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I like therefore I can, and I can 
therefore I like: the role of 
self-efficacy and affect in active 
inference of allostasis
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Active inference (AIF) is a theory of the behavior of information-processing 
open dynamic systems. It describes them as generative models (GM) generating 
inferences on the causes of sensory input they receive from their environment. 
Based on these inferences, GMs generate predictions about sensory input. The 
discrepancy between a prediction and the actual input results in prediction 
error. GMs then execute action policies predicted to minimize the prediction 
error. The free-energy principle provides a rationale for AIF by stipulating that 
information-processing open systems must constantly minimize their free 
energy (through suppressing the cumulative prediction error) to avoid decay. 
The theory of homeostasis and allostasis has a similar logic. Homeostatic set 
points are expectations of living organisms. Discrepancies between set points 
and actual states generate stress. For optimal functioning, organisms avoid 
stress by preserving homeostasis. Theories of AIF and homeostasis have 
recently converged, with AIF providing a formal account for homeo- and 
allostasis. In this paper, we  present bacterial chemotaxis as molecular AIF, 
where mutual constraints by extero- and interoception play an essential role 
in controlling bacterial behavior supporting homeostasis. Extending this insight 
to the brain, we propose a conceptual model of the brain homeostatic GM, in 
which we  suggest partition of the brain GM into cognitive and physiological 
homeostatic GMs. We outline their mutual regulation as well as their integration 
based on the free-energy principle. From this analysis, affect and self-efficacy 
emerge as the main regulators of the cognitive homeostatic GM. We suggest 
fatigue and depression as target neurocognitive phenomena for studying the 
neural mechanisms of such regulation.
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Living organisms, including humans, evolved because of and for survival and procreation. 
These goal states, however, cannot be hard-wired in the brain because they are dynamic, 
context-specific, and behavior-dependent. Instead, organisms use proximal internal states 
indexed by homeostasis and allostasis for guidance (McEwen, 2000; Sterling, 2004; Peters et al., 
2017). An in-depth analysis of the relationship between the two concepts can be  found 
elsewhere (Corcoran et al., 2020). Here, we refer to homeostasis as a process, by which an 
organism maintains its parameters at its set points. Allostasis describes a process, by which an 
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organism adjusts its parameters to adapt to anticipated change in 
demands (often environmental) placed on it (McEwen, 2000; Sterling, 
2004). A common example is rising blood pressure before we stand 
up. If allostasis results in an adjusted stable state, it becomes a new 
homeostatic state. Therefore, we also use homeostasis as an umbrella 
term for homeo- and allostasis similarly to the view of allostasis as “a 
process that supports homeostasis” (McEwen and Wingfield, 2003, 
p 3). Homeostatic set points are hard-wired and optimized through 
evolution for optimal performance in the game of life: using 
environmental resources to survive and procreate, but adaptive 
behaviors are required to maintain them through developmental and 
environmental change.

In brain-endowed organisms, the brain controls the organism’s 
behavior but has no direct access to its homeostatic states, such that 
bodily states of, e.g., hunger or cold are sensed by peripheral organs 
and neurons that pass that information onto the brain [although, 
certain vitally important for brain functioning parameters such as the 
levels of oxygen and glucose are directly sensed by the brain neurons 
(Song et al., 2001; Neubauer and Sunderram, 2004)]. For the most 
part, the brain relies on the readout by the interoceptive brain network 
which signals how close or far the organism is from its set points, or 
in other words, how low or high its stress/dyshomeostasis1 is. Stress 
dynamics are associated with emotional reactions, negative emotions 
reflecting growing and positive—decreasing stress (Solomon, 1980). 
Accordingly, to maintain homeostasis organisms try to occupy “feel 
good” (low stress) states. Why then do we often act in ways that make 
us feel bad or do not always act in ways that make us feel good? The 
challenge here is that to stay in a low stress state an organism has to 
maintain its optimal functioning while meeting the environmental 
demands, not an easy task given the complexity and dynamic nature 
of the environment of life.

To be in a “feel good” state an organism has to accomplish several 
cognitive tasks. It needs to know what makes it feel good, that is to 
have a model of the sentient/physiological self. It needs to know where 
in its environment it may feel good, for which it needs to have a model 
of the environment and its affordances. It needs to know what 
behaviors (action policies) to execute to place itself in a desired state, 
so it needs a model of the behavioral self. It also needs to estimate how 
likely the selected action policy is to result in the expected outcome, 
which means it has to have a meta-cognitive model of the cognitive 
self. These cognitive operations have to be optimally integrated to 
result in a coherent successful behavioral strategy. Active inference 
theory (AIF) provides an account for such integration (Pezzulo 
et al., 2015).

In this paper, after a brief primer on AIF, we consider the simplest 
known behavior, bacterial taxis, to elucidate the evolutionary blueprint 
for embodiment of AIF in molecular mechanisms. We then extrapolate 
this blueprint onto the hierarchical generative model (GM) of the 
brain and propose a conceptual model of the functional integration of 
its different levels and sub-models. Specifically, we suggest partitioning 
the brain GM into cognitive and physiological homeostatic GMs with 
affect and self-efficacy (SE) as the mechanisms of their integration and 
redundancy as its principle. We argue that such partition provides for 
more robust and flexible regulation of animal behavior as organisms 

1 We use the terms stress and dyshomeostasis interchangeably.

adapt to often competing demands on their resources. We  then 
suggest fatigue and depression as, respectively, experimental and 
clinical models useful for the identification and study of neural 
networks involved in the integration of the two homeostatic GMs. 
Definitions of main terms used in the paper are appended in 
the glossary.

Active inference

Active inference is part of the predictive processing paradigm 
which regards information-processing systems including living 
organisms as predictive machines. In AIF, organisms embody 
generative models of their external and internal environments that 
make inferences (also called predictions, or hypotheses) about the 
causes of sensory sensations and act on the environments to confirm 
the inferences by receiving sensations that the model predicted 
(Friston, 2010; Friston et al., 2017). This represents circular causality, 
e.g., I expect to see a period at the end of this sentence and move my 
eyes accordingly to confirm it. Such GMs are thought to have a 
hierarchical structure (Badcock et  al., 2019a), where higher-level 
units signal their predictions down the hierarchy to sensory organs/
receptors that receive signals from the environment and send them 
in a counterflow up the hierarchy. Predictions about sensory input 
are based on previously learned or innate (e.g., genetically 
determined) beliefs about regularities in the environment and are 
called priors. The variance between a prediction and actual input is 
called prediction error. The model constantly updates itself by 
minimizing prediction errors. Since priors, predictions, and 
prediction errors can be viewed as probability density functions (in 
the brain, encoded by neuronal firing), the model is believed to 
update itself according to Bayesian statistical rules. The better a 
model minimizes its prediction errors the more accurate it becomes, 
thus increasing its chances to occupy states generating predicted and 
sought sensations, which is the AIF meaning of adaptation (Badcock 
et al., 2019b).

There are two ways for a GM to minimize its prediction errors: (a) 
through perceptual inference by adjusting its priors and, consequently, 
predictions to bring them closer to the environmental input, or (b) 
through active inference by adjusting the organism’s behavior and/or 
properties to manipulate the incoming sensory stimuli to bring them 
(statistically) closer to the predictions. The two strategies are usually 
integrated into an evolving perception-action cycle. To explain the 
reason behind the need to minimize prediction errors and to link it to 
first principles, the free-energy principle has been proposed (Friston, 
2010). It stipulates that for an information-processing system to 
preserve its integrity and avoid decay it must avoid sensory surprising 
states or high informational entropy which is a long-term average of 
surprise. Variational free energy is an information-theoretic quantity 
setting the upper bound on the system’s total surprise. Therefore, 
systems avoid decay by reducing their free energy, which is achieved 
by minimizing the cumulative prediction error. The free-energy 
principle has been proposed as a “unified brain theory” (Friston, 2010) 
since it presumes that all brain functions can be  traced to the 
imperative of reducing its free energy. In addition, by minimizing its 
cumulative prediction error, the brain maximizes its GM’s evidence, 
which makes self-evidencing a corollary to the free-energy principle 
(Hohwy, 2016).
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To act on its environment in a way that minimizes its free energy, 
a GM needs to select an action policy that reduces the expected free 
energy since its quantity can only be confirmed after the action. The 
concept of expected free energy leads to the notion of temporally deep 
GMs that, based on past learning, plan and execute action policies 
meant to reduce the free energy in the future (Friston et al., 2018). In 
temporally deep GMs, the predicted endpoint sensory state can 
be separated from the present by a lengthy chain of cognitive and 
behavioral acts.

Precision-weighting is a concept central to AIF since GMs are 
commonly formalized in Bayesian statistics, where priors, predictions, 
sensory input, and prediction errors are viewed as probability 
functions whose inverse variance is called precision (Clark, 2015). In 
this view, a model with a highly precise prior will weight a 
disconfirming sensory input highly, leading to a high-precision 
prediction error. The precision of GM’s priors and predictions is the 
measure of the model’s confidence including confidence in its policies 
(Friston et al., 2013).

Bacterial taxis as an example of 
molecular active inference

Bacterial chemotaxis represents the arguably simplest known 
behavior whose mechanisms are well understood and molecular 
players are known (as reviewed, e.g., in Stock et al., 2002; Wadhams 
and Armitage, 2004). It is also the longest-evolved behavior that has 
supported adaptation of the most evolutionary successful life domain. 
This makes it valuable for examining the evolutionary design and logic 
of active inference embedded in the bacterial cell. Bacterial chemotaxis 
has been framed in AIF terms before, and its computer simulation was 
developed (Corcoran et  al., 2020), although without taking into 
account its molecular mechanisms which are fairly complex. Because 
of this complexity, the molecular machinery of chemotaxis was 
dubbed “probrain” (Stock et al., 2002).

Considering a bacterium as a GM, its core priors determine the 
homeostatic range of its energy and the chemical content of its body 
conducive to effective metabolism through the bacterium’s 
developmental phases. These priors constitute the bacterium’s model 
of itself or self-model which makes dynamic predictions according to 
the bacterium’s life-cycle stages: growth, DNA replication, division, or 
sporulation. In the bacterial GM, priors are preset by evolution and 
encoded in the genome, whereas predictions depend on the 
bacterium’s stage of the life cycle and environmental conditions. When 
the priors are at variance with the body parameters, the bacterium 
finds itself in a surprising sensory state with increased free energy. 
Bacteria receive sensory input through bacterial membrane receptors, 
both intero- and exteroceptive (Figure 1).

Cellular energy is monitored by interoceptive receptors sensing 
change in the redox state of the components of the membrane 
metabolic cascade called electron transport system as well as change 
in the energy properties of the membrane itself such as its proton 
motive force (Alexandre et al., 2004). Decreased energy generates a 
prediction error that is then suppressed by acting on either the internal 
environment by hydrolyzing adenosine triphosphate to release its 
energy or the external environment by moving to a place richer in 
nutrients. To accomplish that, the bacterium needs to have models of 
its internal and external environments. These models are encoded in 

its signal transduction pathways, which we discuss in more detail 
below, as they relate to bacterial chemo and energy taxis (Figure 1).

Chemotactic receptors bind external nutritious (attractants) and 
noxious (repellents) molecules, and signal change in their 
concentration to the effector protein which regulates bacterial 
movements. Such signals inform the GM of how close the levels of 
these molecules are to the predicted range. When a bacterium finds 
itself outside the range (increased prediction error), it seeks and move 
to a better environment, but how does it know where to go? Flagellar 
bacteria (such as E. coli) have two kinds of motion, tumbling and 
swimming (Berg, 2004) controlled by their flagellar motor (Figure 2). 
Sensing an unfavorable condition: no increase in attractants or/and 
increase in repellents, they tumble randomly sampling the 
environment in all directions. Once they tumble upon a direction with 
a favorable change: increased attractants or/and decreased repellents, 
they swim along the gradient. As a result, their motion proceeds along 
a “run-sample-run” trajectory. Such a strategy represents the 
exploration-exploitation cycle of AIF (Kaplan and Friston, 2018). The 
way a bacterium computes the relative quality of positions in the 
environment is by adaptation of their receptors. The adaptation 
protein (Figure 2) receives a signal from the receptor and modifies its 
sensitivity through methylation, so that the receptor adapts to the 
current concentration of its ligand and only responds, if the ligand’s 
concentration changes. The mechanism of adaptation ensures that 
bacteria always seek out gradients, positive for attractants and negative 
for repellents by sampling their concentration through tumbling. This 
allows the bacterial GM to predict their likely gradients and fulfill this 
prediction by swimming along the gradients until an increase in 
prediction error (and free energy) calls for tumbling, whereas 
decreasing prediction error will make for a smoother trajectory with 
less frequent tumbling.

The precision of molecular GM is encoded in the properties of 
its signaling molecules. For example, as mentioned above, sensitivity 
of membrane receptor clusters depends on the level of their 
methylation, which can be seen as analogous to the regulation of 
synaptic gain in nervous system. Likewise, the signaling activity of 
the effector protein can be regulated by its acetylation (Ramakrishnan 
et al., 1998). If prediction error precision is overweighted, the GM 
may be highly reactive to environmental noise and may become 

FIGURE 1

A simplified schematic of molecular mechanisms of bacterial 
chemotaxis. Information from receptor clusters is transduced to the 
effector protein which summates it to control the flagellar motor 
switch and thus the bacterial motion. The adaptation protein 
regulates excitability of the receptors by methylating them in an 
activity-dependent manner, so that they respond only to change in 
their ligand’s levels. eR, exteroceptive receptor cluster; iR, 
interoceptive receptor cluster; A, adaptation protein; E, effector 
protein; M, flagellar motor. The arrows show the direction of 
signaling.
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disoriented in a chemically noisy environment (all tumble and no 
swim). Should prediction errors be underweighted, the GM may 
be slow to react to environmental change and may find itself in a 
noxious environment.

An especially important for this paper feature of the bacterial GM 
is the integration of its two component models: the model of self and 
the environment. The former is updated by interoceptive and the 
latter—exteroceptive receptors. Integration happens at the level of the 
effector protein which summates signals from all the receptors and 
transduces the result to the flagellar motor (Figure 2). The result is 
determined by the relative precision of intero- and exteroceptive 
signals. Such integration is necessary to optimize bacterial AIF in a 
complex dynamic environment with sometimes contradictory 
properties. For example, an aerobic bacterium may find it necessary 
to avoid a nutritiously rich environment if it is also low on oxygen, 
without which the cell would be  depleted of energy. Thus, the 
molecular self-model constrains the model of the external 
environment in the service of minimizing the cumulative prediction 
error and, consequently, of the GM’s free energy. This design may 
appear redundant; after all, a favorable nutritious environment is 
supposed to provide for a high energy internal state. However, such 
redundancy may result in robust and flexible behavior, where energy- 
and chemotaxis complement and regulate each other. Despite (or 
perhaps because) its simplicity, the described molecular AIF allows for 
an effective behavioral adaptation supporting, as mentioned earlier, 
the most successful domain of life. Extrapolating this evolutionary 
logic to brain-endowed organisms, we next explore the integration of 
the models of self and the environment by the brain GM.

The brain integrative generative 
model of stress and homeostasis

Similar to bacterial GM, the brain GM’s primary function is 
energy regulation through homeostatic mechanisms (Barrett et al., 
2016). Unlike the unicellular GM, the brain needs to integrate three 
component GMs: an exteroceptive model of the world, an 
interoceptive model of the body/physical self, and a model of 
cognitive self, since the brain is separated (physically and 
statistically2) from both the world and (for the most part) the body. 
Their optimal integration means the minimal free energy of the 
whole brain GM (Figure 2). The integrated model is a cognitive 
hierarchy with self-conscious domain-general cognitive processes at 
the top and domain-specific sensory processing at the bottom. The 
brain GM, as mentioned earlier, is temporally deep, predicting states 
of the self and environment as consequences of future events and 
actions, and basing these predictions on prior beliefs. Minimization 
of the model’s free energy results in the organism’s avoidance of 
phenotype-incongruent states of sensory surprise. In application to 
the interoceptive GM,3 that means avoidance of stress 
or dyshomeostasis.

2 Separated by Markov blankets.

3 Interoceptive GM can be  viewed as comprising a proprioceptive GM 

controlling motor movement and a visceral GM controlling allostasis. To keep 

this paper focused, we leave the discussion of the proprioceptive GM out.

FIGURE 2

The integrated brain homeostatic generative model. The model is an autoregulatory closed loop that comprises the physiological (green) and cognitive 
(blue) homeostatic generative models (GM) with the latter hierarchically above the former. The physiological model comprises an exteroceptive GM of 
the world and interoceptive GM of the body. Prediction error dynamics of the physiological homeostatic GM are signaled to the cognitive homeostatic 
GM as an affective charge. The affective charge modulates the precision of the self-efficacy system which, in turn, regulates the precision of the 
physiological homeostatic GM. Thin blue arrows indicate predictions, and the red ones—prediction errors.
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The theory of homeostasis and allostasis has been recast in AIF 
terms (Peters et al., 2017; Corcoran et al., 2020). According to it, in 
response to an environmental challenge, the organism’s GM predicts 
a disturbance of its homeostasis, i.e., dyshomeostasis, and through 
autonomic reflexes makes an allostatic transition to a new state 
(Sterling, 2012). Thus, the interoceptive GM is at the same time the 
organism’s model of stress, guiding its stress response AIF, which has 
been considered on a continuum from normative to traumatic stress 
response (Krupnik, 2019, 2020b).

The interoceptive GM encodes priors and predictions for the 
organism’s metabolic parameters, determining their set points’ 
probability distribution. For a successful stress response, that is to 
stay within a state space compatible with life, the organism needs to 
remain within its allostatic range determined by its allostatic priors 
(Atzil and Barrett, 2017). Such priors have been conceptualized as 
allostatic self-efficacy (Stephan et al., 2016). Self-efficacy is a concept 
from social learning theory that denotes an agent’s confidence in 
achieving a desired (“predicted,” in AIF terms) outcome (Bandura, 
1977). Allostatic SE determines the interoceptive GM’s confidence 
in how far it can deviate from its homeostatic set points, which is a 
measure of the organism’s capacity to withstand stress. Stress 
response happens in a particular environment and thus requires an 
adaptive behavior to combine external and internal affordances to 
accomplish stress reduction. This necessitates integration of the 
interoceptive and exteroceptive GMs into a physiological 
homeostatic GM (Figure  2). The exteroceptive GM models the 
organism’s external environment, making inferences about its causal 
regularities, thus predicting its properties. Its integration with the 
interoceptive GM creates an organism-in-the-environment model 
predicting behaviors likely to serve the organism’s homeostatic 
needs. In a bacterial cell, its interoceptive model of energy set points 
is integrated (through the effector protein, Figure  1) with its 
exteroceptive model of attractant and repellent gradients, resulting 
in an adaptive chemotactic AIF.

An example can be helpful to illustrate the mechanics of allostatic 
AIF of more complex behaviors. As one is faced with the stress of a 
physical effort such as catching a bus leaving the station, his GM 
predicts energy expenditure by the muscles and thus a deviation from 
homeostasis. This will generate an expected prediction error, relative 
to the homeostatic priors, and an expected increase in the free energy. 
The expected prediction error can then be minimized by allostatic 
predictions and their fulfillment through the autonomic reflexes of 
increasing heart rate and blood flow to the muscles. This chain of 
events will result in the allostatic transition necessary to carry the 
allostatic load of the task. Once the muscles are at work, the allostatic 
dynamics change again. The muscle and organism’s physiology starts 
drifting away from the homeostatic set points through, e.g., decrease 
in oxygenation and glycogen storage, change in the electrolyte levels 
etc. (Davis and Walsh, 2010). This generates real-time prediction 
errors, relative to the homeostatic priors, leading to increasing free 
energy the farther from its homeostatic set points the organism gets. 
The prediction errors are then minimized by AIF generating the 
feeling of fatigue and by decreasing the allostatic load by slowing 
down the physical activity (Greenhouse-Tucknott et al., 2022). Such 
dynamics may set up a conflict between the higher-level counterfactual 
GM predicting exertion and the lower-level sensory near homeostatic 
GM predicting rest (see Corcoran et  al., 2020 for a philosophical 
analysis of allostatic vs. homeostatic AIF).

In the example of chasing a bus, the inference is that taking the 
bus will reduce the expected prediction error of, for example, being 
late or not reaching the agent’s predicted destination at all. This 
exteroceptive GM stands to contradict the described above 
interoceptive GM accumulating the prediction error of allostatic load 
and predicting fatigue. How does the agent reconcile such a 
contradiction and integrate the extero- and interoceptive GMs?

One possibility is that the choice of action policy—rest vs. pursuit 
of the bus—is determined by the balance of the contradictory models’ 
confidence. In AIF, confidence refers to the precision of an agent’s 
belief that a certain behavior will achieve the predicted outcome 
(Friston et al., 2013), which is tautological with SE. Thus, confidence 
or SE is a function of the precision of an action policy (henceforth, 
confidence and SE will be used interchangeably to make the narration 
more intuitive). Relying on the balance of (molecular) precisions is 
how bacterial AIF, described in the previous section, is optimized. 
However, this mechanism may not always be  optimal for more 
complex GMs such as the brain. The reason for this is the brain GM’s 
greater depth such that the farther the model reaches from its sensory 
experience in both time and context, the more counterfactual and less 
accurate it becomes. This makes the task of minimizing the expected 
free energy of the integrated GM more challenging. In the bus 
example, a hyper-confident exteroceptive model may “push” the 
organism beyond its allostatic range, causing damage (a heart attack 
in an extreme case), whereas a hyper-confident homeostatic GM may 
have the agent underperform. Either strategy would, in the end, fail at 
optimizing the integrated GM. This means that the lateral (bacteria-
like) mechanism of integrating the intero- and exteroceptive GMs into 
a physiological homeostatic GM via mutual constraints may 
be suboptimal for complex decision-making.

We propose the concept of cognitive homeostasis (and cognitive 
homeostatic GM)4 as an additional higher order mechanism of 
optimization of the integrated brain GM (Figure 2). Such regulatory 
redundancy, as noted above for bacterial chemotaxis, is expected to 
confer greater robustness and flexibility on the system’s behavior. 
Cognitive homeostasis controls the integrated GM’s free energy which 
serves as its dynamic homeostatic variable. In this sense, cognitive 
homeostasis functions as the hierarchically highest metacognitive 
level of self-modeling since it models the GM’s overall performance. 
Framing it as homeostasis provides a conceptual link to physiological 
homeostasis thus extending the free-energy principle from a first 
principles-based “unified brain” theory (Friston, 2010) to a unified 
theory of organism. There is a notable distinction to cognitive 
homeostasis. Whereas the range of physiological variables is 
determined by evolutionary and developmentally preset homeostatic 
priors, the brain GM’s free energy is a quantity that, according to the 
free-energy principle, is continuously minimized but can never 
be zero (Friston, 2009).

Partition into cognitive and physiological homeostasis implies 
likewise partition into cognitive and physiological dyshomeostasis/

4 The concept of cognitive homeostasis does not imply that physiological 

one is not cognitive but points at the different nature of their variables and set 

points. It could be argued that physiological homeostasis is not cognitive but 

computational, but there is no consensus regarding the conceptual brackets 

between computational and cognitive.
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stress, where cognitive stress means any increase in the brain GM’s 
free energy, and physiological stress is an increase in the free energy 
caused by interoceptive prediction error. Whereas physiological 
homeostatic GM receives sensory information directly through 
corresponding sensory channels, cognitive homeostatic GM has to 
be able to predict and track the dynamics of the free energy through 
metacognitive mechanisms. We suggest that SE and affect play the role 
of such mechanisms, where SE regulates the dynamics of the precision 
of action policies, and affect provides “sensory” information about the 
dynamics of the GM’s cumulative surprise. This way, the system of SE 
can “sense” and be updated through the system of affect about the 
GM’s prediction error dynamics.

Tracking the free energy and deconflicting 
the generative model: the roles of affect 
and self-efficacy

In the AIF scheme, emotion and affect have been viewed as an 
organism’s experience of allostasis, and affective experience is 
understood as an interoceptive sensation of dyshomeostasis 
(homeostatic prediction error) in the context of relevant predictions 
(Seth et al., 2012; Barrett and Simmons, 2015). There is no consensus 
in the literature on the use of the terms affect, emotion, and feeling. 
Here, by affect, we mean a subjective valenced experience of allostasis, 
and by emotion – a contextualized affect. Frustration, for example, can 
be autonomic arousal with negative valence at the sight of missing a 
needed ride. In the present model, affect plays a role in deconflicting 
cognitive and physiological homeostatic GMs by providing domain-
general sensory constraints on the precision of action policies through 
the system of self-efficacy (Figure 2). Affect is especially suited for this 
role because it integrates specialized channels of interoceptive 
signaling (such as heart and respiratory rates, blood pressure, 
electrolyte and glucose levels, etc.) into a binary choice of valence This 
arrangement makes for a nested hierarchy from the multitude of 
sensory streams to a generalized feeling of liking or disliking (affective 
valence) that informs and constrains the physiological homeostatic 
GM via the cognitive homeostatic GM as shown in Figure 2. It can 
be  considered a recapitulation of the summation mechanism in 
bacterial taxis (Figure 1), where prediction error signals from multiple 
receptor clusters converge onto the effector protein determining the 
binary behavioral choice of the direction of the flagellar motor 
rotation. The integrating role of affect is necessary because having all 
the interoceptive sensory channels transparent to higher cognitive 
levels would overwhelm the GM, making the choice of behavior 
unreliable if not intractable. Even in bacteria, summation of sensory 
signals is necessary for choice behavior. But why need affect 
be consciously felt? Interoceptive information could be passed up the 
GM’s hierarchy unconsciously, which may be  the case in simpler 
brains.5

Theories that ground affect and emotion in interoception explain 
the need for them to be conscious arguing that interoception, and by 
extension emotion, is inherent to consciousness and the sense of 

5 There is no consensus about where in the phylogenetic tree conscious 

feelings first emerged.

selfhood (Damasio, 1999; Seth et  al., 2012). In the AIF theory, 
interoceptive inference generates emotion, “…emotional experience 
as arising from cognitive contextualization of changes in bodily 
states…” (Seth and Friston, 2016, 5). This does not mean that 
interoception is always conscious (most of it is not), but it does mean 
that once it is felt as an emotion, it becomes conscious. One can 
be (temporarily) unaware of his pain but cannot feel the pain without 
being conscious of it. The interoceptive view of emotion also addresses 
the conundrum of qualia (for review see Kanai and Tsuchiya, 2012). 
Just as “emotional experience arises from cognitive contextualization 
of changes in bodily states,” we suggest that change in cognitive states 
such as perception is contextualized by interoceptive experience, 
which confers a subjective quality, i.e., quale, on perception. Therefore, 
any conscious cognitive process that runs on a sentient platform will 
have qualia. It is challenging to obtain empirical support for this 
assertion,6 although consistent with it are findings that perceptual 
disturbances in derealization and depersonalization conditions are 
associated with decreased activity of the insula and anterior cingulate 
(Phillips et al., 2001), which indicates a possible disruption in the 
integration of physiological and cognitive homeostatic GMs (possible 
involvement of these brain regions in such integration is discussed in 
the next section).

Another property of affect making it useful for integrating 
physiologic and homeostatic GMs is that affect is a domain-general 
continuous variable that is felt in the present. This allows for 
integration over different timescales. Temporally deep counterfactual 
GMs, as the brain is, guide behavior on long-term scales, where the 
outcome is temporally removed from the decision on an action policy, 
and operate on predictions that can only be dis/confirmed in a distant 
future. Due to the temporal gap, regulating these models by immediate 
interoceptive signals would be an intractable task. Even the simple 
decision of chasing a bus (in the earlier discussed example) presents a 
challenge. The brain needs to estimate the expected surprise of being 
late relative to that of physiological dyshomeostasis of physical 
exertion (both having a high degree of uncertainty) in order to 
minimize its free energy. Yet, decision-making in humans often 
involves far greater timescales, such as enrolling in college, sometimes 
even surpassing a lifetime. Affect is always felt in the present and, 
therefore, can situate future counterfactual states in the context of 
present bodily and mental states. Selection and maintenance of long-
term policies have to rely on the confidence of previously learned 
models (e.g., college = future success, college = fun, college = epistemic 
value, etc.). How is that confidence determined and regulated?

One possible mechanism is regulation by the system of self-
efficacy (Figure 2). The reason we propose the mediating role of SE 
rather than direct regulation by affect is that affect is domain-general, 
which requires a mediator to target domain-, context-, and task-
specific models and policies. In the absence of an immediate update 
of a GM through sensory input, the model is confined to the realm of 
cognitive homeostasis. At this level of abstraction, GMs run on 
epistemic input, and their policies are understood as sequences of 
mental actions (Metzinger, 2017). Cognitive homeostasis tracks a 

6 It may be possible to get a more definitive answer in the future when/if 

artificial intelligence develops to the level of being sentient and able to 

communicate its subjective experience.
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GM’s performance by the effect of selected mental acts on decreasing 
the model’s free energy. If the model performs well, it gets updated in 
a way that increases its confidence and vice versa. This raises the 
question of what a mechanism of such updating could be since, in the 
end, a given policy predicts a sensory outcome, not the free energy 
dynamics. We  suggest that affective and SE dynamics could 
be that mechanism.

From the standpoint of AIF (Joffily and Coricelli, 2013; Van De 
Cyrus, 2017; Kiverstein et al., 2019; Fernandez Velasco and Loev, 2021; 
Hesp et al., 2021) as well as reinforcement learning (Eldar et al., 2016), 
affective valence is the meta-cognitive mechanism of tracking 
cognitive performance. In this view, an accelerating rate of prediction 
error minimization feels good, whereas a decelerating one feels bad, 
which would also mean that dyshomeostasis feels bad and a return to 
homeostatic set points—good. This makes affect a subjective measure 
of the GM’s performance or, in the words of Hesp et  al. (2021), 
“subjective fitness,” where subjective fitness is defined as the perceived 
efficacy of the organism’s GM. Affective dynamics track the GM’s 
performance on a moment-to-moment basis and average out as mood 
over larger timescales. As mental or actual acts change the GM’s level 
of surprise, its dynamics get sensory representation in affect dynamics 
which then regulate the model’s confidence/SE. This closes the 
integrated GM’s regulatory loop, making it an autoregulatory system 
(Figure 2) on any timescale. The putative mechanism of confidence 
regulation is by adjusting the model’s precision through 
neuromodulation of the synaptic gain (Feldman and Friston, 2010). 
SE can be conceived of as a nested hierarchy (Krupnik, 2020a, 2021, 
2022) that comprises domain and task-general and specific levels, e.g., 
“I can do well in life”—“I can do well at physical fitness”—“I can run 
well”—“I can catch that bus.” It has to be noted that here we extend the 
original construct of SE as a person’s conscious subjective confidence 
that a chosen action will achieve the desired outcome (Bandura, 1977) 
to a more general concept. It includes model confidence at any level 
and considers it a probability function as in Friston et al. (2013). Such 
an extended concept of SE would, for example, include an organism’s 
unconscious confidence that increasing the heart rate will allow 
running faster. The SE hierarchy (Figure 3) can be conceived of as 
descending from epistemic SE (an agent’s confidence in its ability to 
know, or in AIF terms, a high precision of the self-model) to context-
specific SE (confidence in inferences about a life-situation) to task-
specific SE (confidence in actions in response to the situation) to 
allostatic SE (confidence in the body’s ability to execute the actions). 
The hierarchy is described as nested because it generalizes with every 
ascending step. For example, multiple physiological processes can 
support a single action; several actions may resolve a situation, etc. At 
the top, epistemic SE may apply to all domains of knowledge.

The notion of affect as a measure of subjective fitness can explain 
how purely mental acts may have affective valence. Solving a problem, 
figuring out a musical pattern, discerning the meaning of a text may 
result in decreased free energy and thus be indexed by a positive affect, 
the feeling of things “making sense.” Conversely, failure at such tasks 
may be  associated with a negative affect. This also can explain 
emotional corollary to counterfactual mental images either from 
memory or fantasy since, for example, a memory of missing a bus 
would be contextualized by a currently felt affect.

The described here model can also offer an answer to the question 
asked at the beginning of this paper. Why do we often act in ways that 
make us feel bad or do not always act in ways that would make us feel 

good? The model has two components, one underwriting cognitive 
and the other—physiological homeostasis, where the cognitive 
homeostatic GM is hierarchically above the physiological one. They 
provide mutual constraints through the dynamics of affect. Being 
partially independent7 gives them a degree of autonomy in selecting 
action policies as long as they reduce the integrated GM’s free energy. 
Thus, in pursuit of decreasing expected surprise, the cognitive 
homeostatic GM may “force” an allostatic transition on its 
physiological subordinate. Such redundant regulation of allostasis can 
afford the agent greater flexibility in its behavior and, as a consequence, 
a more robust stress response. This is how exploratory behavior can 
happen, or how people’s desire to work out can be explained. For the 
goal of physical fitness (a state of expected low surprise), people can 
feel good about feeling tired and sore (a state of real-time physiological 
surprise). Then indeed, one can feel good about feeling bad. In the 
extreme case of suicide, a cognitive homeostatic GM can lead the 
organism to physical destruction (a physiological state of the 
highest surprise).

Outside extreme cases, the physiological homeostatic GM does 
not let the cognitive “run away.” In the earlier example with a bus, one 
would be unlikely to entertain the thought of being on time for a 
meeting in a state of starvation or dehydration. In case of conflicting 
“surprises,” policy selection is determined by the relative precision of 
the alternatives, such as catching the bus vs. relaxing and taking it easy. 
This view suggests a qualifying condition on Hohwy’s principle stating 
that in a hierarchical GM with competing hypotheses, the GM will 
choose one with the lower cumulative prediction error at the highest 
(most abstract) level of representation (Hohwy, 2013). In our model, 
such choice is constrained by the low-level sensory-near physiological 
homeostatic GM, and the “winning” hypothesis is one with the lowest 
cumulative prediction error for the whole (integrated) GM.

The stipulated role of affect in tracking a GM’s performance and 
thus regulating its confidence implies that policies associated with 
positive affect gain in confidence, and the person believes that he can 
because he  likes. On the other hand, confident policies predict a 
decrease in the expected free energy with associated positive affect. 
The predicted positive affect can then be fulfilled through visceral AIF 
and, possibly. Later by the policy’s outcome. Therefore, one likes 
because he believes he can. Such an autoregulatory SE-affect loop 
implies that, unlike bacteria, in organisms complex enough to have it, 
behavior can be intrinsically rewarding as well as intrinsically aversive.

Neural substrates of mutual control of 
cognitive and physiological homeostatic 
generative models

Neural pathways of mutual regulation between viscera and 
decision-making brain areas have been an area of extensive research. 
The key brain structures integrating interoceptive information with 
higher cognitive functions have been identified as the insula, anterior 
cingulate, and orbitofrontal cortices [as recently reviewed by Chen 
et al., 2021]. In the AIF theory of interoception (Gu et al., 2013; Seth 
and Friston, 2016; Paulus et  al., 2019), the anterior insula issues 

7 Separated by Markov blankets.
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predictions about the body’s internal states, which are compared to 
afferent visceral information, thus generating prediction errors. The 
errors are then resolved through autonomic reflexes as discussed 
above. The insula issues predictions based on exteroceptive 
information integrated and prioritized by the prefrontal and anterior 
cingulate cortices. The affective aspect of interoception emerges 
through signaling between the anterior insula and the affective-
motivational network including the amygdala, ventral tegmental area, 
and ventral striatum. These brain circuits carry the bidirectional flow 
of information between exteroceptive and interoceptive GMs, which 
results in their mutual constraints and gives rise to emotions. In turn, 
affective valence is hypothesized to track the error dynamics of the 
integrated GM (Hesp et  al., 2021). The implied function of such 
tracking is the regulation of the GM’s performance. It is, however, less 
clear what the neural mechanisms of such regulation are.

Closing the loop
The core hypothesis of the presented here model (Figure 2) is that 

dynamics of affective valence do not only reflect prediction error 
dynamics but regulate the confidence/precision of the model whose 
error dynamics they reflect. This also suggests that the learning 
function of affect is the regulation of the self-efficacy system. The idea 
that affective valence reflects the brain GM’s error dynamics for the 
purpose of emotional meta-learning has been developed by several 
researchers (Joffily and Coricelli, 2013; Van De Cyrus, 2017; Kiverstein 
et al., 2019; Hesp et al., 2021). In one version of this idea, change in 
the rate of prediction error minimization has been conceptualized as 
an “affective charge” which serves to update the precision of the very 
action model meant to minimize the prediction error (Hesp et al., 
2021). Such a process has been formalized and tested in a computer 
simulation, but it remains unclear what neural mechanisms could 
embody it.

One of the challenges to mapping the process of updating the 
precision of a GM by its affective dynamics onto the brain is the 

hierarchical structure of the GM as well as the distributed circuits 
supporting it. The proposed here model envisions two parallel 
hierarchies, one of SE and the other of affect (Figure 3). The hierarchy 
of affect, as described in the referenced above literature, ascends 
through the sequence: interoceptive sensations—task-contextualized 
interoceptive sensations—context-contextualized (conscious) 
emotion—self-contextualized emotion—affective valence—affective 
charge. In our model, this contextualization first arises from 
integration of extero- and interoceptive GMs and at a higher level—
from integration of cognitive and physiological homeostatic GMs 
(Figure 2).

The proposed here generalized notion of SE implies its widely-
encompassing hierarchy, and its mechanistic meaning, as discussed 
above, is precision (model’s confidence) which is regulated through 
neuromodulation (Parr and Friston, 2017). An action policy comprises 
a hierarchy of mental and physical steps. It includes, at minimum, 
planning, interoceptive prediction, and physical and physiological 
action. Every component of this hierarchy has its precision. For a 
coherent and reliable behavior these precisions need coordination, 
which can be achieved via a nested hierarchy ascending through the 
sequence: allostatic—task-specific—context-specific—epistemic—
evolutionary-developmental, where evolutionary-developmental 
properties of the brain provide constitutive constraints for the rest of 
the hierarchy (Figure 3). Using our reference example of chasing a bus, 
allostatic SE refers to the precision of an autonomic action policy at 
the sight of the bus ready to leave; the task-specific one refers to the 
precision of a motor action policy of running after it; the context-
specific one refers to the precision of estimation of the expected utility 
of chasing the bus; the epistemic—to the precision of estimation of the 
utility/reliability of the estimate of the utility of the chase; and the 
evolutionary-developmental–to the precision of the organism’s 
internal affordances for all these acts (one needs to be endowed with 
legs and the skill of using them). It is easy to see how this action policy 
can disintegrate, should any of these precisions be out of proportion. 

FIGURE 3

A schematic of the self-efficacy nested hierarchy and its regulation both intrinsically and by the affective charge. The self-efficacy (SE) hierarchy is 
nested under epistemic SE, descending to context-specific SE—task-specific SE—allostatic SE, with evolutionary-developmental SE exerting 
constraints on the precision of the whole hierarchy (the thick rose arrow). The affective charge modulates the precision of the SE system throughout 
the hierarchy (except the evolutionary-developmental SE which is phenotype- and developmental stage-dependent). The system autoregulates 
intrinsically via the counterflow of predictions on precisions (thin blue arrows) and prediction errors (thin red arrows).
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For example, a low epistemic precision could result in indecisiveness 
despite the external and internal affordances to get on the bus; or an 
intrinsically low precision of motor control (such as in bradykinesia) 
may preclude the ride despite high precision of the other components 
of the hierarchy.

Our proposal that affect regulates the precision of action policies 
via the SE system is meant to explain how the dimensional domain- 
and task-general affective charge could regulate task- and context-
specific policies. We suggest that the affective charge can bias the 
precision throughout the SE hierarchy while the relative precisions of 
its components are intrinsically regulated within the hierarchy, as 
hypothesized above (Figure 3). Phasic neuromodulatory activity of 
affective charge neurons coinciding in time with activity of action 
policy networks would ensure the specificity of the active charge’s 
effect. Tonic activity (corresponding to mood), on the other hand, 
would sustain the SE’s baseline state of precision. Thus, the dynamics 
of phasic vs. tonic activity of affective charge neurons could provide 
for fine-grained modulation of active inference by affect.

Given the wide span of the implied hierarchies, implementation 
of the hypothesized regulation of SE by affect would involve almost 
the whole brain. To add to the complexity, precision is regulated by 
neuromodulators, such as monoamines, that can have global as well 
as targeted effects (Likhtik and Johansen, 2019). One way to overcome 
the challenge of this complexity to elucidating neural mechanisms 
involved in the SE-affect loop could be to study mental phenomena 
and behaviors traceable to both affective inference and SE. Among the 
better-studied ones are fatigue and depression.

Fatigue
Fatigue, physical fatigue, in particular, is a suitable model behavior 

for studying the hypothesized regulation of self-efficacy by affect for 
several reasons. Within active inference, fatigue is viewed as a feeling 
state generated by the perceived dyshomeostasis that informs action 
policy selection and biases it toward rest and away from exertion 
(Stephan et al., 2016). Physical fatigue can be objectively measured by, 
e.g., maximal voluntary contraction (Taylor and Gandevia, 2008). 
Importantly, fatigue as a subjective experience of dyshomeostasis is 
distinguished from fatigability, its objective physiological 
manifestation (Kluger et al., 2013). Moreover, fatigue and fatigability 
can be experimentally dissociated by manipulating the physiology of 
peripheral muscles (making them fatigued) in the absence of actual 
work (Marcora, 2009). Such manipulation produces muscle 
dyshomeostasis without perception or a feeling of fatigue and presents 
an opportunity to differentiate the indirect effect (if any) of a subjective 
feeling of fatigue on the precision of relevant behavioral policies from 
the direct impact of interoceptive sensory input. The bottom-up 
manipulation of fatigability can be  complemented by top-down 
manipulation of self-efficacy. For example, trained athletes compared 
to non-athletes showed higher resistance to fatigue as measured by 
physical effort discounting (Chong et al., 2018) and scored higher on 
measures of SE (Moritz et al., 2000). Interestingly, athletes were more 
tolerant of cognitive fatigue as well (Chong et al., 2018), implying a 
domain-general motivational mechanism, which is consistent with the 
idea of a wide range effect of affective charge on the SE hierarchy 
(Figure  3). SE can also be  manipulated by false feedback with an 
ensuing effect on emotions (McAuley et  al., 1999), suggesting an 
autoregulatory closed loop as in Figure 2.

The ability to dissociate fatigability from the subjective feeling of 
fatigue implies that fatigue is a function of inference on the expected 

exertion, and that fatigue, too, can be manipulated by false feedback. 
Independent manipulation of fatigue and SE helps address the 
question of causality, eloquently raised by Noakes,

“Vince Lombardi, the great American football coach, once wrote 
that: “Fatigue makes cowards of us all.” But he was wrong. For his 
arrow of causation points in the wrong direction. It is cowardice 
that exacerbates the sensations of fatigue, not the reverse” 
(Noakes, 2012).

This point of view is supported by the finding that manipulated 
SE can influence the feeling of fatigue (Jerome et al., 2002). There is 
also an observation that is consistent with the opposite direction of 
causation. A study of the role of the cerebellum in fatigue has shown 
that fatigue (defined by the authors as “perception of fatigue”) may 
affect motor control by the cerebellum (Agostina et al., 2023). This 
finding can be interpreted as an indication that fatigue influences the 
precision/SE of motor policies in the cerebellum. Our AIF-based 
model suggests that the causation arrow is a circle (Figure 2); the 
feeling of fatigue exacerbates cowardice (low SE) which infers greater 
expected exertion entailing greater fatigue.

Physical fatigue as a model behavior has the advantage of a clear 
endpoint in the GM’s hierarchy, which is premotor and motor cortices. 
Multiple lines of evidence indicate that the subjective feeling of fatigue 
is not generated by afferent sensory input from the viscera and skeletal 
muscles but by central inferential processes (Marcora, 2009). This is 
consistent with the aforementioned AIF theory of fatigue (Stephan 
et al., 2016) and indicates that fatigue can affect decision-making by 
inflating the value of the expected effort. This hypothesis was directly 
tested in a neuroimaging study of choice behavior under conditions 
of physical exertion (Hogan et al., 2020). The authors demonstrated 
that subjective fatigue affected the evaluation of the prospective effort 
as well as the decision to apply it by inflating the effort value and 
decreasing the commitment to it. They also identified brain structures 
involved in this decision-making and showed that fatigue inhibited 
premotor cortex’ activity. A decrease in this activity was, in turn, 
signaled to the insula, thus increasing the prospective effort value. 
Effort value was found encoded in the anterior cingulate and 
ventromedial prefrontal cortices (Aridan et al., 2019; Hogan et al., 
2019, 2020). Together, these data are consistent with the emerging 
view of the allostatic GM regulating exertion (physical and mental) 
and decisions about putting forth effort. This regulation is instantiated 
by the network of prefrontal, anterior cingulate, insular, and premotor 
and motor (for physical effort) cortices (Müller and Apps, 2019; 
Paulus and Khalsa, 2021; Greenhouse-Tucknott et al., 2022). In this 
view, the insula serves as a point of integration of affective, evaluative, 
and interoceptive information it receives from the salience network, 
prefrontal cortex, and visceral afferents, respectively. It also places the 
“cowardice-fatigue” circle of causality within the insula.

The described scheme is a simplification considering the rich and 
diverse contexts where real behavioral choices happen. For example, 
behaviors can be planned on different timescales, they are conditional 
not only on effort value but environmental affordances on different 
levels (from energy resources to social); behaviors can be automatic, 
deliberate, or novel. Indeed, a recent study implicated the cerebellum 
in the regulation of physical fatigue and demonstrated that fatigue 
affects cerebellar excitability and cerebellum-dependent task 
performance (Agostina et  al., 2023). From the reviewed work, it 
follows that subjective feeling fatigue can influence SE at different 
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levels of its hierarchy, which is consistent with our model (Figure 3). 
The model also suggests that the impact of affect on SE depends on 
the temporal proximity of an action policy and change in affect. This 
offers a testable prediction that “scoring” in a physical (e.g., sports) or 
mental (e.g., problem solving) endeavor is an effective way to not only 
boost SE but alleviate the fatigue.

There are systemic clinical conditions related to pathological 
fatigue including chronic fatigue syndrome and depression. 
Interestingly, one of the common features of depressive disorders is 
inflated effort value (Vinckier et al., 2022). It can explain the pervasive 
deficit of motivation in depression, and fatigue being one of its 
symptoms (Diagnostic and Statistical Manual of Mental Disorder, 5th 
ed. text rev; DSM-5; American Psychiatric Association, 2022).

Depression
Depression has been conceptualized as a disorder of inference by 

several researchers (reviewed recently in Gilbert et al., 2022). Some of 
these theories focused in particular on dysregulation of allostasis as 
the basis of depressive etiology (Barrett et al., 2016; Stephan et al., 
2016; Arnaldo et al., 2022). As a disorder of allostasis, the depressed 
mind is seen as “locked-in” the process of chronically predicting and 
fulfilling dyshomeostasis at all levels of behavioral hierarchy from 
humoral regulation of metabolism and physiology to abstract 
decisions about engaging with the outside world (Barrett et al., 2016). 
Along the same line, the active inference theory of fatigue considers 
depression as generalized fatigue stemming from allostatic self-
inefficacy (Stephan et al., 2016). More specifically, a depressed agent 
believes in its failure to decrease interoceptive surprise. A belief in the 
incompetence of one’s GM then leads to behavioral withdrawal as in 
learned helplessness and to a sense of hopelessness. Interestingly, 
when bacteria find themselves in a state of chronic dyshomeostasis 
due to poor environmental conditions, they undergo sporulation 
which can be seen as metabolic withdrawal as it puts them in a state 
of dormancy (De Hoon et al., 2010).

Building on the idea of self-efficacy as a metacognitive regulator 
of allostasis and its role in depression, SE was proposed as a 
metacognitive regulator of the depressive type of stress response 
(Krupnik, 2020a, 2021). We expand this idea here within the proposed 
model of the role SE plays in cognitive and physiological homeostasis. 
A common theme emerging in discourse about the depressive GM is 
its failure of confidence and its inability to make accurate inferences 
about the world. This idea has been aptly expressed by Clark et al. 
(2018, p. 2,278), “Major depression occurs when the brain is certain 
that it will encounter an uncertain environment, i.e., the world that is 
inherently volatile, capricious, unpredictable and uncontrollable.”

Our model, specifically the partition into cognitive and 
physiological homeostatic GMs (Figure 2), helps explain the stability 
of depressive GM and its resistance to change and therapy. At first 
glance, the depressive GM may appear prone to instability and decay 
as it is failing at self-evidencing due to its agnostic nature: perceiving 
the world as unpredictable and uncertain, which could lead to high 
surprise and, consequently, high free energy. The above quotation, 
however, implies that the depressive GM can depress its free energy 
by way of a highly precise belief in its certainty about the world’s 
uncertainty which then becomes expected and unsurprising. This 
certainty may serve as a metacognitive clamp on the GM’s free energy. 
In addition, at the physiological level, the GM predicts its inefficacy in 
resolving dyshomeostasis (Stephan et al., 2016). Provided cognitive 

and physiological homeostatic GMs’ mutual constraints, it can be seen 
how they can reinforce each other’s depressive inferences. A belief in 
one’s inability to control the external environment would predict 
inescapable stress down to the physiological homeostatic GM which, 
in turn, will fulfill that prediction through autonomic AIF, sending 
upward confirmatory sensory information of physiological stress in 
the form of a negative affective charge. This way, the depressive GM 
can recurrently self-evidence, gaining in stability. We  propose 
rumination as the cognitive mechanism of such self-evidencing.

Rumination (negative/depressive) is a hallmark of depression 
(Nolen-Hoeksema et al., 2008), manifesting in self-referential circular 
thinking about the causes of negative experiences and events. Multiple 
models have been suggested to explain rumination (Smith and Alloy, 
2009), and the debate about its mechanisms and function is ongoing. 
Depressed people feel compelled to engage in rumination despite its 
association with negative affect (Nolen-Hoeksema et al., 2008). To 
resolve this paradox, the idea of rumination’s functional utility as a 
problem-solving process has been set forth. From the evolutionary 
perspective, the “analytical rumination” hypothesis was developed, 
where rumination was regarded as the organism’s attempt at finding a 
solution to the predicament that caused its depression (Andrews and 
Thompson, 2009). Analytical rumination is hypothesized as a 
mechanism for concentrating resources on the trigger problem and 
disengaging from all other mental and physical engagements. In AIF, 
rumination has been framed as repetitive sampling of behavioral 
policies meant to help the organism out of its depressive predicament 
(Berg et al., 2022). The reason for compulsive and repetitive sampling 
is believed to lie in its ineffectiveness due to the sampling bias. In this 
view, the depressed state biases the organism toward resampling the 
same failing policies in a perpetual cycle.

We propose an alternative AIF hypothesis, where the function of 
rumination is not actual or attempted problem-solving but self-
evidencing by the depressive GM. Rumination is a mental action that 
repeatedly confirms the GM’s inference about the world as defeating 
and about itself as defeated (low SE). Such inference is confirmed by 
the physiological homeostatic GM predicting inescapable stress and 
confirming it through autonomic AIF. Thus, rumination perpetually 
suppresses/explains away the prediction error generated by chronic 
dyshomeostasis. As a result, the depressive GM is trapped in the cycle 
of reducing its free energy by rumination, while the energy is raised 
by dyshomeostasis.

This analysis is incomplete without considering the role of affect 
in the ruminative cycle. According to our model, the negative affective 
charge associated with rumination is expected to decrease the 
depressive GM’s confidence and thus destabilize it, which contradicts 
our explanation of the model’s stability. The contradiction can 
be resolved by taking into account that at the highest, epistemic level, 
rumination increases the (self) model’s confidence by “explaining” its 
inefficacy (“I know that (and why) I am  inefficacious”). However, 
according to the AIF theory of affect, an increase in a model’s 
confidence is indexed by positive not negative affect. Our hypothesis 
predicts both negative and positive affective reactions within the 
ruminative cycle. Like any completed mental action, it starts with an 
increase in surprise (indexed by negative affect) and resolves in its 
decrease (indexed by positive affect). Still, many studies (reviewed in 
Watkins, 2008) have shown that rumination does not just “tread 
water” of depressed mood but contributes to its onset and deepening. 
In our view, as rumination continues the self-evidencing of the 
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depressive GM, it engages a broader scope of negative cognition and 
promotes a deeper behavioral withdrawal, thus focusing away from 
opportunities (cognitive and behavioral) to generate positive affect. 
Therefore, the net affective balance of prolonged rumination is 
expected to be negative.

Rather than a state, depression is a dynamic process with its 
intrinsic logic and dynamics, as evolutionary theories of depression 
have argued since long ago (Kaufman and Rosenblum, 1967) and as 
has also been emphasized from the predictive processing perspective 
(Krupnik, 2020a, 2021). The importance of considering the natural 
dynamics of the depressive stress response has been reflected in an 
evolutionary- and acceptance-based therapy for depression (Krupnik, 
2014). It suggests that interventions need to be precisely timed and 
specific to the stage of the depressive process. More specifically, the 
initial phase of depression is seen as a progression toward acceptance 
of the organism’s defeat through emotional and behavioral withdrawal 
(Watt and Panksepp, 2009). We  suggest that rumination is 
instrumental in this process as it works toward confidence in the 
depressive GM’s inefficacy, which is the AIF meaning of learned 
helplessness (Stephan et al., 2016). Previously, we suggested that this 
phase was a cognitive dead end that was supposed to bottom out, 
which in therapeutic settings, could be aided with acceptance-based 
interventions (Krupnik, 2021). The proposed here SE model can 
explain why this may be the case. As the depressive GM keeps gaining 
in epistemic confidence about its inefficacy, the inefficacy itself 
decreases in its precision weight as a prediction error, thus becoming 
unsurprising, and stops sequestering attention and mental resources 
thus relaxing the constraints of the ruminative cycle. At this point, the 
depressive GM is expected to become more amenable to generating 
positive affect and to other interventions such as standard cognitive 
behavioral therapy and behavioral activation.

The present model suggests that the affect-SE loop is an important 
target for both research and therapy. SE and affect can be manipulated; 
SE, as mentioned earlier,—by false feedback, and affect—by exposure to 
salient emotional stimuli as well as chemically with opioids 
(Nummenmaa and Tuominen, 2018). Manipulation of the opioid 
system may be especially interesting to study since activation of the 
μ-opioid receptor leads to a release of dopamine by dopaminergic 
neurons of the ventral tegmental area (McGovern et al., 2023), and 
dopamine can affect precision and, therefore, the model’s confidence by 
modulating synaptic gain (Friston et al., 2012). Moreover, endogenous 
opioids can modulate synaptic gain directly (Winters et  al., 2017) 
representing a parallel dopamine-independent mechanism of regulating 
precision. This is consistent with our model, where affect regulates the 
GM’s precision via SE (Figure  2). The wide distribution of opioid 
receptors and opioidergic neurons in the brain (Le Merrer et al., 2009; 
Reeves et al., 2022) is consistent with our hypothesis about a widely 
distributed effect of the affective charge on the SE hierarchy (Figure 3).

The opioid system has been implicated in depression in both 
animal models and humans (Peciña et al., 2019). Opioids have shown 
an acute anti-depressant effect (Gerner et al., 1980; Nyhuis et al., 2008) 
similar to that of ketamine. Moreover, ketamine potentiates 
endogenous opiate signaling (Gupta et al., 2011), which could partially 
explain its antidepressant activity in addition to (or as part of) its 
NMDA-mediated effect since an antagonist of μ-opioid receptor 
attenuates ketamine’s antidepressant effect (Williams et  al., 2018). 
Interestingly, genetic studies of μ-receptor variants in humans linked 
its possible role in depression to opioidergic activity in the anterior 

cingulate and anterior insula (Way et al., 2009), the areas responsible 
for allostatic regulation and the hypothesized cross-talk between 
physiological and cognitive homeostasis, as discussed earlier. 
Continuation of these lines of research may establish a detailed map 
of the effects of affect dysregulation on the depressive GM, as well as 
advance therapeutics for depressive disorders.

In summary, the present model emphasizes the role of mutual 
regulation by the physiological and cognitive homeostatic GMs in the 
maintenance and dynamics of the depressive GM. Rumination and 
affect-dependent SE emerge as core cognitive mechanisms of these 
dynamics, where the affect-SE autoregulatory loop (or the “like-can-
like” loop) can, under certain conditions, devolve into depression. This 
view brings SE into focus for both research and therapy. Depression is 
a systemic condition, which presumes a systemic approach to its 
therapy. Indeed, combining cognitive, behavioral, and chemical 
interventions has become the mainstay in treatment of depression. 
However, SE has not been specifically and explicitly targeted in 
therapy of depression or in psychotherapy in general. It has recently 
been identified as a possible target for development of the therapeutic 
alliance (Krupnik, 2022), but the above formulation of depression 
suggests that interventions targeting SE could be a valuable addition 
to the anti-depressant toolkit.

Conclusion

Here, we  present an active inference framework for bacterial 
chemotaxis which serves as a mechanism of homeostasis of the 
simplest living system. A core feature of this mechanism is the mutual 
constraint between extero- and interoception in the regulation of 
bacterial motion. We extrapolate this principle to more advanced 
organisms including humans by partitioning the mechanism of 
homeostasis into cognitive and physiological homeostatic GMs. The 
resulting AIF model of homeo- and allostasis represents a closed 
autoregulatory loop between the two GMs, where the physiological 
homeostatic GM is based on integrated extero- and interoceptive 
GMs, and the cognitive homeostatic GM—on the interaction of 
hierarchical affective and self-efficacy systems. Prediction error 
dynamics and precision control are proposed as the mechanisms of 
integration of the physiological and cognitive homeostatic GMs into 
the integrated homeostatic GM (Figure 2).

Two related cognitive-physiological phenomena, fatigue and 
depression, are identified as promising targets for studying the neural 
mechanisms of the proposed model. Both are involved in emotional 
and homeostatic regulation and rely on partially overlapping brain 
circuitries. A central question for such studies is the structural 
organization, neurochemistry, and dynamics of the homeostatic GM’s 
regulation by the affective charge. A related question is how prediction 
error dynamics are translated into the neurochemistry of affect and 
its valence.

In their article on allostatic SE, the authors ponder, “This raises 
the interesting question what, ultimately, the highest set point or belief 
is that dictates the behavior of individual humans” (Stephan et al., 
2016, p. 22). The answer implied by our model is that the highest set 
point is epistemic SE (Figure  3), confidence in the validity and 
accuracy of one’s cognition, or simply put, “I know that I can know.” 
The epistemic SE model perpetually self-evidences by decreasing the 
brain’s free energy, thus integrating its component models into one 

https://doi.org/10.3389/fncir.2024.1283372
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Krupnik 10.3389/fncir.2024.1283372

Frontiers in Neural Circuits 12 frontiersin.org

coherent GM. It is ever at work since the free energy cannot be kept 
steady due to the ever-dynamic internal and external worlds.

“I like therefore I can,” in pathological fatigue and depression, 
devolves into a spiraling vicious cycle “I do not like it therefore 
I  cannot—therefore I  will not like it—therefore I  will fail at it—
therefore I will not like it…” Simpler organisms such as bacteria do 
not possess the affect-SE loop and cannot suffer from depression but, 
on the flip side, they cannot have intrinsically rewarding 
behaviors either.
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Glossary

Homeostasis A process by which a system maintains its parameters close to their optimal value (set points).

Allostasis A process by which a system anticipates and changes the value of its parameters to meet the demands of the environment. Allostasis results 

in deviation of the system’s parameters from its set points.

Allostatic load A measure of a system’s deviation from its homeostatic set points. It also corresponds to the level of stress.

Affect An organism’s subjective experience of allostasis.

Nested hierarchy A hierarchical system where several elements at one level are subordinate (nested under) to fewer elements at the next level up. A complete 

nested hierarchy is a pyramid with multiple elements at its base nested under one element at the top.

Integration A process whereby two (or more) systems become partially interdependent through mutual constraints and regulation, thus forming a new 

integrated system.

Generative model (GM) A model that generates predictions (in the form of probability distribution) about sensory input it receives from the environment. These 

predictions are based on the model’s prior beliefs (priors) about the environment’s causal structure, that is, what events of event sequences 

cause what sensations. The model updates itself (its priors) by minimizing the mismatch (prediction error) between predicted and actual 

sensory input.

Self-evidencing By minimizing prediction errors, a GM confirms itself or maximizes evidence of itself.

Exteroceptive GM A GM that generates predictions about the organism’s external environment.

Interoceptive GM A GM that generates predictions about the organism’s internal (excluding the brain) environment.

Active inference (AIF) A theory, part of the predictive processing paradigm, that explains behavior as minimization of prediction errors and variational free 

energy.

Variational free energy An information theoretic quantity that is the upper bound on the GM’s surprise associated with prediction errors.

Affective charge An organism’s subjective experience of prediction error dynamics.

Physiological homeostasis A process by which an organism maintains its physiological parameters close to their optimal value (set points).

Cognitive homeostasis A process by which a brain minimizes its variational free energy.

Homeostatic GM A GM that has the system’s set points as its priors, and predicts the system’s parameter values to be close to the set points.

Allostatic GM A GM that predicts change of the system’s parameter values in accordance to the environmental demands.

Physiological homeostatic GM A brain GM that generates predictions about the organism’s physiological parameter values such as heart rate, blood pressure, glucose 

levels, etc.

Cognitive homeostatic GM A brain GM that generates predictions of decreasing variational free energy.

Self-efficacy (SE) A GM’s confidence in its predictions or inferences. Quantitatively, SE corresponds to the GM’s precision.

SE hierarchy A hierarchical organization of confidences (or precisions) at different levels of the GM. It descends from epistemic SE (confidence in the 

GM’s validity or accuracy) to contextual SE (confidence in the GM’s predictions about a situation) to action SE (confidence in the GM’s 

action policies in the situation) to allostatic SE (confidence in the GM’s within-the-body-action policies supporting its overt action 

policies).
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