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Observational studies have shown an association between liver dysfunction and
hepatocellular carcinoma (HCC), but the causality relationship between them is
unclear. We aimed to determine whether there is a bidirectional causal
relationship between liver function indicators (alanine aminotransferase, ALT;
aspartate aminotransferase, AST; alkaline phosphatase, ALP; γ-
glutamyltransferase, GGT) and HCC. Our two-sample Mendelian
randomization (MR) study acquired single nucleotide polymorphisms (SNPs)
associated with liver function indicators (ALT, n = 134,182; AST, n = 134,154;
GGT, n = 118,309; ALP, n = 105,030) and with HCC (n = 197,611) from publicly
available genome-wide association studies (GWAS) of East Asian ancestry in
Japan (BioBank Japan, BBJ). Univariable MR analyses were performed to
identify whether the genetic evidence of exposure was significantly associated
with outcome. Multivariable MR analysis was conducted to estimate the
independent effects of exposures on outcome. Univariable MR analysis
indicated that the level of ALT, AST, and GGT was the risk factor for HCC
incidence. Meanwhile, multivariable MR analysis revealed that AST was an
independent risk factor for HCC. The hazard ratio (HR) of the probability of
HCC was 3.045 [95% confidence interval (95%CI), 1.697–5.463, p = 0.003] for
AST. The results of reverse MR analyses showed that gene-predictive HCC
incidence could increase the levels of AST (HR = 1.031, 95%CI: 1.009–1.054, p
= 2.52 × 10−4) and ALT (HR = 1.040, 95%CI: 1.019–1.063, p = 0.005). Meanwhile,
HCC may be negatively correlated with ALP levels (HR = 0.971, 95%CI:
0.947–0.995, p = 0.018). This study provides evidence to support that
genetically predicted higher levels of AST are related to increased risk of HCC,
with no strong evidence of a causal effect of genetically predicted ALP, ALP, and
GGT on HCC. In addition, genetic predisposition to HCC could influence blood
concentration of ALT, AST, and ALP. Thus, this may create a vicious cycle.
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1 Introduction

The burden of hepatocellular carcinoma (HCC) is an important
healthcare problem and continues to be themost common histologic
type of primary liver cancer (Toh et al., 2023). Japan has one of the
highest rates of HCC in the world, with an estimated 34,000 HCC-
related deaths in 2019 (Sung et al., 2021). The prevalence of HCC has
also increased in recent years. In recent decades, considerable
progress has been made in the study of the epidemiology, risk
factors, molecular characteristics, and pathogenesis of HCC.
Epidemiological and experimental studies have identified several
major risk factors associated with hepatocarcinogenesis, including
chronic hepatitis B/C, type 2 diabetes mellitus (T2DM), metabolic
liver disease (particularly nonalcoholic fatty liver disease), and
cirrhosis. Targeting these risk factors, therapeutic measures such
as direct antivirals, and the use of metformin, are associated with risk
reduction of HCC, and can even delay the postoperative recurrence
of HCC (Wu et al., 2016; Tseng, 2018; Zhang et al., 2021).
Identifying new risk factors and taking appropriate treatment
measures will contribute to improving the prognosis of
patients with HCC.

Serum liver enzymes, such as alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP), and
γ-glutamyltransferase (GGT), are routinely measured clinical
markers that represent different dimensions of liver dysfunction
(Pratt and Kaplan, 2000). Physicians generally use significant
elevations of liver enzyme levels as complementary markers to
aid the diagnosis of various diseases. For example, elevations of
ALT and AST may indicate the presence of hepatocellular
predominant disorders while elevations of ALP and GGT may
implicate cholestatic predominant diseases (Giannini et al., 2005).
Epidemiological studies have shown the associations between
abnormally high liver enzyme levels and risks and mortalities of
many diseases, including HCC (Hann et al., 2012; Wu et al., 2022;
Reddy et al., 2023). Several studies have shown that highALT orAST
levels are independent risk factors for the development of cirrhosis
and HCC (Kawamura et al., 2012; Hernaez et al., 2013). Liver
function abnormalities were also an independent prognostic
indicator in patients with HCC (Zhang et al., 2019). Moreover,
liver dysfunction may also affect the development of HCC in an
indirect fashion (De Silva et al., 2019). Observational studies usually
show that some liver function indicators, such as ALT, AST, ALP,
and GGT, are associated with high risk of cardiovascular disease and
type 2 diabetes, which are risk factors for HCC. Growing evidence
shows that liver enzyme levels play important roles in HCC
pathogenesis, such as tumorigenesis, local tumor progression, and
metastasis. Due to the methodological limitations of traditional
observational studies, including confounding and measurement
error, these associations may be biased. Since the causal
associations between liver function indicators and HCC risk have
not been thoroughly investigated, identifying host factors
predisposing individuals to HCC is urgently needed to improve
primary prevention and develop treatment strategies.

Mendelian randomization (MR) is a method of examining the
causal effect of a modifiable exposure to disease by using measured
variation in genes of known function in observational data. Because
the genotype of an individual is determined at conception and
cannot be changed, there is no possibility of reverse causation or

confounding bias being responsible for an association between
genotype and disease (Davey Smith and Hemani, 2014). In recent
years, many MR studies have emerged to provide clinical evidence
(Chen et al., 2022; Liu et al., 2022; Pan et al., 2022). This proves that
MR is a reliable research method to solve some problems, including
finding risk factors for diseases.

We have used the largest available data sets to interrogate the
potential effect of liver dysfunction, proxied by multiple biomarkers
(ALT, AST, ALP, and GGT), on HCC risk. In addition, we have
investigated whether HCC affects circulating liver function markers.

2 Methods

We explored the relationship of four liver function markers
(plasma concentration of ALT, AST, ALP, and GGT) with HCC. We
also used MR to investigate whether predisposition to HCC is likely
to have an impact on circulating ALT, AST, ALP, and GGT. The
hypotheses, study design, and data sources used are detailed
in Figure 1.

2.1 Summarized statistics of liver function
indicators from a genome-wide association
study in BioBank Japan

The exposure-related single nucleotide polymorphisms (SNPs)
used in this study were obtained from the Biobank Japan Project
(BBJ). BBJ started at the Institute of Medical Science, University of
Tokyo, in 2003. To date, the BBJ Project has collected data on
approximately 200,000 individuals with 47 different diseases. The
genome-wide association studies (GWAS) summary statistics of liver
function indicators were extracted from a study conducted byMasahiro
Kanai (Kanai et al., 2018), who tested 5,961,600 autosomal variants and
147,353 X-chromosome variants for association with 58 traits in
162,255 Japanese individuals with East-Asian ancestry and identified
1,407 trait-associated loci (p < 5.0 × 10−8), 679 of which were novel. The
GWAS summary statistics of liver function indicators in our study
included 4 phenotypes:ALT,AST,ALP, andGGT. ForALTGWAS, the
participants were 134,182 Japanese individuals. The GWAS summary
statistics of AST and GGT comprised 134,154 and 118,309 Japanese
individuals. For ALP GWAS, the study included 105,030 Japanese
individuals. This study included 126,319 Japanese individuals and
6,108,953 SNPs. They focused on identifying different loci associated
with liver function enzymes (Table 1).

2.2 Extraction of SNPs associated with HCC

Summary-level statistical data for HCC were also obtained from
a large GWAS of individuals with East-Asian ancestry in Japan. This
study was conducted by Ishigaki et al. (2020) and aimed to address
the problem that many participants in current genetic studies are of
European ancestry. The study elucidated polygenic disease biology
in the East Asian population by conducting a GWAS with
212,453 Japanese individuals across 42 disease traits. In this
study, they adjusted for covariates including age, sex, and top five
principal components (Table 1).
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2.3 Mendelian randomization design and
instrumental variables selection

MR is the use of genetic variants in non-experimental data to
make causal inferences about the effect of an exposure on an
outcome. In MR, genetic variant(s) are used as instrumental
variables (IVs) for assessing the causal effect of the exposure on
the outcome. The fundamental conditions for a genetic variant to
satisfy to be an IV are as follows: 1) The IVs are associated with the
exposures, 2) IVs are not associated with outcomes by means other
than exposures, and 3) IVs cannot directly affect outcomes, if only
through exposure. We selected the significant genetic variants
associated with the exposures from GWAS (significant level p <
5 × 10−8). The minor allele frequency of the SNPs was >0.01. The
SNPs used in our study were those that satisfied the linkage
disequilibrium in the given genome region and the SNPs with
palindromic structure were removed. When evaluating the causal
relationship between liver function indicators and HCC, the
threshold was r2 < 0.001 and kb > 10,000. When evaluating
reverse causality, the threshold was r2 < 0.01 and kb > 10,000.
For each variant included in the genetic instruments, variance (R2)
represents the variance in exposure explained by the genetic variant
and was calculated using the formula R2 = 2 × MAF × (1−MAF) ×

beta2 (where MAF represents the effect allele frequency and beta
represents the effect estimate of the genetic variant in the exposure
GWAS) (Palmer et al., 2012). F statistics (F = beta2/se2) were used to
evaluate the remaining SNPs’ power. We calculated F statistics for
each SNP. SNPs with F statistics <10 were identified to be weak
instruments and we excluded them (Figure 1). The SNPs that were
included in this analysis are listed in Supplementary Table S1.

2.4 Mendelian randomization analysis and
sensitivity test

Inverse variance weighting (IVW) is a method of weighted
average of random variables, where each random variable is
weighted by the inverse of its variance. In this study, IVW
was the main method adopted in the statistical analysis.
Furthermore, the MR-Egger and weighted-median (WM)
methods were used as supplements to the IVW method. For
univariable MR, IVW, MR-Egger, and WM were used to estimate
the effect of exposures on outcomes. For multivariable MR,
regression-based IVW was used. The MR-PRESSO global test,
outlier test, and distortion test were used to identify and remove
SNPs with horizontal pleiotropy. If any outliers existed, we

FIGURE 1
The three basic assumptions of Mendelian randomization (left) and the main design of this study (right). ALT: alanine aminotransferase; AST:
aspartate aminotransferase; ALP: alkaline phosphatase; GGT: γ-glutamyltransferase. BBJ: Biobank Japan; LD: linkage disequilibrium; SNP: single
nucleotide polymorphism.

TABLE 1 Summary of liver function and HCC.

Exposure Number of SNP Unit Sample R2 F Consortium

ALT 25 NA 134182 3.25 57.30 Biobank Japan

AST 23 NA 134154 3.63 71.59 Biobank Japan

GGT 49 NA 118309 17.35 109.40 Biobank Japan

ALP 41 NA 105030 5.31 168.64 Biobank Japan

HCC 3 NA 197611 1.47 34.62 Biobank Japan
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restarted an evaluation of the causal relationship. The intercept
test of MR-Egger and Cochran’s Q test in the IVW and MR-Egger
models were used to assess pleiotropy and the heterogeneity. In
the case of pleiotropy, we preferred to use the MR-Egger. If the
p-value in Cochran’s Q test was significant (p < 0.05), the WM
model was used to analyze the statistics. Otherwise, a fixed-effects
model was performed. Moreover, an online calculator was used to
test the statistical power of this study (https://cnsgenomics.
shinyapps.io/mRnd/). Genetic variants associated with
exposures at genome-wide significance (p < 5 × 10−8) were
then LD-pruned using the clump_data command in the
“TwoSampleMR” package in R to identify an independent set
of variants to serve as a genetic instrument for exposures. The
univariable MR analysis was performed by R packages “Two
Sample MR” and “Mendelian randomization”. The multivariable
MR was performed by R packages “multivariable Mendelian
randomization” (“MVMR”) and “Mendelian randomization”.
The MR-PRESSO test was conducted using the R package
“MRPRESSO”. Data visualization was conducted using
R software 4.1.1 (https://www.r-project.org/).

3 Result

3.1 Causal effects of the liver function
indicators on HCC

To investigate the causal effects of the liver function indicators
on HCC, we constructed a genetic instrument for liver function
indicators using 10–49 independent SNPs associated with the above
five traits at a genome-wide level of significance (p < 5 × 10−8), which
accounted for 1.00–17.35% of the variability in exposures. The mean
F-statistic ranged from 34.62 to 168.64, which indicated that no
weak instrument bias existed.

3.1.1 Univariable MR analysis of exposures to
HCC risks

In the univariable MR analysis stage, IVWwas the main analysis
method for MR. Our MR analysis indicated that there was strong
evidence to support causality between higher levels ofALT,AST, and
GGT with risk of HCC.

The hazard ratios of the probability of HCC were 1.890 (95%
confidence interval (CI), 1.209-2.954, p = 0.005) for ALT, 2.909 (95%
CI: 1.902-4.451, p = 8.55 × 10−7) for AST, 1.300 (95%CI: 1.048-1.611,
p = 0.016) for GGT, and 0.908 (95%CI: 0.821–1.169, p = 0.818) for
ALP (Table 2).

3.1.2 Multivariable MR analysis of exposures to
HCC risks

Furthermore, the causal relationship between liver function
indicators and HCC was explored by conducting multivariable
MR analysis. Among the four traits, we had observed that ASP
had a causal effect on HCC occurrence when using SNPs-
associated exposures. After the adjustment of other traits,
GGT and ALT become non-significant. Multivariable MR

TABLE 2 The effect estimates, test of heterogeneity and test of pleiotropy of liver function on HCC.

Expo-
sure

Number
of SNP

MR
methodology

Effect
estimates HCC

Test of
heterogeneity

Test of pleiotropy

OR 95%
LCI

95%
UCI

p-value Cochrane Q
test

Phetero-
geneity

MR Egger
intercept

Ppleio-
tropy

ALT 25 IVW 1.890 1.209 2.954 0.005 53.795 4.450*10−4

MR-Egger 4.218 0.474 37.526 0.318 52.487 4.300*10−4 −0.029 0.456

Weighted median 0.950 0.461 1.957 0.889

AST 23 IVW 2.909 1.902 4.451 8.55*10−7 52.021 0.300*10−4

MR-Egger 16.547 2.552 107.304 0.007 44.179 0.002 −0.067 0.067

Weighted median 1.452 0.680 3.101 0.335

GGT 49 IVW 1.300 1.048 1.611 0.016 99.547 1.820*10−5

MR-Egger 0.965 0.529 1.761 0.908 96.912 2.54*10−5 0.0175 0.264

Weighted median 1.114 0.756 1.644 0.586

ALP 41 IVW 0.980 0.821 1.169 0.818 40.226 0.460

MR-Egger 1.091 0.793 1.502 0.595 39.579 0.444 −0.009 0.429

Weighted median 0.984 0.755 1.283 0.908

TABLE 3 The multivariable Mendelian randomization results of liver
function and HCC.

Expo-
sure

Number
of SNP

Effect estimates HCC

OR 95%
LCI

95%
UCI

p-value

ALT 25 1.312 0.713 2.414 0.385

AST 23 3.045 1.697 5.463 0.003

GGT 49 1.300 0.980 1.714 0.718

ALP 41 0.980 0.778 1.232 0.385
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analysis revealed that the hazard ratios of the probability of HCC
were 3.045 (95%CI: 1.697-5.463, p = 2.77 × 10−4) for AST, 1.312
(95%CI: 0.713-2.414, p = 0.385) for ALT, 0.980 (95%CI: 0.0.779-
1.232, p = 0.860) for ALP, and 1.296 (95%CI: 0.980-1.714, p =
0.072) for GGT (Table 3).

3.2 Causal effects of HCC on liver function
indicators

In order to explore the reverse causality between HCC and liver
function indicators, we utilized the data from publicly available
large-scale GWAS and deemed that genetically predicted HCC was
associated with the levels of ALT, AST, and ALP. Specifically, HCC
was associated with higher levels of AST and ALT. In contrast,
HCC may have a causal relationship with lower levels of ALP. The
MR effects of HCC on liver function indicators were: ALT (OR =
1.031, p = 0.005, 95%CI: 1.009-1.054), AST (OR = 1.040, p = 2.52 ×
10−4, CI: 1.019-1.063), ALP (OR = 0.971, p = 0.018, CI: 0.947-
0.995), andGGT (OR = 1.014, p = 0.242, CI: 0.991-1.038) (Table 4).

The effects between SNPs-associated exposures and outcomes
were visualized using R software.

3.3 Sensitivity analysis

The pleiotropy of results was not tested in our study. MR-Egger
intercept represented the average level of pleiotropy of all SNPs
associated exposure. No significant horizontal pleiotropic effects
were detected in the MR-Egger test (for the intercept of MR-Egger,
all p values were more than 0.05). All the results of these exposures
were MR-PRESSO-corrected results if outliers were detected. The
statistical power of these exposures was 100%.

4 Discussion

HCC causes a heavy disease burden and is the fourth leading cause
of cancer-related deaths worldwide (Siegel et al., 2023). Risk factors for
the occurrence of HCC are numerous, including HBV and HCV
infection, alcohol consumption, aflatoxin B1, and nonalcoholic fatty
liver disease (Pan et al., 2022; Liu et al., 2023a; Pan et al., 2023). These
conditions are associated with liver dysfunction and can lead to fibrosis,
cirrhosis, and eventually HCC (Kotsiliti et al., 2023). Most studies
exploring the risk factors for HCC development are based on
observational studies and clinical experience. However, the major
disadvantage of an observational study is that its validity is
threatened by confounding by indication (De Nardi et al., 2022).
Furthermore, studies have shown that genetic factors may also
independently modulate HCC risk (Shimokawa et al., 2020). Human
HCC genome sequencing studies have begun to uncover relationships
between risk factors andmutated genes (Sun et al., 2021).MR studies use
genetic variants as proxies of non-genetic risk factors to assess whether a
risk factor is causally related to a disease. AlthoughMR has already been
used successfully in cancer epidemiology to estimate risk factors for
overall cancer risk and cancer mortality, it has rarely been applied in the
field of HCC study (Yarmolinsky et al., 2022; Wang et al., 2023).

Plasma concentrations of liver enzymes (ALT, AST, ALP, and
GGT) are routinely measured clinical markers that represent different
dimensions of liver dysfunction. ALT, located in the cytosol, and AST,
located in the mitochondria, are released from damaged hepatic cells
into the blood after hepatocellular injury or death (Song et al., 2012).
ALT andAST are potentially useful surrogates for alcohol-induced liver
disease and nonalcoholic fatty liver disease (NAFLD), defined as hepatic
steatosis in the absence of excessive alcohol consumption (Kim et al.,
2023). ALP is present in the ducts of the liver, and GGT is located on
liver cell membranes (Inoue et al., 2023). The combined elevation of
ALP andGGT can indicate obstructive or cholestatic liver disease, where

TABLE 4 The effect estimates, test of heterogeneity, and test of pleiotropy of HCC on liver function.

Outcome SNPs MR
methodology

Effect estimates
on liver function

Test of heterogeneity Test of pleiotropy

OR 95%
LCI

95%
UCI

p-value Cochrane Q
test

Phetero-geneity MR Egger
intercept

Ppleio-tropy

ALT rs113777417 IVW 1.031 1.009 1.054 0.005 2.600 0.273

rs7775228 MR-Egger 1.087 1.004 1.178 0.289 0.775 0.379 −0.013 0.406

rs8107030 Weighted median 1.029 1.000 1.059 1.1048

AST rs113777417 IVW 1.040 1.019 1.063 2.52*10−4 1.364 0.506

rs7775228 MR-Egger 1.004 0.927 1.086 0.943 0.509 0.475 0.009 0.525

rs8107030 Weighted median 1.035 1.007 1.064 0.013

GGT rs113777417 IVW 1.014 0.991 1.038 0.242 12.607 0.001

rs7775228 MR-Egger 1.134 0.924 1.391 0.441 5.625 0.017 −0.027 0.466

rs8107030 Weighted median 1.022 0.982 1.064 0.286

ALP rs113777417 IVW 0.971 0.947 0.995 0.018 0.806 0.369

rs7775228 MR-Egger 1.049 0.956 1.150 0.498 3.714 0.156 −0.019 0.338

rs8107030 Weighted median 0.971 0.941 1.001 0.061
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bile is not properly transported from the liver because of an obstruction
of the bile duct (Takahashi et al., 2023). GGT is also an indicator of
alcohol use (De Silva et al., 2019). We conducted this bidirectional MR
study to evaluate the potential causal effects between four liver function
indicators (ALT, AST, GGT, and ALP) and HCC risk from a genetic
perspective and to investigate whether predisposition to HCC might
instead lead to liver dysfunction. Our findings from the MR analyses
show evidence that genetic predisposition to higher circulating AST is
related to higher risk of HCC. There was no strong evidence of a causal
effect of genetically predictedALP,ALP andGGT on HCC. In addition,
genetic predisposition to HCC appeared to influence blood
concentration of ALT, AST, and ALP. The present bidirectional MR
study found that the main indicator of liver dysfunction (AST)
increased the risk of HCC, suggesting that liver dysfunction
exacerbates hepatocarcinogenesis and HCC could aggravate liver
function damage. This may create a vicious cycle.

HCC patients often experience liver dysfunction, thus limiting the
application of conventional therapies (Liu et al., 2023b). Therefore, it is
particularly important to evaluate liver function in clinical practice.
Nevertheless, the molecular mechanisms through which risk factors
contribute to hepatocarcinogenesis, for the most part, remain poorly
understood. Multiple studies have shown a direct role in liver function
abnormalities in hepatic carcinogenesis (Kasprzak and Adamek, 2019).
Several studies have shown that highALT levels are an independent risk
factor for the development of cirrhosis and HCC (Ogasawara et al.,
2020; Dajti et al., 2021; Tahata et al., 2022). Liver function abnormalities
were also an independent prognostic indicator in patients with HCC
(Seong et al., 2022; Wong et al., 2023). Moreover, liver dysfunction may
also affect the development of HCC in an indirect fashion.
Observational studies usually show that some liver function
indicators, such as ALT, AST, ALP, and GGT, are associated with a
high risk of cardiovascular disease and type 2 diabetes, which are risk
factors for HCC (Fard et al., 2022). Consequently, finding effective
therapies for liver dysfunction in high-risk populations for HCC is a
topic of long-standing interest and importance.

Our bidirectional MR provided comprehensive evidence to
interrogate the potential effect of liver dysfunction on HCC risk.
However, there are still some limitations in the present study. The
limitations of available data hindered our ability to make strong
conclusions about the potential association between liver dysfunction
and HCC risk. First, because all the included data from GWAS used in
this study were primarily focused on participants of East-Asian
ancestry, there was bias against other ethnic groups with different
lifestyles and cultural backgrounds. Second, all results were derived
from genetic levels. There was a lack of prospective multicenter studies
to confirm the causal relationship between liver dysfunction and HCC
risk. Therefore,more studies are still needed to confirmour conclusions.
Finally, althoughwe used large-scale genetic data to obtain instrumental
variables for our study, we did not manually check the validity of our
instrument. However, we performed sensitivity analyses to assess
horizontal pleiotropy and found that our results were robust to
potential violations of this assumption.

5 Conclusion

This study provides a novel finding that individuals with East
Asian ancestry who have higher genetic levels of AST are likely at

risk of HCC. In addition, genetic predisposition to HCC could
influence blood concentration of ALT, AST, and ALP. This may
create a vicious cycle. Clinicians should raise awareness of AST in
clinical practice.
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