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The abrupt increase in surface air temperature over the last few decades has
received abundant scholarly and popular attention. However, less attention has
focused on the specific nature of the warming spatially and seasonally, using high-
resolution reanalysis output based on historical temperature observations. This
research uses the European Centre for Medium-range Weather Forecasts
(ECMWF) Reanalysis Version 5 (ERA5) output to identify spatiotemporal features
of daily mean surface air temperature, defined both as the mean of the maximum
and minimum temperatures over the calendar day (“meanmaxmin”) and as the
mean of the 24 hourly observations per day (“meanhourly”), across the terrestrial
Earth. Results suggest temporal warming throughout the year, with several “hot
spots” of significantly increasing temperature, including in the Arctic transition
seasons, Northern Hemisphere mid-latitudes in July, Eurasia in spring, Europe and
the lower latitudes in summer, and tropical autumn. Cooling is also observed, but
generally at rates more likely to be statistically insignificant than warming rates.
These trends are nearly identical regardless of whether calculated as
“meanmaxmin” or “meanhourly.” These results may assist scientists and citizens
to understand more fully observed agricultural, commercial, ecological,
economic, and recreational trends in light of climate change considerations.
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1 Introduction

Many lines of evidence suggest that globally-averaged surface air temperature has
increased over the last several decades. However, many details about the spatio-seasonal
properties of these trends remain unknown, either because recent such studies focus on the
local to regional scale, such as for China (Yiqi et al., 2023) and Latvia (Kalvāns et al., 2023), or
even the hemispheric scale (Deng and Fu, 2023), or because global-scale studies tend to
examine annual trends (e.g., Lindsey and Dahlma, 2020). Distribution within the day-night
cycle of that long-term temperature trend has remained uncharacterized holistically using
long-term, high-resolution data collected within the Satellite Era.

The objective of this manuscript is to examine the global trend using a current reanalysis
data set and then to elucidate the regionality of the daily temperature trends by month across
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the terrestrial Earth. To identify whether themethod of calculating the
daily trend influences the results, we calculate daily means by
averaging the daily maximum and minimum values, and also by
considering “daily” as themean of the 24 hourly values. This approach
will strengthen our knowledge of the extent to which nuances in the
calculationmethod influence the regionality andmonthly distribution
of the temperature trends.

Four hypotheses regarding the daily mean surface air temperature
over the terrestrial Earth are tested. The first is that the method of
calculating daily mean temperature (i.e., “meanmaxmin” vs.
“meanhourly”) produces statistically significantly different
temperatures. Testing this hypothesis is important because it has
long been recognized that maximum and minimum temperatures
change asymmetrically, with minimum temperature often changing
more substantially than themaximum (Karl et al., 1993). The next two
are that a linear temporal trend exists in the global annual mean
temperature, and in the global monthlymean temperatures for each of
the 12 months, for the Earth as a whole. These hypotheses are
important to test again for the post-Satellite Era, now that more
updated data and data sets are available. The fourth hypothesis is
inspired by the comments of Michaels and Stooksbury (1992) about
the importance of the regionality and seasonality of the warming; we
hypothesize that the temporal trend is not uniform spatially bymonth.

2 Background

A rapid increase in research on the globally increasing trend in
observed surface air temperature had begun by the latter part of the
20th century. For example, after correcting for inconsistencies in the
temperature record due to instrumental inaccuracies, non-uniform
measurement techniques, changes in spatial coverage, and
irregularity in time and location of the measurements, Jones
et al. (1986) detected a long-term warming trend at a monthly
scale from 1861 to 1984, with the three warmest years in the 1980s.
In an analysis of annual time series from 1854 to 1988, Ghil and
Vautard (1991) found an insignificant surface air temperature trend
until 1910 and an increase of 0.4C° afterwards, with some inter-
annual and inter-decadal oscillations due to the El Niño-Southern
Oscillation (ENSO) phenomenon (Rasmusson et al., 1990) and
extratropical ocean circulation (Bjerknes, 1964). Liebmann et al.
(2010) identified a similar trend over the 1850 to 2009 time series.

With the availability of 30 years of air temperature data measured
during the Satellite Era came more robust and precise global
temperature climatologies. For example, in examining global
temperature data from 1979 to 2010 from surface and satellite
records, Foster and Rahmstorf (2011) found steady statistically
significant warming trends ranging from 0.014 to 0.018°C per year
for five global data sets, after discarding short-term variability, with
the warmest 2 years at the end of the data series. Several studies during
this era offered suggestions for attribution, including predominantly
anthropogenic (Lean and Rind, 2008), anthropogenic with some
impact of solar forcing (Wild et al., 2007), multidecadal variability
associated with strengthening of the global thermohaline circulation
and some impact from greenhouse gas accumulation (Wu et al., 2007;
Wu et al., 2011), sea surface temperatures associated particularly with
the Pacific decadal variability pattern (Wang et al., 2009), the Atlantic
meridional overturning circulation (Keenlyside et al., 2008; Semenov

et al., 2010; DelSole et al., 2011), and a combination of the above
effects (Swanson et al., 2009).

The increasing availability of high-resolution observational and
proxy and climate model output further enhanced global air
temperature trend analysis spatially and temporally. For example,
Marcott et al. (2013) quantified the global temperature trends since
the last deglaciation, including the relatively warm mid-Holocene,
subsequent cooling of approximately 0.7°C over the next 5,000 years
into the Little Ice Age, and abrupt and steady warming since that time,
with a global mean temperature today exceeding that during 90 percent
of the Holocene. Marotzke and Forster (2015) identified discrepancies
between the climate model output, which showed a significant long-
term temperature increase from 1900 to 2012, and the observational
data, which includes a hiatus in the increasing trend. Using a
combination of observations, global climate model simulations, and
proxy evidence, Hawkins et al. (2017) found that 1986–2005 was likely
0.55–0.80°C warmer globally than preindustrial times. Variability of
temperature about the long-term warming trend has also been a focus
area in recent years. Climate model ensembles suggest that equilibrium
climate sensitivity (ECS), defined as the change in temperature after
atmospheric CO2 instantly doubles and equilibrium is reached
(Meraner et al., 2013), is between 2.3 and 4.7°C at a 95% confidence
interval (Sherwood et al., 2020), with a central estimate at 2.8°C (Cox
et al., 2018), but possibly even greater (Zelinka et al., 2020), though
Scafetta (2022) suggested that it could be lower. In addition to
evaluating the increasing global temperature trend, climate modeling
has projected future air temperature trends under different climate
scenarios (Collins et al., 2013). Similarly, many analyses of terrestrial
surface air temperature have been conducted in the last few years (e.g.,
Toreti and Desiato, 2008; You et al., 2010; Jain & Kumar, 2012; Saboohi
et al., 2012; Ji et al., 2014; Sato and Robeson, 2014; Deniz andGönençgil,
2015; Dong et al., 2015; Gonzalez-Hidalgo et al., 2015; Mondal et al.,
2015; Chattopadhyay and Edwards, 2016; Ahmadi et al., 2018; Asfaw
et al., 2018; Ghasemifar et al., 2020; Matewos and Tefera, 2020;
Miheretu, 2021), but of these, only Ji et al. (2014) worked at the
global scale. While many other studies (e.g., Intergovernmental Panel
on Climate Change, (2021) and the many references contained within
it) assert that the near-surface atmosphere is warming, few recent
studies consider the details of the spatial distribution of that warming
globally, at fine spatio-temporal resolution.

Models have generated data sets that have been used to analyze
temperature and other variables globally.Much of this work has used the
first-generation National Center for Atmospheric Research Reanalysis
product (Kalnay et al., 1996). More recent efforts have used the second
generation products (Kanamitsu et al., 2002), which improved the spatial
resolution from 5° to 2.5° for results since the Satellite Era began in 1979.
Data sets with much greater spatial resolution have also been developed
based on interpolation techniques. Hijmans et al. (2005) produced an
impressive early data set available at 1-km resolution, for the terrestrial
Earth. The National Centers for Environmental Prediction (NCEP)
developed the NCEP Climate Forecast System Reanalysis (CFSR) to
emphasize the coupled atmosphere-ocean-land surface-sea ice system, at
38-km spatial resolution and 64 atm levels, with 40 levels at resolution of
0.5° or finer (Saha et al., 2010). NASA’s Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System (FLDAS;
McNally et al., 2017) is available at a spatial resolution of 0.1 ×
0.1 from 1982 to present. Other highly respected data sets include
ECOCLIMAP-V1 (Masson et al., 2003), Global Precipitation
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Climatology Centre (Schneider et al., 2017), WorldClim 2.0 (Fick and
Hijmans, 2017), and ENACTS (International Research Institute for
Climate and Society, 2017). The Japanese 55-year Reanalysis Project
(JRA-55; Japan Meteorological Agency, 2014) has also been important
for understanding historical temperature trends globally. Rohli et al.
(2019) summarized several key features of JRA-55, as described by
Kobayashi (2016), including: 1) length and completeness of the time
series for full observing system reanalysis using the most advanced data
assimilation scheme, 2) incorporation of several new observational data
sets, 3) introduction of a new radiation scheme, 4) improvements offered
by variational bias correction over the previous iteration (JRA-25), and 5)
availability of companion data sets that permit the assessment of the
impact of data assimilation.

A recent addition to the global reanalysis data sets is the European
Centre for Medium-range Weather Forecasts (ECMWF) Reanalysis
Version 5 (ERA5; Copernicus Climate Change Service (C3S), 2019).
ERA5 provides benefits that originated in its predecessor (ERA-Interim
reanalysis; Dee et al., 2011) which include improvedmodel physics, core
dynamics, and data assimilation (Hersbach et al., 2020). This data set
has already been used in a wide range of atmospheric and
environmental research. Recent studies have reported that
ERA5 generally corresponds well to surface temperature
observations in East Africa (Gleixner et al., 2020) and Antarctica
(Zhu et al., 2021). Yang et al. (2022) found overall improved
performance for ERA5 and 20th Century Reanalysis version
3 (20CRv3; Slivinski et al., 2019) over other reanalysis data sets. Of
course, it should be remembered that these reanalysis data sets,
including the ERA5, are indeed model output themselves, drawn
from a wide array of input data.

3 Materials and methods

Hourly air temperature at 2 m above the terrestrial surface is
collected from the ERA5 output for the period 1 January 1981 to
31 December 2020, at a resolution of 0.1 × 0.1 (or approximately
11.1 km at the equator). This data set is compiled from NetCDF files,
resulting in an array of 365.25 × 24 × 40 temperature values for each of
the 2,212,863 grid points located over land. The mean daily
temperature is then calculated, by grid point, in two separate ways:
first, as the mean of the maximum and minimum values on a calendar
day (“meanmaxmin”), and second, as the mean of the 24 hourly
observations (“meanhourly”). The time series of monthly mean global
temperatures, calculated from the daily means, is then computed using
both the meanmaxmin and meanhourly approaches. A statistically
significant difference in the temperature distributions indicates that
both approaches should be used in testing the hypotheses.

Differences in local time infer that the daily temperature value for
a given calendar day at a given grid point is actually based partially on
values for the calendar day before or after the reported value, except
for grid points within the Greenwich mean time zone. Increasing
offset from Greenwich mean time corresponds to less overlap of the
hourly, and therefore daily, meanmaxmin, and meanhourly values
with that of the calendar day. No adjustment is made for this
inconsistency, as it creates no complication for the hypothesis testing.

Testing of each hypothesis requires investigation of linear
temporal trends. To avoid relying on assumptions of normality of
the distribution, serial independence, and long time series, non-

parametric tests of serial randomness in the form of rank
correlation methods are appropriate and robust (Mitchell et al.,
1966). The Mann-Kendall test (Mann, 1945; Kendall, 1948;
Kendall, 1995) and the synonymous (Qian et al., 2015) Şen’s
estimator method (P.K. Şen, 1968; Z. Şen, 2012; 2014) have been
useful for identifying the statistical significance of a linear trend in
similar research (e.g., Mondal et al., 2012; Mahmood et al., 2019;
Panda and Sahu, 2019; Sayyad et al., 2019; Yacoub and Tayfur, 2019;
Alemu and Dioha, 2020; Bojago and YaYa, 2021; Chand et al., 2021).
Likewise, Spearman’s rank-order test for trend (Mitchell et al., 1966) is
also widely used in similar work (Rahman et al., 2017), including on
temperature trends (e.g., Yücel et al., 2019; Singh et al., 2021). Serra
et al. (2001) noted that Spearman is generally more appropriate for
large sample sizes with few tied ranks (although Mitchell et al. (1966)
suggested that Spearman is more appropriate for handling tied ranks),
and for data sets with non-monotonic trends (i.e., with multiple
inflection points) in which the focus is on long-term trends rather
than abrupt changes. Thus, the Spearman test is selected here over the
Mann-Kendall test, but several time-series analyses in geophysical
data sets (e.g., Yue et al., 2002; Kahya andKalaycı, 2004; Rahman et al.,
2017) have shown little difference in the results and power, defined as
the probability of correctly rejecting a false null hypothesis (Villarini
et al., 2009) in the two tests. Levels of significance of 0.05 and 0.10 are
used to represent statistical significance for all trends.

In testing the first two hypotheses, if daily temperature from the
2,212,863 terrestrial grid points were simply averaged into a single global
value for each calendar day, the convergence of meridians of longitude
poleward would cause the 0.1°-spacedmeridians to oversample the polar
areas relative to the low latitudes. Thus, calculation of the global mean
temperature annually and for eachmonth (using both themeanmaxmin
andmeanhourlymethods, separately) contains an extra step. Specifically,
the mean terrestrial latitudinal temperature (�Ti), where i represents the
latitude at 0.1° increments over the terrestrial Earth (i.e., from the South
Pole (90°S) to 83.5°N), is multiplied by the cosine of its latitude, at each of
the 0.1°-spaced parallels (separately). Then, these values are divided by
the sum of the cosines of the latitudes to compute the global mean
terrestrial temperature for that Julian day (�TG) adjusted for the
convergence of longitudes at the poles. Thus,

�TG � ∑ 83.5
−90 �Ti cos i( )

∑ 83.5
−90 cos i( )

Monthly aggregated maps comprised of averages of each of the
�TG maps from that month, across the time series are shown here. In
other work not shown here, the set of daily maps can be used to
identify trends in finer detail.

The daily meanmaxmin- and meanhourly-adjusted �TG values are
compared statistically (Hypothesis 1). The annual (Hypothesis 2) and
monthly (Hypothesis 3) global terrestrial temperatures are then
calculated for the two approaches. Thus, all 365 of the �TG values
for a given calendar year (discarding leap days) are aggregated for a
single annual global temperature (Hypothesis 2), and all 28, 30, or
31 �TG values for that month in a given calendar year are aggregated for
a single monthly global temperature, for each of the 12 months
(Hypothesis 3). Spearman tests for trend are run on the 40 data
points (i.e., one data point per year) (Hypothesis 2), and for each of the
12 months of the year (Hypothesis 3).

For addressing the “regionality” component of Hypothesis 4,
global terrestrial maps—one for each calendar month using the
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meanmaxmin and/or meanhourly approach—are produced. Maps
for January, April, July, and October are shown here to represent the
four meteorological seasons (Trenberth, 1983). Maps showing the
Theil-Sen slope (°C yr-1), areas with p-values surpassing the
significance threshold, and temperature (°C) difference
(2011–2020 mean minus 1981–1990 mean) are shown. For each
grid point, the values are calculated based on the 365 × 40 daily mean
values compiled from the hourly values. No temperature correction
is necessary for these collections of point-specific calculations. The

“seasonality” component of Hypothesis 4 is also assessed
cartographically.

4 Results and discussion

Testing Hypothesis 1—that the meanmaxmin and meanhourly
calculations yield different results—requires the non-parametric
Wilcoxon signed rank test, because the time series of mean monthly
temperatures compiled from both approaches are found to be distributed
non-normally. Wilcoxon testing reveals that globally, the meanmaxmin
temperature significantly exceeds the meanhourly temperature
(p-value <<0.05), with a mean difference of 0.20°C. This result aligns
with those of Weiss and Hays (2005), who found similar differences
betweenmeans produced by these twomethods. Globalmean differences
between the two algorithms by month are shown in Table 1.

Moreover, the temperature differences as calculated by the two
algorithms vary spatially, as was also found byWeiss and Hays. In most
of the world, particularly the Americas and equatorial Africa, the
meanmaxmin approach yields the higher temperatures, while in most
of northern Africa, the Arabian Peninsula, and central Asia, the opposite
is true. Nevertheless, the most extreme difference in the mean
temperature calculation at individual places is less than 0.2°C (Figure 1).

Figure 2 shows these differences using January, April, July, and
October as representative of the four seasons, and Supplementary
Figure S1 shows the differences for the remaining 8 months. The
meanmaxmin-calculated temperature exceeds meanhourly by the
greatest amounts in the Americas in April (Figure 2B), and
equatorial Africa in April and July (Figures 2B,C), while meanhourly
exceeds meanmaxmin in much of northern Africa and Eurasia
throughout the year (Figure 2 and Supplementary Figure S1).

Testing of Hypothesis 2 reveals that regardless of whether the
meanmaxmin or meanhourly approach is used a linearly increasing
trend (Spearman r of 0.861 (p << 0.001) and 0.866 (p << 0.001)) exists

TABLE 1 Globally-weighted mean daily temperature difference (°C), and
absolute maximum and minimum temperature difference by gridpoint, by
temperature-calculating algorithm (i.e., “meanmaxmin” minus “meanhourly”)
by month, 1981–2020.

Average Maximum Minimum

Overall 0.20 1.56 −1.41

January 0.24 1.71 −1.40

February 0.24 1.71 −1.76

March 0.21 1.57 −1.94

April 0.18 1.65 −2.11

May 0.15 1.57 −2.02

June 0.16 1.60 −2.33

July 0.18 1.73 −2.10

August 0.20 1.97 −2.05

September 0.21 1.89 −1.66

October 0.21 1.85 −1.54

November 0.21 1.83 −1.63

December 0.23 1.73 −1.47

FIGURE 1
Spatial distribution of the daily mean temperature (°C) difference (meanmaxmin minus meanhourly), 1981–2020.
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in the air temperatures. Hypothesis 3 is confirmed, with the Spearman
tests revealing statistically significantly increasing trends (p << 0.001)
in each of the 12 months, regardless of whether the meanmaxmin or

meanhourly approach is used. The Theil-Şen slope (Akritas et al.,
1995) suggests that the rate of temperature increase ranges from
0.022°C yr−1 (August) to 0.033°C yr−1 (October), as shown in (Table 2).

FIGURE 2
As in Figure 1, except for January (A), April (B), July (C), and October (D), over the 1981–2020 period.

TABLE 2 Spearman correlations and corresponding Theil-Şen slopes for each of the methods of calculating global temporal trends in surface air temperature,
1981–2020.

Meanmaxmin Meanhourly

Spearman r Theil-Şen estimator (i.e., slope) (°C yr-1) Spearman r Theil-Şen estimator (i.e., slope) (°C yr-1)

Overall 0.861 0.026 0.866 0.027

January 0.730 0.023 0.729 0.023

February 0.607 0.025 0.613 0.025

March 0.734 0.027 0.743 0.028

April 0.781 0.025 0.792 0.026

May 0.779 0.023 0.798 0.024

June 0.807 0.025 0.805 0.025

July 0.758 0.024 0.766 0.024

August 0.808 0.022 0.818 0.023

September 0.880 0.029 0.889 0.030

October 0.893 0.032 0.897 0.033

November 0.805 0.030 0.809 0.030

December 0.704 0.023 0.700 0.023

*All Spearman correlations are statistically significant at p < 0.001.
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Regarding the “regionality” aspect of Hypothesis 4, spatial
distributions of the rate of annual temperature increase (°C yr−1),
as evidenced by the Theil-Şen slope, level of significance, and the
absolute temperature increase from the 1981–1990 mean to
2011–2020 mean, are shown in Figure 3, for the meanmaxmin
and meanhourly calculations in a side-by-side comparison. Nearly
identical results appear for the two approaches, despite previous
evidence for the influence of air mass type on the shape of the daily
temperature curve (Bernhardt, 2020). Most of the terrestrial Earth is

warming at a rate exceeding 0.05°C yr−1 with the steepest rates
approaching 0.15°C yr−1 in the Arctic (Figures 3A,B). Some areas,
such as Antarctica, the Indian Subcontinent, inland northern North
America, and northern Australia, are cooling, but mostly at rates of
0.05°C yr−1 or less (Figures 3A,B). Most of the warming is statistically
significant, while nearly all cooling is statistically insignificant
(Figures 3C,D). Regardless, however, the absolute value of the
temperature change from the 1981–1990 mean to the
2011–2020 mean is less than 2°C (Figures 3E,F).

FIGURE 3
Surface air temperature trends (A,B) using the Theil-Şen slope (°C yr-1), statistical significance at p ≤ 0.05 (C,D), and temperature (°C) difference
(2011–2020 mean minus 1981–1990 mean (E,F)), for meanmaxmin (A,C,E) and meanhourly (b, d, and (F) approaches.
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Because the spatial patterns shown in Figure 3 are virtually
identical for the two methods, results for the “seasonality”
component of Hypothesis 4 are shown only for the
“meanhourly” approach. Figures 4A–D shows the spatial
distribution of the Theil-Şen slope (°C yr−1) for January, April,
July, and October, respectively, and those for the remaining
months are shown in Supplementary Figure S2. The spatial
distribution of statistical significance for those same 4 months
across space is shown in Figures 5A–D, with that for the other
8 months shown in Supplementary Figure S3.

The spatial pattern of the temperature rate increase and
significance of the temperature trends are similar to the
overall patterns shown in Figures 3A–D, but with some
additional, notable, monthly features. For instance, the Arctic
warming rate is most prominently significant in the transition
seasons (Figures 4B,D; Figures 5B,D, and Supplementary Figures
S2B–D, F,G, Supplementary Figures S3B–D, F,G), with Arctic
cooling prominent in eastern Siberia in February (Supplementary
Figure S2A) though not as significant (Supplementary Figure
S3A), and in northern North America in February and March
(Supplementary Figures S2A,B) though again largely
insignificant (Supplementary Figures S3A,B). In the Northern
Hemisphere mid-latitudes, warming is most intense in July
(Figure 4C and 5C) but not as prominent in the rest of

summer (Supplementary Figures S2D,E, S3D,E). Other large,
contiguous areas of statistically significant warming trends are
in Eurasia in spring, Europe and the lower latitudes in summer,
and the tropics in autumn (Figure 4, 5 and Supplementary
Figures S2, S3). While data are sparse over the oceans,
evidence from island stations indicates that significantly
increasing trends also appear in the major ocean
basins (Figure 4, 5).

The region of greatest decreasing temperatures is in Antarctica
in summer and winter, by approximately 0.1°C yr−1 (Figures 4A,C,
and Supplementary Figure S2) but these trends are largely
statistically insignificant (Figures 5A,C and Supplementary
Figure S3). Other largely statistically insignificant areas of
cooling are concentrated over Eurasia in December and
January, with some areas of cooling in southwest Asia
in November.

The temperature change between the 1981–1990 and
2011–2020 means for January, April, July, and October is shown
in Figure 6, with that for the other 8 months shown in
Supplementary Figure S4. Again, the strongest warming appears
over Arctic Asia, particularly in boreal spring, but with warming in
extensive parts of Eurasia, Africa, and the Americas in boreal
summer. Cooling appears most substantially in boreal spring in
North America and Antarctica, and in boreal autumn in the

FIGURE 4
Rate of surface air temperature increase using the Theil-Şen slope (°C yr-1), for January (A), April (B), July (C), and October (D), over the
1981–2020 period, using the “meanhourly” approach.
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Americas and much of Eurasia, Africa, and Antarctica, but again,
these cooling trends are less substantial than the warming trends.

The globally-weighted terrestrial air temperature increases
between the two averaging periods (1981–1990 vs. 2011–2020)
for the meanhourly algorithm is 0.72°C by month. Scafetta (2022)
found a 0.58°C increase globally (including oceans) for the
1980–1990 vs. 2011–2021 averaging periods using ERA5 data
and reported similar differences using other datasets. For
instance, use of UK Met Office Hadley Centre/Climatic
Research Unit version 5.0.1.0 (HadCRUT5; Morice et al., 2021)
revealed a difference of 0.58°C, and differences of 0.57°C, 0.52°C,
0.52°C, 0.59°C, and 0.56°C were observed using GISTEMP v4
(Lenssen et al., 2019), NOAAGlobalTemp v5 (Huang et al.,
2020), HadCRUT4 (Morice et al., 2012), Berkeley Earth group
(Rohde and Hausfather, 2020), and Japanese Meteorological
Agency (Ishihara, 2006), respectively. A comparison of these
results with ours suggests that the terrestrial Earth warmed
more than the marine world.

Table 3 shows that the 2011–2020 period is warmer than the
1981–1990 decade in every month, on a globally-weighted average
basis, with the greatest warming globally between the two averaging
periods in October, followed by September and November, and the
smallest increases in December and January. The reduced amount of
warming in boreal winter is likely influenced by the lack of ice-

albedo effect in the low latitudes, which occupies a large component
of Earth’s surface area.

5 Summary and conclusion

All too often, scientists and the lay public are more concerned with
how much the world will warm rather than how it will warm. This
research characterized the warming in terms of the geographical
distribution and its seasonality, using recently-available, high-
resolution ERA5 temperatures, synthesized from a wide array of
data sources, and with the daily mean temperature calculated as the
mean of the daily maximum and minimum temperature and as the
mean of the 24 hourly observations throughout the day.

The first hypothesis—that the two methods of calculating daily
mean temperature yield different temperature records—was partially
confirmed. The meanmaxmin approach yields statistically significantly
higher daily temperatures than the meanhourly, on a global basis,
but with significant regionality. Northern Africa and central Eurasia
actually show higher temperatures from the meanhourly calculation,
with most of the rest of the world showing the opposite. However, the
spatial distribution of statistical significance in spatiotemporal
temperature trends resulting from the two approaches is similar.
This result is important because the instrumental and modeling

FIGURE 5
Statistical significance (p < 0.05) of Theil-Şen slope shown in Figure 2, for January (A), April (B), July (C), andOctober (D), over the 1981–2020 period,
using the “meanhourly” approach.
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capabilities that now permit the computation of the mean daily
temperature based on data collected throughout the day may not
create as much of a step change in apparent spatial distribution of
the warming signal as might be assumed, despite the fact that the
terrestrial temperatures tend to be higher when daily mean
temperatures are calculated as the mean of the daily maximum and
minimum values, except in northern Africa and central Eurasia. While
the meanmaxmin or meanhourly approach yield the same spatial
patterns, the meanhourly method might be considered to be more
accurate because of its additional number of hours in the calculation.
However, researchers selecting this method should acknowledge that its
use yields higher temperatures in northern Africa and central Eurasia
and lower temperatures elsewhere across the terrestrial Earth.
Regardless, it is cautioned that all of the results herein may occur at
least in part because of the processing algorithms in the ERA5 output.

The second and third hypotheses—that spatially-weighted global
terrestrial mean daily temperature values display significantly
increasing trends in the annual cycle and in each month of the
year—was also confirmed. Global terrestrial temperatures have
increased from 1981 to 2020, by approximately 0.026°C yr−1, with a
range of approximately 0.022°C yr−1 in August to about 0.033°C yr−1 in

October. These terrestrial trends are likely dominating the global
temperature trend that are frequently reported.

FIGURE 6
Temperature (°C) difference (2011–2020 mean minus 1981–1990 mean), for January (A), April (B), July (C), and October (D)), using the
“meanhourly” approach.

TABLE 3 Globally-weighted difference of means (°C) between the daily mean
temperature for the 1981–1990 vs. 2011–2020 averaging periods, using the
“meanhourly” algorithm, by month, with absolute maximum and minimum
differences at individual grid points.

Average Maximum Minimum

Overall 0.72 4.98 −1.38

January 0.64 7.62 −3.89

February 0.67 9.01 −4.63

March 0.74 8.94 −3.29

April 0.70 7.13 −2.91

May 0.66 4.11 −2.90

June 0.72 6.12 −4.96

July 0.67 4.70 −4.45

August 0.66 6.07 −4.20

September 0.82 5.90 −3.54

October 0.90 8.35 −1.64

November 0.78 9.71 −3.61

December 0.63 9.34 −4.12
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The fourth hypothesis—that the warming is uneven
geographically—was also confirmed. Several “hot spots” of
particularly high concentrations of grid points reported
significantly increasing temperature trends. The strongest
concentrations of warming are in the transition seasons in the
Arctic, in July in the Northern Hemisphere mid-latitudes, and in
Eurasia in spring, Europe and the lower latitudes in summer, and the
tropics in autumn. Cooling has occurred in some places at some
times of the year, but in general, cooling rates are more likely to be
statistically insignificant than warming rates.

Future research should be conducted to attribute causes to the
observed concentrations of changing temperatures based on
atmospheric and oceanic circulation-based forcing. Continuing
research using the most current and updated data will shed new light
on an environmental situation that is of keen and urgent interest not only
tomany natural scientists and social scientists, but also to stakeholders in
the government and private sectors, and to the general public. It is hoped
that future work would also address another limitation of this study by
examining non-linear and cyclical temperature trends.

Furthermore, future research is needed to identify spatiotemporal
trends in the third category of warming as described by Michaels and
Stooksbury (1992)—the distribution of the warming in the day-night
cycle. Such results would assist in identifying the main implications of
the historical warming. Specifically, temporal increases to daily
extreme minimum temperatures, typically observed in early
morning hours, would have major implications on sectors such as
agriculture (e.g., growing season length), entomology (e.g., insect
proliferations), epidemiology (e.g., vector-borne illness), energy
consumption (e.g., heating of buildings), and transportation (e.g.,
road and bridge closures due to ice). Likewise, any observed temporal
increases to daily afternoon/maximum temperatures would likely
impact human health (e.g., heat stroke), energy consumption (e.g.,
air conditioning), and agriculture (e.g., increased water demand and
drought). Improved understanding of these primary weather/climate
impacts will assist in planning for future impacts of extreme weather
and climate.
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