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Attenuated sporozoites provide a valuable model for exploring protective

immunity against the malarial liver stage, guiding the design of highly efficient

vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+

Trm cells) are considered the host front-line defense against malaria and are

crucial to developing prime-trap/target strategies for pre-erythrocytic stage

vaccine immunization. However, the spatiotemporal regulatory mechanism of

the generation of liver CD8+ Trm cells and their responses to sporozoite

challenge, as well as the protective antigens they recognize remain largely

unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell

formation and the potential strategies to identify predominant protective

antigens expressed in the exoerythrocytic stage, which is essential for high-

efficacy malaria subunit pre-erythrocytic vaccine designation.
KEYWORDS
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1 Introduction

Malaria is one of the most devastating diseases worldwide. In 2022, 249 million cases

and 608,000 deaths were recorded, most of which were children (1). Malarial infections are

caused by the genus Plasmodium, including Plasmodium falciparum (P. falciparum),

Plasmodium vivax (P. vivax), Plasmodium malariae, Plasmodium knowlesi, and

Plasmodium ovale, with P. falciparum being the most common parasite responsible for

malaria-related deaths.

Malarial infections are initiated by the bite of an infected Anopheles mosquito. The

sporozoites are inoculated into the dermis of the host during a mosquito bite and

subsequently enter the bloodstream and circulate into the liver sinusoids, where

sporozoites pass through the sinusoidal cell layer and invade hepatocytes. Sporozoites in

hepatocytes sequentially transform into trophozoites and schizonts, producing thousands

of hepatic merozoites. One P. falciparum sporozoite produces ~40,000 merozoites (2). The

pre-erythrocytic stage is approximately 2 days for rodent malaria and approximately 1 week

for human malaria. The blood stage begins when the released hepatic merozoites invade red

blood cells, leading to fever, weakness, headache, anemia, and even death, owing to malarial

parasites replicating in the blood. In contrast to the blood stage, patients with malaria are
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clinically asymptomatic at the pre-erythrocytic stage (including

sporozoite and liver stages). Moreover, the pre-erythrocytic stage

is a key bottleneck in the life cycle of malarial parasites because

mosquito bites deposit about tens to hundreds of sporozoites, and

only a fraction reaches the liver (3). Vaccines targeting the pre-

erythrocytic stage abrogate blood-stage infection, thus averting

disease and disrupting transmission to the mosquito vector (4).

Therefore, the pre-erythrocytic stage is an ideal target for malaria-

preventative vaccines.
2 Whole sporozoite vaccine: a
valuable model to dissect
protective immunity against
the pre-erythrocytic stage

Three approaches have been pursued to develop efficient pre-

erythrocytic malaria vaccines: subunit vaccines, whole sporozoite

vaccines (WSVs), and viral/bacterial vector-delivered vaccines (5).

RTS, S/AS01E, the leading subunit vaccine, has been recently

approved by the World Health Organization for use in moderate

to high malaria endemic regions (6). However, the protective

efficacy of RTS, S/AS01E is only approximately 30% for infants

and 50% for children, and protection wanes after 18 months (7–9).

R21/Matrix-M™ vaccine, which is regarded as the next-generation

RTS, S-like vaccine, showed more than 70% protective efficacy in

phase 2b trial (10), but its protective efficacy in phase III remains to

be defined. In contrast, WSVs can induce high levels (> 90%) of

sustained protection against malarial parasite infection (11–13). In

whole sporozoite vaccination, subjects are immunized with

sporozoites through mosquito bites or intradermal (i.d.)/

intravenous (i.v.) injection, wherein sporozoite development in

hepatocytes is arrested at the early or late stage due to

attenuation, leading to persistent stimulation of the host immune

system. To date, three WSVs, namely radiation-attenuated

sporozoites (RAS) (14), genetically attenuated sporozoites (GAS)

(15), and chemoprophylaxis vaccination (CVac) (16), have been

developed using different attenuation approaches.

RAS were the first reported WSVs in which mosquitoes

harboring infectious sporozoites were attenuated by X-ray

irradiation. With a sufficient dose of irradiation for mosquito

carrying sporozoites to prevent the completion of liver-stage

infection but not over-irradiated to lose the immunogenicity

required to induce immune-mediated protection (14). RAS

development in the liver is arrested at an early stage and thus

requires bites of more than 1,000 irradiated infected mosquitoes to

induce sterile protection in human subjects (13). Unlike RAS

production, the genetic attenuation of parasites is more precise

and efficient since GAS are generated by deleting the specific gene

responsible for parasite development in hepatocytes (15). Late liver

stage-arresting GAS, generated by gene knockout, e.g., of the P.

falciparum fabB/F gene, at the late liver stage, could develop into

liver schizonts but fail to produce merozoites. The immunogenicity

of late liver stage-arresting GAS is much higher than that of RAS or

GAS arrested at the early stage because there are more antigens for
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the immune system to recognize (17). The safety issue for GAS is

related to infection breakthrough. Clinical evaluation of p52/p36

GAP in humanized mouse models showed severe early liver-stage

growth defects (18); nonetheless, infection breakthroughs have been

achieved in human trials (19). After increasing the number of

knockout genes, Pf GAP3KO (Pf p52/p36/SAP1) was

demonstrated to be fully attenuated (20, 21), inducing relatively

high protective immunity in controlled human malaria infection

(CHMI) (22).

CVac involves vaccination with live sporozoites under anti-

malarial drug prophylaxis, efficiently killing emerging blood-stage

parasites but not liver-stage parasites (23). Under these

circumstances, parasites can complete the entire liver-stage

development, allowing a greater antigen repertoire to stimulate the

host immune system. The negative effect of the blood stage on anti-

liver-stage immune responses is also limited. Therefore, CVac

immunogenicity is much higher than that of RAS, and 20-fold

fewer infected mosquito bites are required for CVac to induce

sterile protective immunity in controlling human malaria infection

(16, 24). Initially, chloroquine was used to kill emerging blood-stage

parasites after immunization with live sporozoites. However, the

emergence and spread of chloroquine-resistant P. falciparum

strains have raised safety concerns regarding chloroquine use in

this vaccination approach; therefore, other anti-malarial drugs, such

as mefloquine (24), artesunate (25), and pyrimethamine (12), have

been used instead. Recently, primaquine and antibiotics (clindamycin

and azithromycin) (26, 27), which arrest liver-stage parasite

development, have been used as causal prophylaxis, eliciting high

protective immunity.

Although attenuated sporozoites have proven to be the most

efficient vaccines for preventing malaria infection, their wide

application has been hampered by a requirement for mass

production and safety limitations. Sporozoites must be aseptic,

provided in large numbers, and transported via a cold chain (28).

Sanaria (Rockville, MD, USA) established a facility for aseptic

sporozoite production and has successfully produced infective P.

falciparum sporozoites in vitro (29). Nevertheless, knowledge about

the mechanism of protective immunity induced by attenuated

sporozoites will help in designing high-efficacy next-generation

subunit malaria vaccines.
3 Liver CD8+ Trm cells: correlation
with WSV-induced protection

Determining the correlation between attenuated sporozoite-

induced protection and immune effectors could guide the design

of efficient subunit malaria vaccines. Immunization with RAS

swiftly activates CD8+ T cells, which play a central role in the

protective immunity induced by inoculating mice with RAS, as the

sterile protection induced by RAS is abolished after CD8+ T cell

depletion (30, 31). Adoptive transfer experiments have also shown

that activated effector CD8+ T cells significantly resist sporozoite

challenge (32). However, prolonged protection after vaccination is

not dependent on these short-lived activated effector CD8+ T cells.
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Therefore, researchers have focused on memory CD8+ T cell

subsets, which provide long-term protection when induced by

vaccines. In fact, both effector memory CD8+ T (Tem) cells and

central memory CD8+ T (Tcm) cells have been detected in

protected mice immunized with RAS (33, 34); however, only a

high frequency of CD8+ Tem cells can confer long-term protection

induced after RAS immunization (35, 36).

CD8+ Tem cells patrol the blood and non-lymphoid tissues

(NLTs) due to a lack of the expression of the secondary lymphoid

organ (SLO)-homing receptors, such as L-selectin (CD62L), and

exert effector functions during recall responses. Tcm cells are

CD62L+ cells and are enriched in SLOs. They proliferate and

differentiate into effector cells during recall responses (37, 38).

Notably, apart from circulating memory CD8+ T cells (CD8+

Tem and Tcm cells), two pioneering studies discovered a new

memory T cell subset—tissue-resident CD8+ memory T (Trm)

cells—which enhances regional immunity in the host (39, 40).

Like CD8+ Tem, CD8+ Trm cells do not express CD62L but

highly express CD69, which contributes to their retention in

tissues by forming a complex with sphingosine-1-phosphate

receptor (S1PR1) and inhibiting S1PR1-induced tissue egress (41,

42). Liver CD8+ Trm cells were characterized by the upregulation of

tissue retention molecules CD11a, CXCR3, and CXCR6 and the

downregulation of tissue egress molecules CD62L and CCR7 (43).

Although CD8+ Tem cells have also been implicated in protective

immunity after RAS immunization (36), liver CD8+ Trm cells were

found to patrol the hepatic sinuses and form the front-line defense

against malarial liver-stage infection (43). The depletion of liver

CD8+ Trm cells by anti-CXCR3 antibody abrogates RAS protection

and demonstrates their essential roles in the protection induced by

RAS (43).

As the liver CD8+ Trm cells cannot be detected in peripheral

blood, the inability to obtain human liver samples greatly limited

our knowledge about human liver CD8+ Trm against the malaria

liver stage. The existence of human liver CD8+ Trm was

demonstrated through a study of transplantation, in which T cells

were detected in the donor liver transplanted for more than a

decade (44). However, unlike liver CD8+ Trm cells in mice, 5–30%

of human liver CD8+ Trm cells express CD103 (44–46). CD103+

liver Trm cells were specific for hepatotropic infections, but CD103-

Trm cells were specific for both hepatotropic and non-hepatotropic

infections (45). Human liver Trm cells have been associated with

protective immunity against HBV infection (46). In malaria,

intravenous RAS vaccination of non-human primates resulted in

the generation of parasite-specific memory CD8+ T cells in the liver,

but not in the blood. In contrast, parasite-specific memory CD8+T

cells were not detected after subcutaneous RAS vaccination, which

is markedly less protective (47). This indicated that liver CD8+ Trm

cells are also essential for protection against liver-stage infection in

non-human primates and humans.

Considering only 20% T cells in liver could be detected by flow

cytometry (48), it is estimated that approximately 2.5 million liver

CD8+ Trm cells are required to screen 99% of the whole liver for

parasite infection during a 2-day window in mouse liver-stage

malaria (43).This indicated that a large amount of liver CD8+

Trm cells are required to prevent progression to the blood stage,
Frontiers in Immunology 03
and the optimal generation of CD8+ Trm cells in the liver could

guide the design of highly effective malaria vaccines.
4 Prospects for pre-erythrocytic stage
vaccine designed to induce liver CD8+

Trm cells

Epithelial CD8+ Trm cells are thought to be derived from

circulating effector CD8+ T cells wherein the Trm cell lineage is

committed (49). Consistently, liver CD8+ Trm cells were also

generated from circulating effector CD8+ T cells, as only the in

vitro activated CD8+ T cells, but not naïve CD8+ T cells,

intravenously adoptive transferred, were found to be seeded in

sinusoids and transformed into liver CD8+ Trm cells (50).

Therefore, the magnitude of CD8+ T cell responses during

priming would affect the number of liver Trm cells that are

finally generated.

Sporozoite injected intravenously could be detected in the

spleen, lung, and liver, but only develop in the liver (51).

Splenectomy prior to RAS immunization by i.v. greatly reduced

the protection of the vaccinated mice, indicating the essential role of

the spleen in the priming of parasite-specific CD8+ T cell responses

(52). Further study showed that splenic CD11c+ DCs were

responsible for the cross-priming of sporozoite circumsporozoite

protein (CSP)-specific CD8+ T cells (53). During this process,

CD4+ T cells are essential for activating and maintaining CSP-

specific CD8+ T cells via the secretion of interleukin (IL)-4 (54, 55).

However, parasite-infected hepatocytes are captured by monocyte-

derived CD11c+ cells, and CD8+ T cells are primed in the liver-

draining lymphoid nodes, after RAS successfully invade hepatocytes

and develop into EEFs (56). Notwithstanding, there was much more

pronounced CD8+T cell expansion in the spleen than in the liver

draining lymphoid nodes following intravenous RAS vaccination

(57). Moreover, gd T cells are required to prime parasite-specific

CD8+ T cells possibly through promoting CD8a+ DC influx into the

liver (58). In contrast, malaria blood-stage infections significantly

suppress protective CD8+ T cells against the liver stage by inhibiting

splenic DC maturation (59). After priming, the activated CD8+ T

cells either generated in the liver or circulated from the spleen,

would convert into CD8+ Trm cells. The turnover of the circulating

effector CD8+ T cells into liver CD8+ Trm cells was significantly

affected by the local inflammatory status or antigen expression (50),

which was consistent with the formation of resident memory CD8+

T cells in other tissues (60, 61) (Figure 1).

Based on the knowledge of liver Trm formation, a prime-trap/

target strategy has been developed to generate high-frequency,

parasite-specific CD8+ Trm cells in the liver. As the cross-priming

by DGNR-1+ (CLEC9A+) DCs was essential for lung Trm precursor

commitment (62), anti-Clec9A was fused to a malaria-specific

epitope to increase the priming efficiency of Trm precursors

(43, 62). After priming, parasite-specific Trm precursors would

convert into Trm cells under the effect of the local inflammatory

status or antigen expression in the liver. This goal was achieved by

liver-targeting nanoparticles or intravenous infection with the
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recombinant adeno-associated virus vector or attenuated

sporozoites (43, 63–65). Clinical trials have also shown that the

delivery of recombinant chimpanzee adenovirus (ChAd) and

modified vaccinia Ankara (MVA) viral vectors expressing

protective liver-stage epitopes intramuscularly (i.m.) through a

prime-boost strategy significantly induced circulating CD8+ T cell

responses, but with low levels of protection in malaria-naïve

humans. In contrast, the recombinant viral vector vaccine boosted

with MVA i.v. generated higher protection through the induction of

high frequency of liver CD8+ Trm cells (63) (Figure 2). It seems that

the different protective immunity of RAS vaccinated by i.v. and i.d.

might be closely associated with their ability to generate liver Trm.

As compared to RAS immunized i.v, RAS injected by i.d. seldom

enters into the liver and develops into EEFs in hepatocytes (66).

Under this circumstance, fewer Trm precursors primed in the

draining lymph nodes would convert into liver Trm, as i.d.

injection of RAS does not lead to inflammatory response and

parasite antigen expression in the liver.

Strikingly, a single immunization with a self-adjuvating

glycolipid-peptide conjugate vaccine, designed to simultaneously

activate natural killer T cell (NKT) and DCs, has been reported to

generate large numbers of liver CD8+ Trm cells and protect against

malaria infection (67). As liposome nanoparticles (LNPs) have been

suggested as the most promising platform for designing vaccines
Frontiers in Immunology 04
against a variety of infectious diseases (68), and mRNA in LNP

delivered i.v efficiently targets and expresses in the liver (69).

Thereby, a messenger RNA (mRNA)-based vaccine containing an

NKT cell agonist has been designed and successfully induced sterile

protection against sporozoite challenge, which was unaffected by

previous exposure to blood-stage infection (70) (Figure 2). This

indicated that the local inflammatory response induced by NKT cell

agonist and targeted expression of malaria antigen in liver by i.v

delivery of mRNA vaccine could efficiently promote the generation

of liver CD8+ Trm.
5 Challenges with the research of liver
CD8+ Trm cells against malaria
liver stage

Great progress has been made in understanding the essential

role of CD8+ Trm cells in the protection induced by RAS

vaccination. Nonetheless, several knowledge gaps, including the

mechanism of liver CD8+ Trm commitment, formation, and

maintenance, and secondary responses to sporozoite challenge, as

well as the protective antigens they recognized, warrant

further investigation.
A

B

C

FIGURE 1

I.v immunization of WSV induces the generation of parasite-specific liver CD8+ Trm. (A). After i.v. immunization, sporozoites (SPZs) enter the spleen
and are captured by conventional dendritic cells, and circumsporozoite protein (CSP)-specific CD8+ T cells are cross-primed. During this process,
gd T cells were required to prime the effector CD8+ T cells by inhibiting the influx of CD11c+ dendritic cells into the liver, and CD4+ T cells promote
CD8+ T cell activation through interleukin (IL)-4 secretion. In contrast, malaria blood-stage infections suppress protective CD8+ T cells against the
liver stage by inhibiting splenic DC maturation (B). Sporozoites invading the liver develop into exo-erythrocytic forms (EEFs), which are captured by
monocyte-derived CD11c+ cells and prime both CSP- and non-CSP-specific CD8+ T cells in the liver-draining lymph nodes. (C). Both CSP-and non-
CSP-specific CD8+ T cells primed in liver-draining lymph nodes, as well as CSP-specific CD8+ T cells activated in the spleen, circulate into the liver
sinusoids and transform into CSP-and non-CSP-CD8+ Trm cells. The location of CD8+ Trm cells in liver sinusoids depends on the interaction
between LFA-1 on CD8+ Trm cells and ICAM-1 on endothelial cells. The transformation of CD8+ Trm cells is positively and negatively regulated by
IL-15 and type I interferon, as well as by other factors, respectively.
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5.1 The regulatory mechanism of liver
CD8+ Trm cells generation
and maintenance

Two models have been proposed for the formation of CD8+

Trm cells. One is the “local divergent” model, in which the lineage

of Trm was determined by the local tissue microenvironment. The

other is the “systematic divergent” model, in which the lineage

decision of Trm has been made during activation, and the local

tissue micro-environment promotes the generation of CD8+ Trm.

Most current studies focused on CD69+CD103+ Trm cells in

epithelial tissues and supported the “systematic divergent” model

for CD8+ Trm generation (49). In this model, epithelial CD8+ Trm

precursors were poised in naïve CD8+ T cells (62, 71), and the

activated CD8+ T cells were more prone to circulate into
Frontiers in Immunology 05
nonlymphoid tissues (NLTs), and differentiated into mature

CD8+ Trm in the local tissue microenvironment (72, 73).

Parasite-specific CD8+ T cells were cross-primed in different

SLOs with the different immunization routes of RAS. For

instance, CD8+ T cells were primed by DCs in skin-draining

lymph nodes when RAS was i.d. or s.c. immunization, but

sporozoite-specific CD8+ T cells and EEF-specific CD8+ T cells

were primed in the spleen by CD8a+ DCs (57) and liver-draining

lymph nodes by monocyte-derived CD11c+ cells (56, 66) after RAS

vaccination i.v, respectively (Figure 1). It is well known that i.v.

immunization of RAS is more prone to induce sterile protection

than RAS vaccinated i.d. or s.c. in humans (47, 74). However,

whether RAS immunized by different routes leads to their distinct

abilities to commit liver CD8+ Trm cells is largely unknown.

Although a vaccine designed to target DNGR-1+ DCs for cross-
FIGURE 2

Pre-erythrocytic subunit vaccine designed by prime-and-trap/target strategies. CD8+ T cells are primed by antigens conjugated with a dendritic cell-
targeted antibody or antigen-expressed chimpanzee Adenovirus (ChAd) 63 vector, after which the primed CD8+ T cells are trapped or targeted by
delivering adeno-associated virus (AAV) or modified vaccinia Ankara (MVA) viral vector expressing the same antigen. The primed CD8+ T cells
trapped or targeted in liver would convert into CD8+ Trm cells. Liver CD8+ Trm cells could also be generated by a single immunization of mRNA
vaccine or self-adjuvating glycolipid-peptide conjugate vaccine both containing the natural killer T cell agonist aGC.
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priming parasite-specific CD8+ T cells successfully induced the

generation of liver CD8+ Trm (43), whether this approach well

poised liver CD8+ Trm precursors also remains to be defined.

Liver and epithelial Trm cells share a common gene expression

signature that is regulated by the transcription factors Hobit and

Blimp1 (75); however, the regulatory mechanism underlying the

formation of CD8+ Trm located in distinct tissues is different (76).

For example, chemokines, such as CXCL9 and CXCL10, recruit -

Trm precursors by acting on CXCR3 on their surface to the

inflamed tissues, promoting Trm cell formation in the skin (73).

In contrast, liver Trm cells also express CXCR3 (77), but this

chemokine receptor is not necessary for the formation and

maintenance of liver Trm (78). However, CXCR6, which is highly

expressed by liver Trm cells, is required for their long-term

maintenance (78). Transforming growth factor (TGF)-b signaling

is essential for the maintaining of Trm cells in the intestine and

salivary glands, but not for those in the fat, kidney, and liver (76). As

compared to Trm in other tissues, an extreme difference was found

between skin and liver CD8+ Trm (76, 79). Several inflammatory

cytokines, such as IL-7, IL-15, IL-33, and TNF-a, have been

reported to modulate epithelial CD8+ Trm formation (80, 81);

only IL-15, but not TNF and IFN-g, has a significant effect on the

generation of liver Trm cells (50). Strikingly, type I IFN signaling,

which is activated by EEFs in hepatocytes (82), even inhibits liver

CD8+ Trm cell generation (83) (Figure 1). Recently, a system

analysis of immune responses to the vaccination of the attenuated

P. falciparum sporozoite showed that protection was associated

with the inflammatory status of the human volunteers (84, 85).

Although the formation of both hepatic and epithelial Trm did not

always require antigen presentation (50, 61, 86, 87), local antigen

presentation promoted liver CD8+ Trm formation (50). Liver Trm

cells are located in the sinusoids, a part of the bloodstream, but

epithelial Trm cells are found in the parenchyma of peripheral

tissues. Integrin CD103, which is highly expressed in epithelial Trm

cells of the skin and the gut, is required for T cell residence in the

skin (39, 73, 88). However, differentiated liver CD8+ Trm cells do

not express CD103 but upregulate the expression of the integrin

LFA-1(CD11a/CD18). The interaction between LFA-1 and ICAM-1

allows liver CD8+ Trm cells to patrol and remain in the hepatic

sinusoids (77) (Figure 1). Therefore, the regulation of liver CD8+

Trm cell generation and maintenance by tissue microenvironment

is distinct from that of epithelial CD8+ Trm cell, and the regulatory

mechanism of liver CD8+ Trm cell formation is required to be

elucidated in the future.
5.2 Secondary responses of liver CD8+ Trm
cells to sporozoite challenge

Upon reinfection, skin CD8+ Trm cells were found to expand

locally, and the secondary Trm cells formed from pre-existing Trm

cells, as well as from precursors recruited from the circulation (89).

However, further study showed that the expansion of CD103+ Trm

cells in situ was limited after secondary infection (90). Upon

secondary challenge, Trm cells were mainly derived from CD103−

Trm cells, with limited contribution from the circulating Tcm (90).
Frontiers in Immunology 06
As compared to skin CD8+ Trm cells, the adoptive transfer of liver

CD8+ Trm cells exhibited a higher potential to trans-differentiate

into circulating memory T cells and other tissue Trm cells in

response to secondary challenge (79). In addition, skin CD8+ Trm

cells could sense the invading pathogens (91) and activate both

innate and adaptive immune responses upon secondary infection

(92). Although liver CD8+ Trm cells expressed IFN-g, TNF,

granzyme B and CD107a (43), the protective mechanism of liver

CD8+ Trm cells of the RAS-immunized mice against sporozoite

challenge remains to be defined. Therefore, the dynamic response

and protective mechanism of liver CD8+ Trm cells upon sporozoite

challenge also needs to be clarified in the future researches.
5.3 Identification of protective antigens
recognized by liver CD8+ Trm cells

CSP is the predominant protective antigen of RAS (93), but

non-CSP antigens expressed by EEFs are also required for the full

protection induced by attenuated sporozoites (93). This is

confirmed by the finding that the immunogenicity of attenuated

sporozoites arrested at an early stage was much lower than that of

sporozoites arrested at a late stage (17). Thus, identifying antigens

presented by MHC-I molecules in infected hepatocytes may

uncover the unidentified antigens required for full protection

of WSV.

In the pre-genomic era, a few protective antigens, such as CSP,

thrombospondin-related anonymous protein (TRAP, also called

SSP2), and liver-stage antigen-1, were primarily identified using

immunized sera or oligonucleotide probe screening of sporozoites

or P. falciparum genomic DNA expression libraries (94–96). In

2002, the genomes of P. falciparum and rodent malarial parasites

were sequenced (97, 98), beginning the post-genomic era. With the

availability of transcriptomic and proteomic data on the rodent

malaria liver stage (99), two liver-stage antigens, ribosomal L3

protein and TRAP, were identified through using protective CD8+

T cells to screen H2b-restricted peptides predicted by genome-wide

analysis (100, 101). Recently, ribosomal protein L6 (RPL6) of

Plasmodium berghei, a novel protective liver-stage antigen, was

identified by the approach of combinational peptide library scan

and protein Blast within PlasmoDB (57, 65). Based on P. falciparum

genomic and proteomic data and a combination of bioinformatics

predictions and human leukocyte antigen analysis, 16 pre-

erythrocytic antigenic proteins were identified in volunteers

immunized with P. falciparum RAS (102).

With the development of T-cell receptor (TCR) repertoire

sequencing techniques, a functional TCR-guided antigen

discovery strategy, T-scan, has been developed (103). This

strategy enabled genome-wide antigen library screening using a

given T-cell clone with an orphan TCR of interest. Upon TCR-

pMHC engagement, granzyme B (GzB) is delivered to target cells

and cleaves the fluorescent protein (IFP)-based GzB reporter

(IFPGZB) and activates the IFPGZB reporter. The target cells are

then sorted by IFP, and the encoding antigen is identified by

secondary generation sequencing. Similar strategies have been

adopted to identify both MHC-I- and MHC-II-derived peptides
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of the malaria blood-stage (104, 105), but only the peptides in CSP

recognized by the follicular helper T cell clones expanded in

volunteers immunized with WSVs have been recently reported

(106). Identifying peptides presented by MHC-I molecules against

the malarial liver stage is greatly hampered by the difficulty of

obtaining sufficient parasites to construct a cDNA library for

screening. Since an extremely low rate of hepatocytes was often

infected with rodent (< 5%) and human malaria parasites (< 2.5%)

in vitro (107, 108), enough infected hepatocytes of sufficient purity

could not be obtained for transcriptomic and proteomic analyses.

Protective antigens should not only be immunogenic to induce

CD8+ T cell responses but also be presented to MHC-I on the

surface of the infected cells for CD8+ T cells to recognize and kill the

pathogens (109). For the malaria liver stage, protective antigens

should be proteins with the ability to translocate from the

parasitophorous vacuole into the cytosol of the infected

hepatocyte and subsequently be presented to MHC-I molecules

(110, 111). This was exemplified by the predominant protective

antigen CSP, which can access hepatocyte cytoplasm and presented

to MHC-I on hepatocytes (112–114). Therefore, the combination

of in silico prediction of the candidate peptides of malaria liver-

stage antigens presented by MHC-I molecules and TCR

repertoire sequencing would be an alternative approach to

identify the protective antigens recognized by CD8+ Trm after

WSV immunization.
6 Concluding remarks

Recent scientific findings have demonstrated that liver CD8+

Trm cells are the predominant immune effectors of WSVs. With

priming regulatory mechanisms and liver CD8+ Trm cell

maintenance beginning to be elucidated, a prime-trap strategy has

been developed for pre-erythrocytic vaccines to optimally generate

liver CD8+ Trm cells. However, many knowledge gaps are still to be

elucidated. Firstly, the environmental cues and cellular mechanisms

promoting the optimal generation and maintenance of liver CD8+

Trm cells, as well as the dynamic secondary response to the

sporozoite challenge, have not been completely defined. Secondly,

non-CSP antigens are also important for the protective immunity

induced by attenuated sporozoite vaccines, but only a few parasite

antigens at the liver stage have been identified, limiting the
Frontiers in Immunology 07
designation of highly efficient subunit malaria vaccines. Finally,

our understanding of the correlation between liver CD8+ Trm cells

and the protection induced by WSVs stems mainly from studies in

mouse models, and verification in human subjects is warranted for

translational research.
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Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell
(2015) 161:737–49. doi: 10.1016/j.cell.2015.03.031

49. Kok L, Masopust D, Schumacher TN. The precursors of CD8(+) tissue resident
memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol (2022)
22:283–93. doi: 10.1038/s41577-021-00590-3

50. Holz LE, Prier JE, Freestone D, Steiner TM, English K, Johnson DN, et al. CD8
(+) T cell activation leads to constitutive formation of liver tissue-resident memory T
cells that seed a large and flexible niche in the liver. Cell Rep (2018) 25:68–79 e4.
doi: 10.1016/j.celrep.2018.08.094

51. Wen-yue X, Xing-xiang W, Jie Q, Jian-hua D, Fu-sheng H. Plasmodium yoelii:
influence of immune modulators on the development of the liver stage. Exp Parasitol
(2010) 126:254–8. doi: 10.1016/j.exppara.2010.05.005

52. Spitalny GL, Rivera-Ortiz CI, Nussenzweig RS. Plasmodium berghei: the spleen
in sporozoite-induced immunity to mouse malaria. Exp Parasitol (1976) 40:179–88.
doi: 10.1016/0014-4894(76)90080-1

53. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In
vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by
exogenous cell-associated antigens. Immunity (2002) 17:211–20. doi: 10.1016/S1074-
7613(02)00365-5

54. Carvalho LH, Sano G, Hafalla JC, Morrot A, Curotto de Lafaille MA, Zavala F.
IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses
against malaria liver stages. Nat Med (2002) 8:166–70. doi: 10.1038/nm0202-166
frontiersin.org

https://doi.org/10.1016/S0140-6736(15)60721-8
https://doi.org/10.1016/S0140-6736(15)60721-8
https://doi.org/10.1016/S0140-6736(21)00943-0
https://doi.org/10.1038/nature21060
https://doi.org/10.1038/s41586-021-03684-z
https://doi.org/10.1086/339409
https://doi.org/10.1038/216160a0
https://doi.org/10.1038/nature03188
https://doi.org/10.1056/NEJMoa0805832
https://doi.org/10.1016/j.chom.2011.05.008
https://doi.org/10.1073/pnas.0906387106
https://doi.org/10.1016/j.vaccine.2013.08.007
https://doi.org/10.1126/scitranslmed.aad9099
https://doi.org/10.1038/mt.2014.85
https://doi.org/10.1038/mt.2014.85
https://doi.org/10.1126/scitranslmed.abn9709
https://doi.org/10.4049/jimmunol.172.4.2487
https://doi.org/10.4049/jimmunol.172.4.2487
https://doi.org/10.1371/journal.pone.0112910
https://doi.org/10.4049/jimmunol.1400296
https://doi.org/10.1126/scitranslmed.3001058
https://doi.org/10.1086/597121
https://doi.org/10.1242/jeb.00644
https://doi.org/10.1038/s41586-022-05466-7
https://doi.org/10.1073/pnas.85.2.573
https://doi.org/10.1084/jem.194.2.173
https://doi.org/10.1034/j.1600-0528.2002.00013h.x
https://doi.org/10.1002/(SICI)1521-4141(199912)29:12%3C3978::AID-IMMU3978%3E3.0.CO;2-0
https://doi.org/10.1002/(SICI)1521-4141(199912)29:12%3C3978::AID-IMMU3978%3E3.0.CO;2-0
https://doi.org/10.4049/jimmunol.171.4.2024
https://doi.org/10.1371/journal.ppat.1000998
https://doi.org/10.1371/journal.ppat.1000998
https://doi.org/10.1016/j.celrep.2021.109956
https://doi.org/10.1038/44385
https://doi.org/10.1126/science.1058867
https://doi.org/10.1126/science.1058867
https://doi.org/10.1038/ni.1718
https://doi.org/10.1038/ni.1718
https://doi.org/10.1126/science.1151869
https://doi.org/10.4049/jimmunol.1900052
https://doi.org/10.4049/jimmunol.1900052
https://doi.org/10.4049/jimmunol.1402256
https://doi.org/10.4049/jimmunol.1402256
https://doi.org/10.1016/j.immuni.2016.08.011
https://doi.org/10.1084/jem.20200050
https://doi.org/10.1016/j.jhep.2020.01.010
https://doi.org/10.1084/jem.20162115
https://doi.org/10.1126/science.1211548
https://doi.org/10.1016/j.cell.2015.03.031
https://doi.org/10.1038/s41577-021-00590-3
https://doi.org/10.1016/j.celrep.2018.08.094
https://doi.org/10.1016/j.exppara.2010.05.005
https://doi.org/10.1016/0014-4894(76)90080-1
https://doi.org/10.1016/S1074-7613(02)00365-5
https://doi.org/10.1016/S1074-7613(02)00365-5
https://doi.org/10.1038/nm0202-166
https://doi.org/10.3389/fimmu.2024.1344941
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1344941
55. Overstreet MG, Chen YC, Cockburn IA, Tse SW, Zavala F. CD4+ T cells
modulate expansion and survival but not functional properties of effector and memory
CD8+ T cells induced by malaria sporozoites. PloS One (2011) 6:e15948. doi: 10.1371/
journal.pone.0015948

56. Kurup SP, Anthony SM, Hancox LS, Vijay R, Pewe LL, Moioffer SJ, et al.
Monocyte-derived CD11c (+) cells acquire plasmodium from hepatocytes to prime
CD8 T cell immunity to liver-stage malaria. Cell Host Microbe (2019) 25:565–77.e6.
doi: 10.1016/j.chom.2019.02.014

57. Lau LS, Fernandez-Ruiz D, Mollard V, Sturm A, Neller MA, Cozijnsen A, et al.
CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage
immunity that can be boosted by blood-stage infection in rodent malaria. PloS
Pathog (2014) 10:e1004135. doi: 10.1371/journal.ppat.1004135

58. Zaidi I, Diallo H, Conteh S, Robbins Y, Kolasny J, Orr-Gonzalez S, et al.
gammadelta T cells are required for the induction of sterile immunity during irradiated
sporozoite vaccinations. J Immunol (2017) 199:3781–8. doi: 10.4049/
jimmunol.1700314

59. Ocana-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of
liver stage immunity by dendritic cells. J Exp Med (2003) 197:143–51. doi: 10.1084/
jem.20021072

60. Linda M, Wakim AWD, Bevan MJ. Memory T cells persisting within the brain
after local infection show functional adaptations to their tissue of residence. Proc Natl
Acad Sci U.S.A. (2010) 107:17872–9. doi: 10.1073/pnas.1010201107

61. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Long-lived
epithelial immunity by tissue-resident memory T (TRM) cells in the absence of
persisting local antigen presentation. Proc Natl Acad Sci U.S.A. (2012) 109:7037–42.
doi: 10.1073/pnas.1202288109
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