachment styles into two 
categories: secure and insecure. This simplification, based on our 
research’s focus, facilitated the initial application of machine learning 
methods, specifically XGBoost, to discern fundamental differences 
between these broad groups. This binary classification approach 
served as a crucial foundational step, enhancing the interpretability 
and statistical robustness of our findings. The decision to categorize 
attachment styles in this manner was instrumental in establishing a 
clear baseline for our explorations. It was a deliberate choice, aligning 
with our objective of utilizing machine learning to analyze attachment 
styles for the first time. Future research, building on this groundwork, 
will employ more sophisticated machine learning methods to explore 
the distinct features of each attachment style in greater depth, paving 
the way for a more thorough and detailed investigation.

During the EEG sessions, participants completed the flanker task 
(Brunetti et al., 2019). This task involved the rapid presentation of 
arrow flanker configurations, requiring participants to quickly identify 
the direction of a central arrow amidst distracting non-target arrows 
and respond using a keyboard. The primary objective of the flanker 
task was to evaluate how participants responded to the feedback 
provided for their task performance.

Each participant performed 60 trials of the flanker task, divided 
into three blocks of 20 trials each, with a 1-min break between blocks 
(see Figure 2 in the experimental paradigm). Participants responded 
to on-screen arrows by pressing the corresponding arrow key. In the 
first and third blocks, they matched the direction of the target arrow, 
while in the second block, they pressed the opposite direction. 
Feedback was provided after each trial, with correct trials displayed in 
green as “correct” and incorrect trials in red as “incorrect” for 1 s. 
Between trials, a gray cross was displayed on a black screen, and 
participants focused on it for a randomly varying duration between 
0.5 and 1.5 s. The duration of each trial was approximately 3 s, resulting 
in a total duration of approximately 60 s for each block comprising 20 
tasks. Before the main task, participants underwent a training session 
to become acquainted with the experimental procedure.

2.2 EEG recordings

We recorded EEG signals using a 16-channel active EEG amplifier 
(e.g., USBAMP, by g.tec, Austria) operating at a sampling frequency 
of 512 Hz, adhering to the 10–20 international system operating at a 
sampling frequency of 512 Hz, following the 10–20 international 
system. Electrode impedance was maintained below 5 Kohm 
throughout the experiment, and data analysis focused on six frontal 
and prefrontal electrodes (Fp1, F7, Fp2, F8, F3, and F7). This selection 
of electrodes was guided by their established significance in cognitive 
neuroscience, especially for research on emotional processing (Zhang 
and Chen, 2020; Singh and Singh, 2021) and cognitive tasks (Zhang 
et al., 2020; Robble et al., 2021). The frontal and prefrontal regions are 

FIGURE 1

Grouped attachment outcomes based on the ECR-R questionnaire 
(K  =  4).
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pivotal in regulating emotions and cognitive functions. These 
functions are essential to comprehend attachment styles and their 
impact on cognitive performance, a focus of our study where 
we employed the Flanker task.

2.3 EEG pre-processing

In our EEG data preprocessing, we  utilized a bandpass filter 
within the 1–30 Hz range and a notch filter at 50 Hz to effectively 
minimize unwanted frequency components and noise. We focused 
on the Alpha, Beta, Theta, and Delta bands due to their established 
roles in emotional processing (Guo et al., 2022), attachment styles 
(Gander and Buchheim, 2015; Adenzato et al., 2019), and cognitive 
tasks such as the Flanker task (Vega et al., 2020; Clements et al., 
2021). To enhance our signal quality, we  employed Independent 
Component Analysis (ICA). ICA is a computational method used to 
separate a multivariate signal into additive, independent 
non-Gaussian components. This method is based on the assumption 
that the source signals are statistically independent and non-Gaussian. 
In the context of EEG data, ICA is particularly valuable for separating 
out artifacts (such as eye movements, muscle noise, or line noise) 
from the brain signals, since these artifacts are typically independent 
from the neural activity of interest (Pester and Ligges, 2018). By 
isolating these components, ICA allows for a clearer analysis of the 
underlying brain activity (Hyvärinen and Oja, 2000; Vigário 
et al., 2000).

The continuous filtered data were segmented into 1-s epochs, 
aligning with the flanker task slide duration. This approach allowed 
for the isolation and analysis of specific time intervals.

2.4 Classification

In our endeavor to differentiate between secure and insecure 
individuals based on EEG data, we employed a classification approach 
that relied on complexity-based, frequency-based, and time-domain-
based features. After acquiring and preprocessing the EEG data, 
we extracted relevant features from the EEG epochs.

These features were grouped into four categories. In total, 45 
features were calculated for each EEG epoch (Figure 3) according to 
the following distribution:

 1 Frequency-based features: This category included 6 attributes 
related to the relative values within the Alpha, Beta, Theta, and 
Delta frequency bands, as well as the ratios Theta to Alpha and 

Theta to Beta ratios, providing insights into the spectral 
characteristics of the EEG data.

 2 Complexity-based features: This class contained 17 features 
designed to quantify the complexity and irregularity of EEG 
signals. Features such as Binned Entropy, Fourier Entropy, 
Lempel-Ziv Complexity, time series complexity, and sample 
entropy mean were computed across various bin sizes (2, 4, 8, 
16, 32).

 3 Time domain-based features: Comprising a total of 19 distinct 
attributes, this category captured temporal characteristics and 
patterns in the EEG data.

 4 Trial feedback dynamics: This category comprised 3 features 
including response time and the success/failure feedback 
valence, both in the current and previous trials, which are all 
essential aspects of the feedback process.

For a comprehensive list of these 45 EEG-based features, please 
refer to Table A1. For detailed definitions of the EEG features used in 
our study, such as ‘count above mean/median’, ‘first max location’, ‘min 
location’, etc., please refer to the tsfresh documentation, available at: 
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html.

In our study, we  calculated each feature across six frontal 
electrodes and used their average values to enhance the robustness of 
our results. The ensemble model, combining these models from the 
frontal electrodes, demonstrated superior classification performance 
on the test set. Our dataset included 1,240 samples of the insecure 
attachment type and 360 samples of the secure type. Employing k-fold 
cross-validation, we partitioned our dataset of 1,600 epochs into four 
folds (1,280 epochs) for training, with one fold (320 epochs) reserved 
for testing in each iteration. This approach utilized the XGBoost 
algorithm, known for its effectiveness in classification tasks (Wong, 
2015; Sun, 2020).

To address the challenges inherent in small sample sizes for 
predictive modeling, our study utilized K-fold cross-validation on a 
1,600-epoch dataset. This approach helps reduce bias, which is 
especially beneficial as our sample size goes beyond the 1,000-epoch 
benchmark set for small samples in K-fold validation (Vabalas et al., 
2019). Similarly, a study on the DEAP dataset (Koelstra et al., 2011) 
employing Gradient Boosting Machines (GBMs) for emotion 
classification used a leave-one-participant-out cross-validation 
method with a total sample size of 1,280 (32 participants × 40 samples 
each) (Aggarwal et  al., 2018). This research highlighted the 
effectiveness of GBMs in small datasets, achieving high accuracy with 
optimized features and parameters, and providing supportive evidence 
for strong model performance in settings with limited samples. 
Additionally, research exploring the influence of sample size on 

FIGURE 2

Experimental paradigm – single block.
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predictive algorithms for psychological treatment prognosis indicated 
that decision-tree ensemble models, similar to those we utilized, begin 
to achieve optimal performance at sample sizes of approximately 1,000 
to 2,000 for AUC (McNamara et al., 2022).

In summary, we utilized a mix of complexity-based, frequency-
based, and time-domain-based features extracted from the EEG 
epochs. By integrating k-fold cross-validation with the XGBoost 
algorithm, our model aims to effectively classify between secure and 
insecure attachment styles based on EEG data, aligning with recent 
trends in EEG-based machine learning research (Tiwari and 
Chaturvedi, 2019).

3 Results

3.1 Precision disparities in attachment 
prediction

Our investigation revealed notable differences in prediction 
performance between secure and insecure attachment styles, as 
depicted in Table 1. Our analysis of EEG features, which included time-
domain, complexity-based, and frequency-based attributes, using the 
XGBoost classifier, unveiled significant insights into our predictive 
model’s accuracy. In our analysis, we found distinct patterns in the 
precision of attachment style classification (see Table 1). Notably, the 
XGBoost classifier exhibited a high precision of 96.18% in identifying 
individuals with insecure attachment styles, reflecting its ability to 

accurately recognize those with heightened anxiety and avoidance 
tendencies. In contrast, achieving precision in secure attachment 
classification proved to be more challenging, with a precision rate of 
55.34%. This disparity underscores the complexity of distinguishing 
individuals with secure attachment styles within the dataset. 
Furthermore, the confusion table data reveal a False Discovery Rate 
(FDR) for secure attachment classification of 44.66%. This indicates 
that while the model may occasionally misclassify individuals as having 
a secure attachment style, the majority of these instances actually 
represent individuals with insecure attachment styles. Conversely, the 
FDR for insecure attachment classification is notably lower, at 3.82%, 
demonstrating a lower likelihood of false positive identifications.

In conclusion, we reached a recall of 80% for Insecure prediction 
and about 90% for the Secure prediction. The unbalanced nature of 
the dataset, with a large number of errors in the Insecure group (259), 
impacted the model’s prediction accuracy for the Secure group, 
making it approximately 55% as opposed to around 96% for the 
Insecure group. This indicates that predictions from the Insecure 
group are more reliable than those from the Secure group in the 
context of this dataset. Overall, our predictive model demonstrates an 
81.37% prediction accuracy.

3.2 Balanced accuracy and precision 
enhancement evaluation

To accurately assess the efficacy of our attachment prediction 
model, we utilized the balanced accuracy metric. This metric is a 
standard in classification tasks, as it incorporates both sensitivity (True 
Positive Rate) and specificity (True Negative Rate). Such an evaluation 
method is particularly important for datasets with an imbalance, such 
as ours (see Equation 1).
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We determined a balanced accuracy of approximately 84.14%. 
This demonstrates an enhanced precision in categorizing individuals 

FIGURE 3

The distribution of the 45 features per EEG epoch, grouped into four categories.

TABLE 1 Confusion matrix for attachment style prediction.

Predicted classes True 
positive 

rate

False 
negative 

rateInsecure
p =  0

Secure
p =  1

True 

classes

Insecure

p = 0

981 259 79.11% 20.89%

Secure

p = 1

39 321 89.17% 10.83%

Positive predicted 

value

96.18% 55.34% Prediction accuracy

81.37%

False discovery rate 3.82% 44.66%
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based on their attachment styles while taking into account the dataset’s 
inherent skew.

Sensitivity evaluates the model’s effectiveness in correctly 
identifying those with secure attachment tendencies, while specificity 
assesses its ability to exclude those without these tendencies. Initially, 
the model reported a balanced accuracy of about 81%, indicating its 
performance before addressing the dataset’s imbalance. After making 
adjustments to enhance precision, the model’s balanced accuracy 
increased to approximately 84%. This improvement signifies the 
model’s refined capability to classify individuals based on their 
attachment styles, considering the challenges presented by the 
dataset imbalance.

3.3 Model accuracy across attachment 
style spectrum

Attachment styles, being multifaceted, more closely resemble a 
spectrum than fixed categories. This spectrum is visually represented 
on a two-dimensional plane, with the axes symbolizing anxiety and 
avoidance — the key determinants of attachment styles. In essence, 
while the model demonstrates proficiency in identifying pronounced 
insecure tendencies, its performance becomes more variable when 
tasked with discerning subtler nuances, particularly in regions where 
secure and insecure characteristics aren’t starkly distinct. This nuance, 
and occasionally the model’s inability to perfectly navigate it, leads to 
periodic misclassifications. The origin of two-dimensional plane 
serves as a balanced point for both elements. Using the Equation 2:

 R avoidance anxietyattachment � � � � � �2 2
 (2)

We can gauge the distance of a player from the origin, which 
serves as an indicator of their attachment style.

3.3.1 Secure group
Those closer to the origin predominantly exhibit secure 

tendencies. Imagine a tight circle around the origin: a smaller radius 
within this circle represents those with pronounced secure 
attachments. However, as we move outwards, increasing the radius, 
the strength of these secure tendencies begins to diminish. Our 
analysis dove deeper into understanding the model’s proficiency by 
assessing the recall value for Secure players based on their attachment 
radius (Figure 4).

The relationship between recall and radius is captured by the 
equation: Recall = 1.3785–0.14478 × R. A negative relationship is 
evident: as the radius R increases, moving toward the Insecure 
group, the recall value decreases, indicating reduced classification 
accuracy. Conversely, for those closer to the origin with a smaller R 
(indicating stronger secure tendencies), the model performs with 
heightened accuracy.

3.3.2 Insecure group
Individuals situated further away from the origin, distinguished 

by a larger radius, predominantly display insecure tendencies. These 
are individuals who often exhibit higher levels of either anxiety, 
avoidance, or both. Think of a broader circle on our plane; its 
expansive nature encapsulates the varied manifestations of insecurity. 

In Figure 5, we explore the nuances of attachment tendencies through 
a visual representation of the model’s recall accuracy in relation to the 
attachment radius. In Figure 5A, each dot represents an individual 
participant from the insecure group This scatter plot reveals the 
correlation between attachment radius and recall values, emphasizing 
that individuals with a larger radius — further away from the origin 
— are more likely to be accurately identified by the model as having 
insecure tendencies.

Figure 5B displays bars representing the average recall value for 
participants within specific radius brackets. It can be seen that the bars 
gradually increase in size with an increasing radius, however, this 
increase becomes more subtle and less pronounced at higher radii. 
Integrating our understanding from the figures, individuals situated 
further from the origin, marked by a larger radius, predominantly 
exhibit insecure tendencies. These are individuals who often manifest 
higher levels of either anxiety, avoidance, or both. The broader circle 
on our plane captures the diverse shades of insecurity.

3.4 Contribution of EEG feature domains to 
attachment style classification

The success of the classification model in differentiating 
attachment styles is rooted in the informative strength of various EEG 
feature domains. As visualized in Figure 6, where the y-axis denotes 
feature importance, we have extracted and analyzed features across 
distinct classes (x-axis), each contributing differently to the 
predictive accuracy.

Specifically, we explored the distinctive contributions of various 
EEG feature domains to the classification of attachment styles. The 
contribution of each kind of feature in our study was determined 
using XGBoost’s inherent ability to assess feature importance. 
XGBoost automatically evaluates the relevance of each feature within 
the predictive model it constructs. Upon building the boosting trees, 
the algorithm assigns an importance score to each feature, reflecting 
its utility in constructing the model’s decision trees. These scores are 
based on criteria such as the frequency of a feature’s usage in splits, 
the average gain of model accuracy from a feature, and the coverage 

FIGURE 4

Relationship between attachment radius and recall for the secure 
group.
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of the feature across the data. Consequently, features that are more 
frequently used in pivotal splits leading to significant improvements 
in model accuracy receive higher importance scores. This feature 
importance score, therefore, serves as a quantitative measure of each 
feature’s contribution to the model’s predictions, offering an objective 
and automated insight into the predictive dynamics of the model 
(Chen and Guestrin, 2016). Notably, the predictive accuracy of our 
model was influenced by the informative strength of each feature 
domain. Frequency-based features, encompassing relative values 
within EEG bands such as Alpha, Beta, Theta, and Delta, including 
Theta-to-Alpha and Theta-to-Beta ratios, made a moderate 
contribution of 15% to the overall prediction accuracy. In contrast, 
Complexity-Based Features, quantifying EEG signal complexity and 
irregularity through measures like Binned Entropy, Fourier Entropy, 
Lempel-Ziv Complexity, time series complexity, and mean sample 
entropy, played a more prominent role, contributing significantly 
with 37%. Time Domain-Based Features emerged as the top 
contributors, accounting for a substantial 45% of the overall 

prediction accuracy, capturing temporal patterns and characteristics 
within the EEG data.

Conversely, Trial Feedback Dynamics, which included the factors 
of response time and feedback valence, had the least impact, 
contributing a mere 2% to the prediction accuracy. These findings 
underscore the importance of considering distinct EEG feature 
domains when developing predictive models for attachment styles, 
with temporal characteristics being particularly influential.

3.5 Model performance and implications of 
attachment radius

In analyzing the model’s performance, several nuances emerge 
that have influenced its predictive accuracy. One significant 
observation is the model’s inclination to misclassify a notable fraction 
(20.89%) of the Insecure group as Secure. This misclassification can 
be linked to those with a low attachment radius, specifically within the 
[4, 5.5] range, as evident in Figure 5A. Their closeness to the Secure 
group, due to the low radius, poses inherent classification challenges. 
However, the distinction between groups becomes clearer with 
increasing radius values.

The recall metrics provide further insight: the Secure group 
correctly identified its members with an accuracy of 89.17%, whereas 
the Insecure group exhibited a recall of 79.11%. Precision metrics 
reveal a stark contrast; the Insecure group’s Positive Predicted Value 
(PPV) was 96.18%, whereas the Secure group’s PPV stood at only 
55.34%. This points to the greater susceptibility of the Secure group to 
misclassification, further evidenced by their higher False Discovery 
Rate of 44.66%, compared to the Insecure group’s 3.82%. In 
summation, the model achieved an overall prediction accuracy 
of 81.37%.

The imbalanced nature of our training dataset, with 21 insecure 
players to 6 secure players, accentuates the impact of these 
misclassifications. Out of 1,240 epochs, 259 were errors, which has 
tangible implications for the precision metrics of the Secure group. 
Nevertheless, the model’s ability to discern between attachment styles, 

FIGURE 5

Relationship between attachment radius and model recall. (A) (Scatter plot): Displays the correlation between individual participants’ attachment radius 
and recall values. Each dot signifies a participant from the insecure group, mapping their radius to the model’s classification accuracy. (B) (Bar graph): 
Represents the average recall values for participants based on specific radius ranges.

FIGURE 6

EEG feature importance in attachment prediction.
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even amidst dataset imbalance, underscores its adaptability and real-
world applicability. The fact that it aligns its predictions in tune with 
the radius — a derived feature not directly fed into the model — 
indicates its capacity for genuine learning rather than mere pattern 
recognition or memorization.

4 Discussion

Building on recent neuroscientific advances, our primary aim was 
to determine the potential of EEG data in predicting and differentiating 
between secure and insecure attachment styles. This exploration 
sought not only to enhance the precision of such predictions but also 
to understand which EEG feature domains are most influential in the 
context of attachment styles. The use of EEG data to examine 
attachment styles offers a novel perspective into the neural correlates 
of interpersonal dynamics (White et al., 2023). Our findings delineate 
various facets: the precision differences in predicting attachment 
styles, the relationship between the degree of perceived insecurity and 
prediction accuracy, and the significance of specific feature domains.

In our study, while acknowledging the existing dimensional 
conceptualization of attachment styles, we introduce the ‘attachment 
radius’ as a novel metric to quantify these dimensions. This concept is 
inspired by the evolution in Social Value Orientation (SVO) 
measurement (Murphy et al., 2011), reflecting a similar shift from 
categorical to continuous assessment. Our ‘attachment radius’ offers a 
quantifiable representation of attachment styles, encapsulating their 
dimensionality in a measurable format. This methodological 
innovation allows for a more detailed and precise analysis of 
attachment styles, paralleling advancements in psychological 
constructs. The theoretical and practical implications of this approach 
are further explored in Sections 4.1 and 4.2.

4.1 Precision discrepancies in attachment 
style prediction

One of the salient observations from our research was the 
precision rate discrepancy between predictions for secure and insecure 
attachment styles. With a 96% precision rate for insecure predictions 
versus a 55% for secure ones, the data highlights the intricate nature 
of leveraging EEG patterns for these predictions. Further analysis 
revealed occasional misclassifications, particularly of insecurely 
attached individuals as securely attached. This can be partly attributed 
to the complexity of attachment styles existing on a spectrum. 
Individuals within the insecure attachment spectrum who exhibit 
traits not strongly indicative of either anxious or avoidant styles were 
more prone to misclassifications. Similarly, while the neural responses 
of individuals with pronounced insecure attachment characteristics 
are varied and distinct, making them generally more identifiable, 
those with subtler insecure traits present challenges in accurate 
classification. Conversely, securely attached individuals often 
demonstrate less distinct neural patterns, contributing to the lower 
precision rate in identifying secure attachment. This detailed 
understanding of the attachment spectrum and the variability of 
neural responses highlights the challenges of using EEG data for 
attachment style predictions. Such nuances emphasize the challenges 
and the necessity for refinement when using EEG data for predictions 
on attachment styles (Yadav et al., 2018; Rahman et al., 2021).

To understand the reasons behind the precision rates of our model 
(96% for the insecure group vs. 55% for the secure group), we identified 
several key factors influencing this outcome, beyond the implications of 
the imbalanced sample size. Firstly, according to the literature, the 
neural responses of individuals with insecure attachment styles are 
more varied and pronounced (Verbeke et  al., 2014; Gander and 
Buchheim, 2015; Zuckerman et al., 2023a), making them more easily 
identifiable by the model. In contrast, the neural patterns of securely 
attached individuals are less distinct (Zuckerman et al., 2023a), leading 
to lower precision in their identification. Furthermore, the spectrum 
nature of attachment styles complicates the classification task, 
particularly when discerning subtle nuances between secure and 
insecure traits. Additionally, the differential impact of EEG feature 
domains on the model’s precision is closely tied to the imbalance in 
precision rates between insecure and secure groups. For instance, Time 
Domain-Based Features, which significantly contribute to model 
precision, may be more effectively capturing the variability in neural 
patterns associated with insecure attachment styles. This leads to a 
higher precision rate in identifying insecure attachments. In contrast, 
securely attached individuals, whose neural patterns might not be as 
distinctly captured by these dominant features, are more prone to 
misclassification, contributing to the lower precision rate. Furthermore, 
the subtler influence of Trial Feedback Dynamics suggests that these 
features might not sufficiently differentiate between secure and insecure 
attachment styles, further contributing to the imbalance in precision 
rates. This indicates a need to refine the feature selection or model 
tuning specifically for the secure group to balance the precision rates.

4.2 Neural pattern distinctiveness and 
recall efficacy

In our EEG study focused on predicting attachment styles, 
we  examined the impact of Rattachment  size on recall magnitude, 
revealing differential behavior among individuals with secure and 
insecure attachments. This critical observation directly informs the 
contrasting trends observed in Figures 4, 5, which relate to Rattachment
, a metric used to measure attachment style proximity to a secure 
baseline in a two-dimensional avoidance-anxiety framework. Smaller 
Rattachment  values signify closer alignment with secure attachment 
(lower avoidance and anxiety), while larger values denote 
insecure attachment.

The negative correlation between Rattachment  and recall among 
securely attached individuals in our study aligns with the phenomenon 
of reduced distinctiveness or within-group variance in neural patterns, 
a pattern suggested by prior literature (Zuckerman et al., 2023a). This 
pattern can be  attributed to their relatively consistent attachment 
behaviors, resulting in more uniform neural patterns when Rattachment 
is smaller, indicating a closer alignment with secure attachment 
(characterized by lower avoidance and anxiety). This uniformity in 
neural patterns enhances our EEG-based model’s ability to detect 
deviations from the normative pattern, including subtle ones, 
ultimately leading to higher recall rates. Conversely, in the insecure 
attachment group, as Rattachment  values increase, individuals tend to 
exhibit higher levels of insecurity. As attachment insecurity grows, 
according to the literature, neural patterns tend to become more 
diverse and less uniform (Verbeke et al., 2014; Gander and Buchheim, 
2015; Zuckerman et al., 2023a), reflecting the broader spectrum of 
behaviors and experiences associated with insecure attachment. 
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Within this context, our EEG-based model benefits from larger 
deviations (indicated by higher Rattachment  values), as they enhance 
the discernibility of these more diverse patterns, making model 
classification and recall easier.

The ‘gray zone,’ which falls approximately between Rattachment  
values of four to five, is worth noting for its unique characteristics (see 
Figure 5). Within this range, neural patterns of secure and insecure 
attachment styles begin to overlap, presenting challenges for accurate 
model classification. The marked differences in neural pattern 
discernibility observed at the extremes of the Rattachment  spectrum 
become less pronounced in this region. For instance, Fraedrich et al. 
(2010) found minimal EEG differences between secure and certain 
insecure mothers within this gray zone, illustrating the difficulty of 
differentiation based solely on EEG patterns. In the gray zone, recall 
accuracy may decrease for securely attached individuals, as their 
typically less noticeable neural patterns begin to resemble those 
associated with insecure attachment variability. Conversely, for the 
insecure attachment group, this is where their usually more varied 
neural patterns become less distinguishable from those of securely 
attached individuals, posing classification challenges. The model’s 
recall performance in the gray zone becomes particularly challenging 
because the distinctiveness of the neural patterns diminishes for both 
securely and insecurely attached individuals, making it difficult for the 
model to make accurate classifications based on EEG data alone. Thus, 
the gray zone represents a unique and complex region where the 
model’s performance faces significant challenges, and additional 
information or features may be necessary for improved classification.

The model’s recall performance depends on deviations from the 
normative pattern. Securely attached individuals typically exhibit 
uniform neural patterns due to their consistent attachment behaviors. 
While this uniformity aids in detecting subtle deviations, it can also 
lead to challenges in predicting attachment styles. The model’s 
heightened sensitivity to small variations, less meaningful in secure 
attachment, can result in overclassification. Conversely, the model 
excels at recognizing diverse neural patterns seen in insecure 
attachment. Insecure attachment typically involves a broader range 
of behaviors, resulting in more varied neural patterns among 
individuals. Larger deviations (higher Rattachment  values) enhance 
distinctiveness, aligning with the XGBoost model’s proficiency in 
identifying patterns with noticeable variability or differences (Tiwari 
and Chaturvedi, 2019).

In developing the concept of ‘attachment radius,’ we  drew 
inspiration from advancements in SVO measurement (Murphy et al., 
2011). While the dimensional conceptualization of attachment styles 
is established, our study introduces a new metric to quantify this 
dimensionality. SVO is a psychological construct that describes how 
people make decisions in social situations, particularly regarding the 
allocation of resources. It measures individuals’ preferences when 
distributing resources between themselves and others, indicating their 
level of cooperativeness, selfishness, or competitiveness. The SVO 
Slider method, a tool for assessing SVO, uses angles to continuously 
represent these social preferences, offering a detailed view of an 
individual’s orientation toward social cooperation or self-interest. Our 
‘attachment radius’ concept similarly translates the complex, 
multidimensional nature of attachment styles into a measurable, 
continuous spectrum, akin to the SVO Slider’s approach (Murphy 
et al., 2011).

This innovation mirrors the evolution in SVO measurement and 
adds a new layer of precision to the understanding of attachment 

styles, offering a fresh perspective in attachment theory research. 
While the ‘attachment radius’ in our current study was applied to 
analyze collective patterns within attachment style groups, its potential 
extends beyond this initial application. In future research, this metric 
could be refined to assess individual variability in attachment styles. 
Such an advancement would enable a more personalized analysis, 
providing insights into each person’s unique position on the spectrum 
of attachment. This prospective development promises to transform 
the ‘attachment radius’ from a tool for group-level analysis to a more 
precise instrument for individual assessment.

4.3 Feature domain significance

A focal point of our research was understanding the contributions 
of different feature domains to attachment style prediction. The results 
highlighted the time domain’s pivotal role in prediction accuracy, 
accounting for 49% of the contribution. This underscores the 
importance of temporal dynamics in EEG data when investigating 
psychological constructs such as attachment styles (Kim and Seo, 
2003; Kang et al., 2016; Uyulan and Erguzel, 2017; Ibagon, 2018). 
Complexity features, too, proved influential, contributing 36% to the 
predictive accuracy. This fact emphasizes that intricate EEG patterns 
can hold significant information for analyses in the realm of 
psychology (Lau et al., 2022; Lord and Allen, 2023). On the other 
hand, the contribution of frequency features was more modest, 
accounting for a 15% share in prediction accuracy. This observation 
suggests that while frequency dynamics in EEG data can 
be  informative, they might not be  the primary indicators for 
differentiating attachment styles (Bekkedal et al., 2011; Du et al., 2020).

Features related to Trial-feedback Dynamics, especially those 
associated with participant feedback, exhibited minimal influence on 
attachment style prediction. This infers that inherent neural patterns 
might be  more indicative of attachment styles than task-induced 
responses during EEG sessions. However, at this stage this is still 
speculative and while there is no direct comparison of the weight of 
intrinsic and task-related EEG factors, it is generally known that both 
types of factors can impact cognitive processes and task performance 
(Karamacoska et al., 2018; Mueller et al., 2021; Cross et al., 2022).

4.4 Limitations and future studies

Our sample’s composition, predominantly students, poses a 
limitation in representing the diverse demographic variables 
influencing attachment styles. To partially address this, we applied a 
proportional allocation method and k-means clustering, which 
yielded a distribution aligning with the four attachment groups 
recognized in literature (Magai et al., 2001). This approach, however, 
does not fully overcome the inherent biases from the initial participant 
pool. Future research should strive for a broader demographic 
representation, including variations in age, socioeconomic status, and 
cultural backgrounds, and explore the dynamic evolution of 
attachment styles through longitudinal studies.

In addition to broadening the demographic diversity of future 
studies, there is also room for methodological advancements in our 
approach. The methodological approach employed here, which 
utilized k-fold cross-validation with the XGBoost algorithm, provides 
a foundation for further refinement and exploration. Investigating 
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alternative classification algorithms or ensemble methods may offer 
avenues to enhance predictive accuracy. With attachment styles being 
dynamic, a time series analysis could provide insights into EEG 
patterns’ temporal evolution linked to attachment shifts (e.g., Li et al., 
2018). Building on the EEG analysis, integrating data from additional 
modalities such as fMRI or hormone levels (e.g., Coan and Allen, 
2004) can deepen insights into EEG correlates of attachment and 
improve the robustness and generalizability of predictive models.

Expanding our research methodology to include diverse data 
sources sets the stage for exploring novel clinical applications. One 
such application is understanding the ‘attachment radius’ alongside 
ERP components and psychophysiological assessments, which opens 
new avenues in the clinical diagnosis and treatment of attachment-
related disorders. Our study specifically paves the way to identify 
individuals with a larger ‘attachment radius’ and subsequently assign 
them to specific tailored treatments. For individuals with a larger 
‘attachment radius’, indicative of a more diverse range of 
neurophysiological responses typically seen in insecure attachment 
styles (Cuoco et al., 2021) targeted interventions could be designed to 
address their specific emotional and psychological needs. These 
interventions might include strategies aimed at regulating emotional 
reactivity, enhancing interpersonal relationships, or developing coping 
mechanisms for stress and anxiety. Furthermore, the ‘attachment 
radius’ metric can serve as a crucial tool in monitoring the effectiveness 
of therapy. By tracking changes in the ‘attachment radius’ over the 
course of treatment, clinicians can gauge the individual’s progress and 
adjust therapeutic strategies accordingly. This approach holds promise 
for more precise diagnostics and personalized medicine, offering a 
new paradigm in the management and treatment of attachment-
related psychological conditions.

As we explore the clinical applications of the ‘attachment radius,’ 
the underlying data analysis techniques become increasingly crucial. 
In this study, we  employed XGBoost for analyzing EEG data. 
Necessary preprocessing steps were undertaken to transform raw EEG 
signals into a structured form amenable for analysis with XGBoost. It 
is important to note that while these preprocessing steps make the 
EEG data more suitable for analysis with XGBoost, they might also 
alter the original signal characteristics to some extent. Therefore, 
future research should explore the balance between preprocessing 
EEG data for machine learning applications and preserving the 
integrity of the original signal.

In comparison, deep learning models, especially those tailored for 
time-series data, are often posited as more naturally fitting for raw 
EEG data (Roy et  al., 2019). Models like Convolutional Neural 
Networks and Recurrent Neural Networks have the capability to 
automatically extract features from high-dimensional data, potentially 
allowing for a deeper understanding of EEG signals without extensive 
preprocessing. However, these models typically require larger datasets 
and substantial computational resources. While deep learning models 
offer powerful capabilities for raw data analysis, XGBoost presents a 
more accessible option in scenarios with limited computational 
resources or smaller datasets.

Future research should aim to compare the efficacy of XGBoost 
and deep learning approaches in EEG data analysis. This would help 
in elucidating the strengths and limitations of each method, guiding 
researchers toward the most suitable approach for their specific EEG 
data analysis requirements.

4.5 Concluding remarks

Our study highlights the utility of EEG data in identifying neural 
patterns associated with attachment styles. The prominence of time 
and complexity domains in attachment prediction showcases the 
depth and challenges of analyzing EEG signals. The variation in 
prediction precision between secure and insecure attachments also 
suggests the range of challenges associated with classifying these 
styles. Specifically, the association between the degree of perceived 
insecurity and prediction accuracy highlights the challenges in 
deciphering EEG patterns related to attachment styles. This research 
serves as a step toward understanding the neural correlates of 
attachment, prompting further exploration in the domain (see 
Vempati and Sharma, 2023).
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Appendix A: Categorization of the EEG features.

TABLE A1 Complete list of the 45 EEG features employed in the study.

Time-domain features Complexity features Frequency-based features Trial-feedback dynamics

 • Mean absolute energy

 • Max amplitude

 • Sum of absolute changes

 • Count above mean

 • Count above median

 • First max location

 • First Min Location

 • Kurtosis

 • Last Max Location

 • Last min location

 • Longest strike above mean

 • Longest strike above median

 • Mean absolute change

 • Mean change

 • Number of crossing mean

 • Number of crossing median

 • Range count 25% to 75%

 • Skewness

 • Variation coefficient

 • Binned entropy (2, 4, 8, 16, 32)

 • Fourier entropy (2, 4, 8, 16, 32)

 • LZC (2, 4, 8, 16, 32)

 • cid_ce

 • Sample entropy

 • Relative Delta power

 • Relative Theta power

 • Relative Alpha power

 • Relative Beta power

 • Theta to Alpha ratio (TAR)

 • Theta to Beta ratio (TBR)

 • Response time (ms)

 • Feedback valence (current Trial)

 • Feedback valence (previous trial)
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