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Introduction: When visualizing complex data, the layout method chosen can
greatly affect the ability to identify outliers, spot incorrect modeling assumptions,
or recognize unexpected patterns. Additionally, visual layout can play a crucial
role in communicating results to peers.

Methods: In this paper, we compared the effectiveness of three visual layouts—the
adjacency matrix, a half-matrix layout, and a circular layout—for visualizing spatial
connectivity data, e.g., contacts derived from chromatin conformation capture
experiments. To assess these visual layouts, we conducted a study comprising
150 participants from Amazon’s Mechanical Turk, as well as a second expert
study comprising 30 biomedical research scientists.

Results: The Mechanical Turk study found that the circular layout was the most
accurate and intuitive, while the expert study found that the circular and half-
matrix layouts were more accurate than the matrix layout.

Discussion:We concluded that the circular layout may be a good default choice for
visualizing smaller datasets with relatively few spatial contacts, while, for larger
datasets, the half- matrix layout may be a better choice. Our results also
demonstrated how crowdsourcing methods could be used to determine which
visual layouts are best for addressing specific data challenges in bioinformatics.
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1 Introduction

Chromosome conformation capture (3C) techniques can give insight into how the three-
dimensional (3D) organization of the genome influences gene transcription, and vice versa
(Dekker et al., 2002; Dostie et al., 2006; Lieberman-Aiden et al., 2009; Li et al., 2010). These 3C
techniques work by detecting chromatin fragments that are located close to each other in 3D
space, resulting in a dataset of spatial contacts. These contact datasets are conceptually similar to
the inter-atomic contact datasets inferred for proteins via nuclear magnetic resonance (NMR)
spectroscopy in that they can provide information about spatial structure (Wrinch, 1965; Ernst
et al., 1990; Rieping et al., 2005). However, unlike protein NMR spectroscopy, 3C techniques
generally do not possess the resolution to reconstruct accurate or useful 3Dmodels; as a result, the
analysis of 3C data focuses on identifying patterns in the inferred spatial connectivities (Smallman
et al., 2001; Plumlee andWare, 2006). These patterns can, in turn, provide useful insights, e.g., by
revealing which genes are influenced by a specific promoter (Acemel et al., 2017).

For identifying patterns in 3C data, Lieberman-Aiden et al. (2009) have proposed using
adjacency matrices, and have used this visual layout method to develop JuiceBox, a
visualization tool widely used for exploring 3C data (Durand et al., 2016).
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The visual representation of macromolecular contact data using
adjacencymatrices (also known as distancematrices) has been common
practice for many decades (Phillips, 1970). The matrix layout has been
used to visualize various aspects of large macromolecules, such as
structural domains (Kuntz, 1972) and solvent accessibility (Nishikaw
and Ooi, 1974). Distance matrices have also been used as part of the
process for deriving macromolecular structure from experimental data
(Galaktionov andRodionov, 1980), similarly to how 3C experiments are
now being used.

However, spatial connectivity data can also be visualized with
alternative layout methods. As mentioned before, a common
alternative is the half-matrix (Figure 1). Contact matrices can
often have the same sequence repeated on both sides of the
diagonal, making them symmetrical. The half-matrix layout
eliminates the symmetry and data redundancy by removing half
of the matrix. This layout is used for the visual exploration of 3C data
in the widely used WashU Epigenome Browser (Zhou et al., 2011).

Another alternativemethod to visualize contact data is via a circular
layout (Figure 1); such layouts are commonly used to show spatial
contacts in RNA structures (Hajdin et al., 2013), but are less commonly
used for 3C data. Several tools are available to generate circular layouts,
of which one of themore widely used is Circos—a tool initially designed
for comparative genomics and cancer datasets (Krzywinski et al., 2009).

The choice of visual layout method can be crucial, especially with
data that are complex, high-dimensional, and have variable uncertainty

(Gehlenborg et al., 2010; Pavlopoulos et al., 2015; O’Donoghue et al.,
2018). For assessing the suitability of such layouts, the term visual
effectiveness is often used to describe the ability of a particular visual
layout to exploit the capabilities of the output medium and of human
visual perception to enable data to be accurately read, or visually
decoded, by a viewer (Mackinlay, 1986; O’Donoghue et al., 2018).
Another related term is visual expressiveness, which describes howwell a
visual encoding expresses the information most relevant to the
phenomena studied, and how quickly a viewer can visually decode
the information (Dastani, 2002; O’Donoghue et al., 2018). Using
effective and expressive visual layouts can greatly affect the ability to
identify outliers, spot incorrect modeling assumptions, or recognize
unexpected patterns that might otherwise elude automated analysis
approaches (O’Donoghue et al., 2018). Additionally, visual layout can
play a crucial role in communicating results to peers. These
considerations apply for all scientific data, but are especially relevant
for exploratory analysis in emerging fields, such as 3C techniques, where
there are many unknowns.

Cleveland and McGill (1984, 1986) pioneered the use of
perceptual studies to assess the effectiveness and expressiveness
of visual layouts, via a straightforward but laborious method.
They introduced the concept of elementary perceptual tasks, in
which a user is presented with a range of visual layouts and asked to
infer basic properties, and their responses are then assessed for
accuracy. Typically, these perceptual tasks involve estimating

FIGURE 1
Segments and contact definition for three-dimensional models. Panels (A–C) provide a schematic explanation of how to read the three-
dimensional models. Panel (D) shows the three different visual layouts for the 3D example shown in panel (C).
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quantitative values that have been encoded using different visual
channels, such position on a common scale, length, area, volume,
direction, or shading. Perceptual studies such as these can assess the
accuracy, precision, and speed that people achieve when using a
specific visual encoding strategy.

Several perceptual studies mentioned above have concluded that
the adjacency matrix is a powerful and broadly useful visual layout
compared with graph-based layouts, in which connections are
drawn explicitly (Munzner, 2014). Most notably, because
connections are omitted, matrix layouts can show larger and
more complex datasets clearly, especially when used with
reordering methods (Behrisch et al., 2016). On the other hand,
matrix layouts also have well-known limitations, especially when
used to encode quantitative data, for example, in a heat map, where
optical illusions can lead to surprising decoding errors (Wong,
2010). In addition, there are specific use cases where matrix
layouts are considered less intuitive than tailored, graph-based
layouts. For example, phylogenetic relationships are commonly
visualized using tree graphs (Procter et al., 2010).

Previous studies have indicated that graph-based layouts (a
broad category that includes the circular layouts used for 3C
data) can be better than matrix layouts for specific tasks, such as
path finding, i.e., recognizing connections between nodes, when the
data or the density of the connection is small (Ghoniem et al., 2005;
Behrisch et al., 2016). Conversely, when data density increases, a
node-link graph can become a hairball, in which individual nodes or
edges cannot be visually resolved. In such cases, the matrix appears
to be a more effective visual layout (Ghoniem et al., 2005; Behrisch
et al., 2016).

In this work, we focused on the specific case of visualizing spatial
connectivity derived from simple 3D objects (e.g., a simplified
schematic of a macromolecule), and we hypothesized that, for
this case, matrices may be less suitable than connectivity graphs
based on circular layouts. Circular layouts are arguably more
intuitive to interpret, since spatial connectivity is explicitly
encoded by a connecting line or arc, rather than needing to be
inferred based on location. Thus, circular layouts are more
expressive, as they provide a more direct correspondence between
connectivity data and how the visual channel used to encode
connectivity is perceived (Dastani, 2002).

To understand which visual layout is better suited to
represent spatial connectivity data, we set up two studies
inspired by the work of Cleveland and McGill (1984, 1986),
comparing the accuracy of the matrix, half-matrix and circular
layouts (Figure 1). Both studies used Versus (Vuong et al., 2018),
a framework developed in-house to streamline perceptual
studies. One study recruited participants via an online
crowdsourcing platform, using the approach pioneered by
Heer and Bostock (2010). A second “expert” study recruited
participants actively working as biomedical research scientists.

2 Materials and methods

In planning the studies for this paper, we first did rough
estimates of the likely budget and time requirements for deriving
statistically meaningful results. Based on these estimations, we
decided that each of our studies would ask 15 unique multiple-

choice questions, each with five possible answers, and each
repeated once, giving a final total of 30 questions per layout.
We ran two studies: one comprising laypeople recruited online
and a second “expert” study comprising scientists recruited from
three biomedical research institutions. Both studies were
conducted using Versus (Vuong et al., 2018), a web-based tool
developed in-house to aid in creating and running multiple-
choice perceptual surveys.

One of our key goals in the design of these studies was to
answer the question “Which one of these three layouts better
encodes three-dimensional connectivity?”. To address this, we
decided to use a low level of complexity in both the 3D model
and the three visual layouts, thereby minimizing the confounding
effects that often occur with large and complex datasets. As a
result, our study focused on determining which layout expresses
spatial connectivity data in a way that can be most effectively read
by the study participants.

2.1 Three-dimensional models

We created a set of segmented, cylindrical 3D models using
the open source 3D modelling software Blender (Hess, 2010). To
keep complexity to a minimum while allowing for a sufficient
number of possible contacts, we fragmented the cylinder into
eight segments (Figure 1A). The eight segments were then
initially colored using two alternate shades of gray, beginning
with a light gray coloring in the first segment. Since there were an
even number of segments, the first and last segments were
initially colored light and dark gray, respectively, thus giving
each model a visually distinct directionality.

We decided to display only one contact per model to minimize
the effects of misreadings. We then created 15 different models with
different conformations, that resulted in different pairs of segments
forming a contact. To increase the readability of the 3D structures,
we highlighted the contact-forming segments by changing their
color to green (Figures 1B, C). To increase the sense of depth in the
models, and therefore improving their readability, we created
animated images by using a standard rocking motion about the
y-axis with an amplitude of 3° and comprising 136 frames per cycle,
displayed over 3 s (Brooks et al., 2014).

2.2 Visual layouts

For each model, we then created a circular, half-matrix, and
matrix layout that provided a 2D visual encoding of the spatial
contact in the model. We designed these visual layouts to maximize
clarity and consistency with the corresponding 3D models. Firstly,
each layout utilized the same color scheme as the 3D models. The
same alternate shades of gray were used for all layouts to indicate the
segment numbers, and the same green coloring was used to indicate
contacting segments. Secondly, we decided to not take into account
intrasegment contacts. In the matrix layout, this resulted in coloring
all the diagonals with the same alternate shades of gray, representing
the segment positions (Figure 1D). For the half-matrix layout,
however, it translated into coloring the base of each visualization
with the same shades of gray.
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2.3 Incorrect answers

Since the survey comprised a multiple-choice questionnaire, we
had the possibility of introducing targeted incorrect answers. Our
aim was to have an incorrect answer that could distinguish cases in
which the participant understood the 2D visual layout but misread
the 3D model. Thus, we introduced, whenever possible, what we call
an inverted answer, i.e., an answer that would be correct if the model
was read in the opposite direction. These inverted answers let us
identify cases where a participant mistakenly switches the first and
last segments. Of the 15 models we generated, three did not have an
inverted answer, due to the symmetric position of the spatial contact;
a full list of the cases and their inverted counterparts is provided
in Table 1.

2.4 MTurk study

Recruiting participants for perceptual studies can be time-
consuming and expensive. Launched in late 2005 as a
crowdsourcing internet marketplace, Amazon’s Mechanical Turk
(MTurk) provides a way to make this process quicker and less
expensive. Most (88%)MTurk workers are under 50 years of age and
many (51%) have a college degree; otherwise, they have highly
variable demographics (Sheehan, 2018).

Heer and Bostock (2010) were the first to utilize MTurk for
perceptual studies, and show that it could be used to reproduce the
results obtained by Cleveland and McGill (1984; Cleveland and
McGill, 1986). Since then, many other perceptual studies have been
carried out using crowdsourcing platforms, although such studies
are still uncommon in bioinformatics (Mason and Suri, 2012;
Klippel et al., 2015; Borgo et al., 2018). For these reasons, we

decided to utilize MTurk to recruit 50 participants for each
layout, resulting in a final total of 150 people and 4,500 data points.

2.4.1 Qualification
From the MTurk qualification criteria, we selected workers that

had an Amazon MTurk approval rate greater than 85%. Workers
were paid US$ 4 for each “HIT” (“Human Intelligence Task”) they
performed with MTurk. This payment was set to be at least equal to
the average USA federal minimum wage of US$ 11.5/h.

Before participating in the study, each worker was required to:
1) digitally sign a consent form (Supplementary Figure S1); 2) study
an explanatory paragraph that explained how to read the 3D models
(Supplementary Figure S2); and 3) take and pass a qualification test.
We devised this qualification test to assess if the participants
understood the 3D models, thereby allowing us to select only
workers that could provide insightful results. The qualification
test comprised four multiple-choice questions on how to read the
3D models. No questions about the three visual layout were
introduced at this stage. We chose four out of the 15 models to
be used in the qualification test, and new animated images were
created using different orientations to the ones used in the study
itself, with the goal of minimizing learning effects for these models.

For each qualification question, we asked which segments
formed the contact, and provided five possible answers: a correct
answer, three random incorrect answers, and the inverted answer.
For two of the models, we clearly labelled the contacting segments in
the animated images, while for the other two, these labels
were removed.

This qualification test was designed to screen out MTurk
workers that provided responses indicating they were unable or
unwilling to read the 3D models. Only workers who correctly
answered all qualification questions were allowed to participate
further in the study. To arrive at our desired final total of
150 qualified MTurk participants, we ended up running this
qualification test on 251 MTurk workers, of which 101 were
disqualified based on their test responses.

2.5 Expert study recruitment

We recruited 10 experts for each visual layout, making a total of
30 expert participants and 900 data points. Recruitment was
performed via email to employees of the Garvan Institute of
Medical Research, St. Vincent Hospital, the Kinghorn Cancer
Centre and the Victor Chang Cardiac Research Institute. Our
email asked for the participation of PhD students, postdoctoral
researchers, and principal investigators. We were able to verify that
the resulting cohort were all scientists actively working in biomedical
research, so all of them had broad familiarity with creating and
interpreting figures in biomedical publications. Thus, we described
this as the expert cohort, to distinguish them from the MTurk
participants. Note that the expert cohort was not selected based on
their familiarity with 3C data, adjacency matrices, or circular layouts.

The expert participants, after giving their consent, were given
the same explanatory paragraph as the MTurk workers on how to
read the 3D models. After that, they immediately started the study
without going through the qualification test. To protect the privacy
of participants, we have not provided individualized demographic

TABLE 1 Inverted answers for each type of three-dimensional contact.

Contact Inverted contact

1–4 5–8

2–5 4–7

3–6 none

4–7 2–5

5–8 1–4

1–5 4–8

2–6 3–7

3–7 2–6

4–8 1–5

1–6 3–8

2–7 none

3–8 1–6

1–7 2–8

2–8 1–7

1–8 none
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information about each participant. As thanks to the participants,
we offered a coffee voucher at a local cafeteria.

2.6 Visual analytics via versus

Versus is a web-based tool that facilitates the creation of image
comparison studies based on either two-alternative forced-choice
(2AFC) or multiple-choice questions (Vuong et al., 2018). Versus
can be used as a standalone tool or in conjunction with MTurk to
quickly and conveniently recruit many study participants. For this
work, we used the multiple-choice module and the integration with
MTurk for the MTurk study and the standalone version for the
expert study. The Versus algorithm randomizes the order in which
the questions are presented to each participant, and also the order of
the answers in each question. This randomization is essential, as our
design study required the use of duplicated questions for consistency
and quality control. The number of question to be repeated can be
set using the fraction to be repeated parameter. All the input files
used in this study were deposited as a published dataset on the Open
Science Framework (Baldi, 2018). An example of the multiple-
choice question presented to the participants can be seen in
Supplementary Figure S3.

2.7 Analysis of results

The analysis of the results was carried out in R (R Core Team,
2018) using two separate R scripts, both of which were included in
the Open Science Framework dataset (Baldi, 2018). The p-values
were adjusted for multiple testing using a standard method
(Benjamini and Hochberg, 1995), with α set to 0.05.

3 Results

3.1 MTurk study

Our first step in assessing the results of the MTurk study was to
analyze the consistency of each participant’s response. This analysis
was based on the replicated questions included in each questionnaire
(Meade and Craig, 2012; Cheung et al., 2017). By analyzing the
response to these replication questions, we could derive a
consistency score for each participant, then we could see how
consistency varied across the three visual layouts.

We found that the consistency score varied significantly across
the three layouts (Figure 2A). The half-matrix layout shows a
decrease in the overall consistency score of 10.7% (adjusted
p-value = 1.2 × 10−3) compared to the circular layout, and the
matrix shows a decrease of 7.7% (adjusted p-value = 3.6 × 10−2).
Here, the p-values were determined by an analysis of variance (one-
way ANOVA) with Tukey’s method used for post hoc analysis. We
discarded responses from participants that scored ≤ 20%
consistency, which is the threshold for complete randomness for
this multiple-choice study design.

FIGURE 2
Overview of results from the MTurk study. Panel (A) shows the
consistency levels calculated by comparing the answer responses
and their duplicates. The overall accuracy of the answers and the
response time, plotted on a log scale, are shown in panels (B,C)
respectively. Panel (D) shows the learning effect curves, calculated
by averaging the response times for duplicate questions
(see Methods).
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3.1.1 Accuracy
Next, we analyzed participant accuracy across the three visual

layouts. Overall, the level of accuracy was high; this was expected,
since we designed the test data to be minimal and relatively easy to
understand. To assess if the layouts had an impact on the
participant’s accuracy, we performed a Pearson’s Chi-squared test
of independence with the null hypothesis that participants can
decode the information equally well from any of the three
layouts. Thus, our alternative hypothesis was that participants
decode the information displayed in the three layouts differently.
Figure 2B shows that participants achieved significantly higher
accuracy using the circular layout compared to the half-matrix
and the matrix layout (adjusted p-value = 3.6 × 10−20 and 1.8 ×
10−25, respectively, with a pairwise test for independence for the
nominal data). There was no statistically significant difference
between the overall accuracy of the matrix and half-matrix layouts.

3.1.2 Intuitiveness
We then compared the expressiveness or intuitiveness of the

three visual layouts. Since we did not train the participants to read
any of the visual layouts (only the 3D models), we assumed that the
time required to answer a question could be used as a measure of
how intuitive a visual layout was to the participant. From the
4,500 responses, we removed one single response for this
analysis, as it was an outlier with a > 5000s response time, which
is likely explained by the participant being interrupted during the
survey. We did an ANOVA analysis comparing the remaining
response times across the three visual layouts (Figure 2C). This
showed that the response time for the circular layout was
significantly shorter (by 6.4s) than for the matrix layout (Tukey
post hoc adjusted p-value = 1.0 × 10−7), and also significantly shorter
(by 5.6s) than for the half-matrix layout (Tukey post hoc adjusted
p-value = 1.0 × 10−7).

We also calculated a second measure of intuitiveness derived
from learning effect curves. As each participant progressed through
the survey, they typically learned to carry out subsequent tasks more
efficiently, with the result that the time to complete each task
decreased until a plateau was reached (Figure 2D). The pattern
was seen for all visual layouts, however for the circular layout the
plateau was reached significantly more rapidly, as assessed by an
ANOVA followed by Tukey post hoc analysis (p-values are given in
Figure 2D). We encountered a slight complication in generating and
analyzing these learning effect curves, due to the fact that the version
of Versus we used did not record the order in which duplicated
questions were shown. We addressed this by averaging all the
duplicate responses with their respective counterparts. As a
result, the learning curves obtained show response times for
questions 1 through 15, rather than 1 through 30.

3.1.3 Inversion errors
Next, we assessed how many of the incorrect answers could be

attributed to a simple inversion in counting segments in the 3D
models. This type of error is not linked to how people read the data
presented in the 2D visual layouts, but is instead linked to how the
participants read the 3Dmodels. This analysis was possible thanks to
the incorporation of an inverted answer, as explained in the study
design. For the circular layout, 84.5% of the incorrect answers can be
attributed to inversion errors. For the half-matrix and matrix, the

inversion error accounts for 56.6% and the 60.5% of the total errors,
respectively (Figure 4A). Performing a Chi-squared test of
independence, we saw a statistically significant difference between
the percentage of inversion error in the circular layout compared to
the matrix and the half-matrix layouts, with no significant difference
between the latter two layouts.

3.1.4 Inter-segment distance errors
We then assessed how many incorrect answers were caused by

misjudging inter-segment distances (Figure 3A), versus how many
were caused by miscounting the segment numbering, but still had
the correct inter-segment distance. For this assessment, we defined
the following inter-segment distance score between segment A
(Seg(A)) and B (Seg(B)) as:

|Seg A( ) − Seg B( )|Chosen − |Seg A( )
−Seg B( )|Correct (1)

This score can have the following values:

• Inter-segment Distance = 0 indicates incorrect answers that
nonetheless had the correct inter-segment distance; inversion
errors fell into this category.

• Inter-segment Distance > 0 indicates answers where the inter-
segment distance was too large.

• Inter-segment Distance < 0 indicates answers where the inter-
segment distance was too small.

Comparing inter-segment distance errors across the three visual
layouts (Figure 4B), we found significantly different distributions, as
assessed by pairwise Kruskal–Wallis non-parametric tests for
independence and by Dunn tests for the post hoc analysis (Zar
et al., 2010).

Overall, the circular layout shows a normal-like distribution
with small deviations around 0; having −1 as the most common non-
zero value, but positive values of 1 and 2 are also present in the
distribution. By contrast, the half-matrix and matrix layouts both
resulted in errors skewed towards a negative inter-segment distance
score; i.e., participants using these layouts often chose contacts that
were formed by segments in closer proximity than the
correct answer.

The discretized nature of the contact data made it
challenging to precisely quantify how much an answer
deviated from its true value (Simkin and Hastie, 1987). To
circumvent this issue, we calculated a new parameter that
takes into account the relative position of the segments,
without penalizing for inversion errors, which are not linked
to layout errors (Figure 3B). This parameter, calledMinDistance,
was calculated across all the answers as:

min( Seg A( )Chosen − Seg A( )Correct + Seg B( )Chosen[

− Seg B( )Correct], Seg |9 − A|( )Chosen[

− Seg A( )Correct + Seg |9 − B|( )Chosen
− Seg B( )Correct] )

(2)

In this equation, the second term was calculated as the segment for
the chosen answer, if it was inverted (e.g., segment 1 becomes
segment 8), achieved by subtracting 9 from the segment number.
Similar to the inter-segment distance score, the MinDistance

Frontiers in Bioinformatics frontiersin.org06

Baldi et al. 10.3389/fbinf.2023.1232671

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1232671


parameter is equal to 0 for inverted errors and is directly
proportional to the discrepancy in position between the chosen
segments and the correct one. Therefore, the smaller the
MinDistance, the more accurate is the answer. The MinDistance
parameter was calculated across all the answers, resulting in a score
that measures the overall error.

As for the inter-segment distance, we tested for differences in the
distribution of the MinDistance parameter across the three layouts
using the Kruskal–Wallis non-parametric test of independence. We
found significant differences between the circular layout and the
other two layouts (Figure 4C), with the circular layout resulting in
more correct answers. However, we found no significant differences
between the matrix and half-matrix layouts (Figure 4C).

3.2 Expert study

We analyzed the expert study data with the same methods we
used for the MTurk study data. In contrast to MTurk participants,
the consistency of answers in the expert study did not appear to vary
with visual layout (Figure 5A). This may be accounted for by the
smaller number of expert participants.

The overall accuracy of the answers was also quite high, as
expected for participants more accustomed to reading similar visual
layouts (Figure 5B). The accuracy obtained using circular and half-
matrix layouts were not significantly different, while the accuracy
obtained with the matrix layout was significantly lower (Figure 5B).

Interesting, although using thematrix layout resulted in the lowest
accuracy, it also resulted in the shortest average response time
(Figure 5C). Likewise, when looking at the learning curves, the
matrix layout presented a similar profile to the circular layout,
while the half-matrix showed significantly longer responses
(Figure 5D). The learning curves showed less variability compared
to the MTurk study, where the circular layout was clearly separated
from the other two. This supports the idea that some visual layouts
requiremore training than others, and that prior knowledgemay have
reduced this variability.

By analyzing errors in the expert responses, we saw that,
compared to the circular layout, both matrix and half-matrix

layouts had a significantly higher fraction of errors classified as
inverted missing and other (Figure 6A). This implies that the
percentage of errors that could be attributed to misreading the
3D model was lower for the matrix and half-matrix layouts when
compared to the circular layout (Figure 6A).

We also saw that erroneous responses from experts were skewed
towards negative inter-segment distances scores (Figure 6B),
indicating a tendency to misassign the spatial contacts to
segment pairs that were too close together in sequence
(Figure 1A). As seen with the MTurk results, the circular layout
resulted in the highest percentage of inversion errors (Figure 6B),
indicating that this layout appeared to be better at conveying inter-
segment distance.

Looking at the distribution ofMinDistance scores, we found that
the matrix layout was significantly less accurate than the circular and
half-matrix layouts, while we found no statistically significant
difference between the circular and the half-matrix
layouts (Figure 6C).

4 Discussion

In this paper, we assessed the effectiveness of three visual layouts
by measuring accuracy—i.e., the overall percentage of correct
answers for each layout—as well as determining the incidence of
errors unrelated to misreading the 3D models, based on inter-
segment distance scores and the MinDistance parameters. For
each layout, we also assessed visual expressiveness, or
intuitiveness, by measuring average response times and learning
curve effects.

For the MTurk study (Figure 2), we found that the circular
layout gave the highest accuracy. Not only did this layout have a
higher percentage of correct answers and error parameters close to
zero, but the majority of errors that participants made appeared to
have resulted from misreading the 3D model, not from misreading
the 2D circular layout. In addition, the circular layout showed the
shortest response time and an almost flat learning curve, indicating
that this layout was more intuitive than the matrix and half-
matrix layouts.

FIGURE 3
Error parameters definitions. As an example, we considered a possible set of answers for the 3D model presented in Figure 1C. The correct answer
colored in light blue shows the contact between the segments 2 and 5, while the hypothetically chosen answer shows the connection between segment
1 and segment 3. (A) Shows how the inter-segment distance parameter was calculated (Eq. 1). (B) shows how theMinDistance parameter was calculated
(Eq. 2). i depicts the first term, inwhichwe calculate the distance between the first segment of the chosen answerminus the correct one added to the
distance between the second segment of the chosen minus the correct answer. ii depicts the second term of Eq. 2 calculated as in i but inverting the
directionality of the segments (e.g., segment 1 becomes segment 8).
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FIGURE 4
Error analysis for MTurk study results. Panel (A) shows the three
possible errors types: (1) inversion errors happen when a participant
selects the correct inter-segment distance, but switches the segment
numbering; (2) inverted missing indicates a case where inversion
errors were excluded by symmetry (Table 1); (3) other indicates all
remaining errors. Panel (B) shows the distribution of the inter-
segment distance parameter calculated as described in Eq. 1 for the
incorrect answers only. The incorrect answer sample sizes are
displayed under their respective layout labels. Panel (C) shows the
distribution of the MinDistance parameter across all the answers,
calculated as in Eq. 2.

FIGURE 5
Overview of results from the expert study. (A) Shows response
consistency to duplicated questions. (B) Show overall accuracy of the
answers. (C) Shows response times plotted on a log scale. (D) Shows
learning effect curves, based on participant response times to
consecutive questions.
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Interestingly, in the MTurk study, we observed unexpected
behavior in the consistency of responses to the duplicated
questions: both the half-matrix and matrix layout led to
significantly lower consistency compared to the circular layout
(Figure 2A). Taken together, the above results indicate that

matrix-based layouts might not be the best visual encoding of 3D
spatial connectivity data for non-expert audiences.

As reported in the introduction, adjacency matrices are
widely used by the scientific community. While previous
perceptual studies have found that this matrix layout can
sometimes lead to significant errors, the authors of these
studies have speculated that these errors may reduce once
participants are trained to read the matrix layout (Dastani,
2002; Ghoniem et al., 2005; Munzner, 2014). For this reason,
we were interested to recruit participants already familiar with
reading scientific figures. As expected, expert participants showed
greater confidence than laypeople in reading the 3D models and
three visual layouts (Figures 2, 5). In addition, experts had similar
learning curves with all three layouts (Figure 5D), although the
half-matrix layout appeared to be slightly less intuitive than the
matrix or circular layouts.

Similar to the MTurk study, the expert study found that using
the circular layout resulted in the lowest error rate (Figure 5B) and in
fewer egregious errors (Figure 6A).

Interestingly, our results suggested that errors unrelated to
misreading the 3D model were higher for experts (Figure 6A)
than for MTurk participants (Figure 4A). Possible explanations
for this include: 1) the experts may have been overconfident, 2)
the MTurk participants may have been more motivated, since they
were paid for their responses; or 3) we did not require the experts to
pass the qualification test used to screen MTurk participants.
Further investigation into these explanations could be a useful
goal for future studies.

Another interesting observation that may warrant further
investigation was that errors in inferring the inter-segment
distance were skewed to negative values—this effect was seen in
both the MTurk (Figure 4A) and expert studies (Figure 6A), and
across all three layouts, although the effect was somewhat less for the
circular layout.

While the above results indicated that the circular layout had
advantages over matrix-based layouts, the applicability of these
results is limited by the very simple datasets used in our study
design. For more complex datasets, previous perceptual studies
suggest that matrix-based layouts are likely to be more effective,
as mentioned in the Introduction (Ghoniem et al., 2005; Behrisch
et al., 2016). Follow-up studies could be useful for exploring the data
complexity thresholds at which amatrix-based layout becomes more
effective than a circular layout. It would also be interesting to explore
if the advantages of circular layouts can be extended to more
complex datasets using data reduction techniques, such edge-
bundling (Holten and Van Wijk, 2009). Additionally, it may be
useful to determine if the advantages of both visual layouts could be
combined by using each to generate two simultaneous views of the
same dataset, each connected by interactive brushing and linking
(Bremm et al., 2011).

Another interesting direction for future perceptual studies could
be to assess different strategies of visually encoding contact strength,
which is often a critically important variable, especially for spatial
contacts derived from 3C techniques. In a matrix-based layout,
contact strength is often encoded as color saturation or brightness,
resulting in a heat map, while in the circular layout, it is often
encoded as arc thickness. Based on previous studies, we would
expect arc thickness to be a more effective visual encoding

FIGURE 6
Error analysis for expert study results. (A) Shows the distribution
of errors due to inversion, errors seen when no inversion was present,
and all other errors. (B) Shows the distribution of inter-segment
distances seen in incorrect answers. (C) Shows the distribution of
MinDistance values across all the answers.
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(Cleveland andMcGill, 1984; Cleveland andMcGill, 1986; Munzner,
2014); however, those studies were conducted in markedly different
contexts. Thus, it would be useful to verify whether these
expectations apply to spatial contact datasets.

It would also be interesting to explore the applicability of these
perceptual studies in evaluating other common tasks involved in
interpreting 3C data, such as visually comparing connectivity across
multiple datasets (Ballweg et al., 2018).

5 Conclusion

In summary, our study indicated that the circular layout may
be a good, default choice for visualizing small datasets with
relatively few spatial contacts. For larger datasets, the half-
matrix or matrix layouts may be a better choice. Further studies
with larger sample sizes would be need to test the generality of
these conclusions and to establish thresholds for switching
between these two layouts.

Our study also demonstrated how emerging crowdsourcing
methods can be used to determine which visual layouts are best
for addressing specific data challenges in bioinformatics. Given the
increased simplicity, affordability, and speed of such crowdsourcing
methods, we would argue for wider use of these methods in the
bioinformatics community.
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