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Introduction: This study investigates the geographical distribution and fractal
characteristics of the medical service network in China, using the “Good Doctor
website” as a case study.

Methods: Data for this study were extracted from the Good Doctor website
Health Community. A two-tiered hierarchical network model was developed to
analyze the geographical distribution and fractal characteristics of the medical
service network in China.

Results: Results unveil the hierarchical nature of hospital distribution and the
interconnectivity among healthcare institutions. Shandong Province as a central
node within the national hospital network, and networks of secondary hospitals
show significant self-similarity and scale-free properties.

Discussion: The small world and fractal characteristics shed light on the rapid
dissemination of medical information and the robustness of the healthcare
network. The results offer a novel perspective for understanding and
optimizing the distribution of medical resources, and help improve the
efficiency of healthcare services supply.
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1 Introduction

With the rapid development of Internet technology, Online Health Communities
(OHCs) have emerged as a crucial channel for the public to obtain medical information
and services [1]. For instance, the American platform Patients Like Me has been
instrumental in aiding patients to find personalized treatment plans through the
sharing of experiences [2]. In China, platforms such as the Good Doctor website have
gained increasing popularity, particularly during the coronavirus diseases, approximately
15% of the population turned to OHCs for healthcare information, diagnosis, and treatment
[3]. The widespread adoption of OHCs has not only provided a more convenient platform
for doctor-patient communication but has also transformed the conventional medical
mode. This transformation enables individuals to access medical services anytime,
anywhere, resulting in significant time and effort savings.

Ensuring equitable access to healthcare services is a primary goal of numerous health
research endeavors. In China, given its large and unequal distribution of population, there
are substantial regional disparities in the quality of medical services [4]. Despite its
economic strides, typified by a remarkable 25-year streak of 9% annual per capita
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growth, China grapples with escalating healthcare disparities.
Critical stakeholders in healthcare policy are increasingly
concerned with multifaceted dimensions of equity, delineated by
five core attributes: availability, accessibility, accommodation,
affordability, and acceptability. The first two—availability and
accessibility—are intricately linked to the geographical dispersion
of healthcare facilities, while the latter three hinge on managerial
practices, individual income levels, and cultural influences [5].

The concept of spatial justice has gained significant attention
among geographers and urban planners, as it aligns with the
advocacy for an equitable distribution of public resources across
different geographic areas. This equitable spatial distribution plays a
crucial role in determining the distribution of welfare within a society
[6]. Geographic Information Systems (GIS) have been instrumental in
quantifying healthcare accessibility spatially [7]. Analytical
methodologies to assess spatial accessibility vary, encompassing
distance-based methods [8], gravity models [9], and more nuanced
approaches like the floating catchment area (FCA) and its derivative, the
two-step floating catchment area (2SFCA) method [10, 11].

This study delves into the spatial patterns and network
characteristics within Chinese healthcare distribution, by
constructing a hierarchical, binary network from Good Doctor
Health Community dataset. Good Doctor website is a leading
online medical consultation platform in China [12]. The
extensive data collection by the Good Doctor website, which
maps the geographical distribution of medical resources in
China. The results reveal a pronounced centrality of Shandong
Province within the healthcare network, establishing it as an
essential nexus within the most extensive connected subgraph.
Additionally, the study casts light on the critical function of
secondary hospitals, which displays characteristics of self-
similarity, small-world connectivity, and scale-free distribution.
Crucially, these secondary hospitals form the backbone of the
network’s resilience, acting as pivotal junctions that uphold the
system integrity and promote equitable access to healthcare services
in alignment with the principles of spatial justice.

2 Related work

2.1 Fractal dimension for fractal structures

The concept of a “fractal,” as coined by Benoit B. Mandelbrot in
1975, describes geometric entities characterized by self-similar
patterns—where each fragment, at any scale, mirrors the whole
structure [13]. These entities are not easily encapsulated by
traditional Euclidean geometry due to their intricate and irregular
patterns. Fractals are defined by their recursive nature and their
Hausdorff dimension, which exceeds their topological dimension,
except in the case of space-filling curves like the Hilbert curve [14].
The creation of fractals employs techniques such as escape-time
algorithms, iterative function systems, random fractals, and strange
attractors [15, 16]. Based on self-similarity, fractals are categorized into
exactly self-similar, quasi-self-similar, or statistically self-similar, with
diverse applications in fields ranging from medicine to finance.

Incorporating fractal theory into complex network analysis has
paved the way for exploring fractal structures and their relationships
with network characteristics, like the small-world phenomenon. Song

et al. [17] extended the use of the box-counting method to complex
networks, revealing that entities such as the World Wide Web, social
networks, and cellular networks exhibit fractal dimensions at specific
scales, indicative of inherent self-similarity. This revelation has spurred
further research into the self-similar nature of networks. Studies by
Gallos et al. [18], for instance, highlight the delicate balance between
robustness and versatility in various networks, ranging from biological to
social systems. They observed a dichotomy wherein strong connections
form a resilient fractal backbone, while weak connections facilitate the
small-world phenomenon [19]. In neuroscience, the balance between
strong and weak synaptic connections is crucial for complex cognitive
functions, exemplifying the brain’s capacity for functional segregation
and integrative cohesiveness. Similarly, in open-source community
networks, the interplay of strong and weak links–evidenced by close
collaboration between core developers (strong links) and sporadic
contributions (weak links)–supports efficient local collaboration and
rapid global information dissemination [19, 20].

The fractal dimension d can be calculated by the box-counting
method, which involves covering the network with boxes of size ϵ
and recording the minimum number of boxes N∈ needed for
complete coverage [21]. The box-counting method, originally
applied in Euclidean spaces, is versatile for any geometry
embeddable in a two-dimensional plane [3]. It not only identifies
fractal characteristics but also computes fractal dimensions. The
approach involves covering the shape with boxes of side length l and
counting the minimum number of boxes N needed, with N being a
function of l. The linear relationship between ln(N) and ln(l) in a
double logarithmic coordinate system signifies the object’s fractal
nature, with the slope of the line representing the fractal dimension.
As the box size is systematically reduced, the growth in the number
of required boxes is used to estimate the fractal dimension. This
relationship is typically represented by the formula (1) [22]:

d � lim
ε→0

[logN ε( )/ log
1
ε

( ) (1)

d represents the fractal dimension, a measure quantifying the
complexity of a network or a geometric shape. lim

ε→0
denotes the limit

as the size of the cube (or box), denoted by ε, approaches zero. ε is the
length of the side of the small cube (or box).N(ε) is the total number of
small cubes (or boxes) required to completely cover the object being
measured. logN(ε) is the logarithm of the number of boxes needed to
cover the object. log(1ε) is the logarithm of the inverse of the box size.

In complex networks, which lack a natural Euclidean distance, the
distance between nodes is defined as the number of edges on the
shortest path. Adapting the box-counting method to this context, Song
et al [23] redefined a box as a set of nodes where the distance between
any two nodes i and j is less than l. This adaptation confirmed the self-
similarity in actual networks and elucidated a power-law relationship
between N and l. Furthermore, their clustering generation method
involved selecting a seed node and forming a cluster within a distance l,
repeatedly done to determine the average cluster massMc as a function
of l, which follows Mc ∝ ld, where d is the fractal cluster dimension.

2.2 Fractals in complex networks

Fractal analysis within complex networks predominantly
utilizes two principal methodological paradigms, namely,
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geometric approaches, primarily centered around box-covering
algorithms, and algebraic approaches, focusing largely on
spectral analysis. The geometric method provides a direct
avenue for analyzing fractal characteristics in networks. In
contrast, algebraic methods, through the examination of
network spectra, uncover the complex relationship between
network topology and spectral characteristics.

Research in the field of complex networks are increasingly
dedicating efforts to develop advanced algorithms that
significantly improve the accuracy of fractal dimension
estimations. Such as edge-covering box-counting algorithm [24],
which refocuses attention on the edges, a critical component often
underrepresented in traditional analyses. This method enhances the
understanding of network structures by emphasizing the
significance of edge interactions. Additionally, the box-covering
method has been innovatively adapted into a graph vertex
coloring problem. This adaptation, leveraging dual-network
models and greedy algorithms, leads to greater computational
efficiency and accuracy in fractal dimension calculations [17].
Moreover, the integration of machine learning techniques into
network fractal analysis marks a significant stride towards
automating and refining fractal dimension calculations [8]. This
approach has opened up new avenues for algorithmic innovation,
making the process more efficient and precise. Furthering, the
incorporation of big data analytics into this domain has been
instrumental in facilitating the analysis of large-scale networks
[25]. This integration allows for the exploration of complex,
intricate network structures.

In the healthcare sector, the application of fractal analysis
techniques has become crucial for delineating the structure and
dynamics of medical networks. Techniques such as lacunarity
analysis and multifractal modeling have been effectively utilized
in medical data analysis. For instance, the use of two fractal
dimensions, namely, the capacity dimension and the mass
dimension, has facilitated the determination of the boundaries of
biological cells [26]. Fractal dimension estimation, with its statistical
characteristics, has enabled clustering of areas with analogous
epidemic patterns and provided a novel fractal-dimension
perspective for evaluating COVID-19 case patterns across
multiple regions [27]. The adoption of GIS-based fractal analysis
has been instrumental in uncovering spatial disparities in the
distribution of medical resources, thereby guiding the
formulation of more equitable healthcare policies [28]. A
comparative analysis of these methodologies reveals an evolving
trend toward integrating geometric and algebraic fractal techniques.

This study employs the first paradigm of fractal technology,
utilizing a centrality-based box-counting approach to construct a
two-layer network model based on geographic locations with
hospital levels as weights. By this way, an in-depth fractal
analysis of the distribution of medical resources on Good Doctor
website Health Community is conducted. Incorporating hospital
tiers as network weights, the study enhances understanding of the
efficiency of medical resource allocation and accessibility to
healthcare services. This work offers new perspectives for
evaluating and improving spatial accessibility to healthcare
services, thereby supporting policy-making and
healthcare provision.

3 Methods

3.1 Data collection and preprocessing

The datasets are collected from the Good Doctor website Health
Community, a leading platform for online medical consultations in
China. The platform contains over 10,000 hospitals and
820,000 practitioners, with a subset of 230,000 doctors affiliated
with public hospitals [12]. Figure 1 shows the online consultation
situation of the platform in the past 3 years. This study aims to
analyze the fractal dimensions of the spatial distribution of hospitals
within this digital healthcare network. The datasets are collected
through application programming interfaces (API) with Python
programming language. After data pre-processing and cleaning, a
total of 10,660 data items are left as the major materials for this
paper. The data item includes hospital names, tier classifications,
and geolocations across provincial and district levels.

3.2 The model

This network comprises a hierarchical, two-tiered network
model that captures the geography, structure, and relationships
within the Good Doctor website Health Community’s hospital
distribution. Figure 2 is the structural framework of the network.
This network model is constructed with three distinct nodes:
hospital, city location, and province location, each representing
different levels within the healthcare system’s geography. In this
two-tiered network model, the first layer contains geographical
locations of hospitals. The second layer further consider the
number and weights of hospitals within a city or district,
providing insight into the local healthcare infrastructure.

Table 1 show the tiered classification system for hospitals, as
mandated by the administrative health departments of China, it
provide a robust framework for assigning weights to nodes within
the healthcare network. This system evaluates medical institutions
across a three-tiered hierarchy, with each tier being further
subdivided into ‘A’ and ‘B’ sublevels, signifying the institution’s
caliber. Tier ‘3A’ representing the highest qualification achievable by
mainland Chinese hospitals, they are predominantly located in
major urban centers such as municipalities, provincial capitals,
and large cities [29]. In accordance with the tiered classification
system for hospitals, this study assigns distinct weights to various
hospital tiers. The study use of these official tiers as nodes weights in
the network analysis aptly reflects the role and significance of each
hospital within the overarching healthcare delivery system.

In the network’s architectural framework, each hospital is
represented as a node, assigned a weight Wh(i) that reflects its
tier rating. This weight allocation is determined by a function f
based on Table 1 hospital tier. For the weighting of city location
nodes, denoted as Wcl, the formula is structured as shown in Eq. 2:

Wcl � ∑
i∈c
Wh i( ) (2)

the Wcl of a city location node is the sum of the weights of all
hospitals within the same location. i ∈ C indicates all hospitals
located within city C .This hierarchical network edges include
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from hospital nodes to their respective location nodes, and edges
between hospitals within the same Location.

In the second layer of our network model, we capture the
broader regional and interurban dynamics by mapping the
geographical affiliations between cities and provinces. In this
layer, nodes representing provinces stand at the apex of the
hierarchy, aggregating the data from subordinate city or district
nodes. The formula is as follows (3):

Wp � ∑
j∈p

Wcl j( ) (3)

whereWp represents the weight of the province node. i ∈ P indicates
each city location node j that falls within province P. Wcl(j) is the
weight of the city location node j, as defined in the first layer of the
network. This hierarchical structure in the network allows for a
comprehensive representation of the healthcare system’s physical

and organizational structure. It incorporates the geographical
affiliations and administrative boundaries of the provinces and
their subordinate cities or districts. Notably, in this network
model, all edges are considered unweighted, focusing solely on
the relationships and connections among nodes.

4 Network analysis

4.1 Network visualization and
characteristics analysis

Figure 3 exhibits the two-tiered network structural distribution,
highlighting the China 34 provinces and cities and their significant
nodes. Table 2 delineates the entire network characteristics,
providing a comprehensive view of the network’s topology. The

FIGURE 1
Good doctor online platform online consultation data (A), Quarterly consultation frequency data on the Good Doctor Online platform from 2020 to
2023. (B), Statistical analysis of consultation methods used by patients on the Good Doctor Online platform from 2020 to 2023. (C), Age distribution of
patients consulting via the Good Doctor Online platform and the corresponding consultation methods.
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network, consisting of 10,365 nodes connected by 219,871 edges,
exhibits an average degree of 42.426.

This high average degree underlines a densely interconnected
network, suggesting significant interaction and resource exchange
among hospitals. The network maintains a diameter of 5, implying
that the most distantly positioned nodes in the network can be
connected via a relatively short path. This describes the rapid
information transfer and coordination among hospitals, even
though the distant geographical distance. The network density is
0.004, with many potential connections remaining unestablished.
The structure features 31 connected components, and a high
modularity score of 0.985. This modularity reflects the network’s
organizational structure, mirroring administrative and geographical
boundaries within the healthcare system. The mean clustering
coefficient of 0.991 reflects a strong tendency for nodes to cluster
together, indicating a tight-knit network with a high potential for
collaboration and resource pooling among closely connected

hospitals. The average path length 3.646 illustrates that the close
connection of healthcare organizations. These topology
characteristics point to the potential fractal nature of the network.

4.2 Scale-free and small-world
properties analysis

4.2.1 Entire network analysis
Table 3 shows the entire network scale-free and small-world

properties analysis result, and Figure 4 shows the entire network
power-law fit of the degree distribution. Scale-free networks display
a power-law degree distribution where few nodes serve as significant
hubs, whereas small-world networks are characterized by short path
lengths and high clustering, exemplifying the ‘six degrees of
separation’ phenomena. This study examines these attributes
through key metrics exploration of the network’s scale-free and

FIGURE 2
Structural framework of the two-tiered network model.

TABLE 1 Weight assignments for hospital tiers.

Hospital tier Weight Description

No rating 0.05 Hospitals not included in the rating

Level 1 0.30 Level 1 hospitals are primary healthcare providers directly serving specific populations within communities

Level 1-A 0.45 These hospitals have met higher standards within the Level 1 category

Level 2 0.50 Level 2 hospitals serve multiple communities, offering comprehensive medical and health services

Level 2-A 0.65 These are distinguished by their higher service quality and have additional capabilities in terms of medical service provision, teaching,
and research

Level 3 0.80 Level 3 hospitals provide high-level specialized medical and health services to several regions

Level 3-A 0.95 Representing the highest echelon and advanced teaching, and leading-edge research capabilities
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small-world properties, including the Power-law Exponent (Table 3,
Formula 6), Standard Error of the Power-law Exponent, Log-normal
Mean (Table 3, Formula 7) and Standard Deviation (Table 3,
Formula 8), Likelihood Ratio, and p-value. The Power-law
Exponent highlights the network’s hub-centric nature,
demonstrating a few nodes with extensive connections.
Simultaneously, the Standard Error of this exponent offers a
measure of estimation accuracy, enhancing the credibility of
findings. To further dissect the network’s degree distribution, we
employ the Log-normal Mean and Standard Deviation, providing

insights into the central tendency and variability of connections on a
logarithmic scale. The likelihood ratio and p-value are then
compared to the fit of different distribution models, confirming
the statistical robustness of our analysis. A power-law degree
distribution is described by the formula [30]:

P k( ) ≈ Ck−α (4)
where P(k) denotes the probability of encountering a node with a
degree k within the network. C serves as a normalization constant to
ensure that the total of the probability distribution sums to unity. α
known as the power-law exponent, reflecting the structural
heterogeneity of the network. k symbolizes the degree of a node,
signifying the count of its connections. This study employed
Maximum Likelihood Estimation (MLE) for determining the
power-law exponent (α) [31]. MLE effectively aligns the power-
law exponent with observed data, thereby capturing the scale-free
nature of the network. The likelihood function for the power-law
model is given by [32]:

L r; k( ) � ∏n
i�1

p ki|α( ) (5)

The maximum likelihood function L(α; k) is employed to
estimate the optimal power-law exponent α in a given dataset.
The exponent α is a key parameter in network analysis, reflecting
how node connections are distributed and identifying whether the
network exhibits scale-free characteristics and self-similarity. The
degree ki of the ith node represents the number of connections it has,

FIGURE 3
Structural distribution of the entire network.

TABLE 2 Characteristics of the entire network.

Network metric Value

Nodes 10,365

Edges 219,871

Average Degree 42.426

Diameter 5

Density 0.004

Connected Components 31

Modularity 0.985

Mean Clustering Coefficient 0.991

Average Path Length 3.646
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while p(ki|α) denotes the probability of the ith node having a degree
ki under the power-law distribution.

The power-law exponent α � 1.2365, although lower than the
usual range of 2-3, highlights a notable feature of the network: a
significant number of connections are concentrated among a small
group of nodes. This suggests the presence of key ‘hub’ nodes within
the network. The high average degree of 42.426 corroborates this,
indicating that these hub nodes are extensively interconnected. This
finding aligns with existing research on networks such as the Ythan
Estuary and Silwood Park [33, 34]. The Standard Error of Power-law
Exponent σ � 0.0023, emphasizes the precision and reliability of the
power-law exponent estimation. Log-normal Mean μ � 3.5353 and
Standard Deviation σ log � 0.7074 indicate the central tendency and
variability of the degree distribution on a logarithmic scale. The
dispersion highlights the presence of both highly connected hubs
and numerous lower-degree nodes, characteristic of scale-free
networks. The negative Likelihood Ratio R � −311.2721 and the

significant p − value � 0.0 collectively suggest that the power-law
distribution aptly models the network’s degree distribution, further
supporting its scale-free nature.

4.2.2 Largest connected subgraph analysis
Figure 4 shows largest connected subgraph network power-law fit of

degree distribution. Tables 3–5 show the network structure and various
parameters of the largest connected subgraph (Shandong Province).
These results show the largest connected subgraph network
characteristics and parameter results of small-world and scale-free
characteristics. The largest connected subgraph comprises 820 nodes
and 12,976 edges. This indicates a substantial network size, signifying
extensive healthcare connectivity within the province. Average Degree
(28.202) demonstrates that each node in the network is directly
connected to around 28 other nodes. It reflects a high level of direct
interconnectivity among the nodes, indicative of a densely knit network.
The small diameter (4) suggests small-world properties that the longest

TABLE 3 Scale-free and small-world properties.

Parameter Symbol Entire
network

Largest
connected
subgraph

Description Calculation method

Power-law Exponent α 1.2365 1.2132 Measures the heterogeneity of the
network’s degree distribution

-

Standard Error of
Power-law Exponent

σα 0.0023 0.0074 Represents the spread of the power-law
exponent values around their mean in the
dataset.

σα � 







Var(α̂)√

(6)









Var(α̂)√

is the variance of the estimate
of the power-law exponent

Log-normal Mean μ 3.5353 3.9967 The mean value of the network’s degree
distribution after log-transformation

μ � lnxmedian (7) xmedian :Median of the
degree distribution

Log-normal Standard
Deviation

σ log 0.7074 0.3406 A measure of the spread or variability in
the network’s degree distribution after
log-transformation

σ log �










ln(1 + v

M2)
√

(8)

V represent variance of the degree
distribution; M represent mean of the

degree distribution

Likelihood Ratio R −311.2721 −324.2192 Compares the relative goodness of fit
between two distributions

-

p-value p − value 0.0 0.0 Probability of rejecting the null hypothesis -

FIGURE 4
Power-law degree distribution in the entire network and largest connected subgraph.
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path between any two nodes in the network is relatively short. The
network’s density (0.034), while indicative of a sparse overall structure,
shows a reasonable level of connectivity given the network’s size. While
not all possible connections are present, the existing ones form a
coherent network. The high modularity (0.908) reflects a strong
community structure within the network. This can imply a network
division into sub-networks with dense internal connections. The Mean
Clustering Coefficient (0.499) shows a moderate tendency of nodes to
cluster together. It indicates the presence of localized groups or
communities within the network. The short average path length
(1.267) signals efficient information or resource transfer across the
network, essential for quick response and coordination in
healthcare services.

In further network feature analysis, the power-law exponent α �
1.2132 (1.2132) indicates a certain level of inhomogeneity in the
network’s connectivity, with some nodes having significantly more
connections than others. Standard Error of Power-law Exponent σ �
0.0074 lending credibility to the scale-free nature of the network.
Log-normal Mean μ � 3.9967 and Standard Deviation σ log � 0.3406
are indicates a degree distribution with a broad range of node
connectivity. The log-normal mean of 3.9967 reflects that the
central tendency of node connections, when transformed to a
logarithmic scale, leans towards a higher value. This suggests that
while there are nodes with an extensive number of connections, a
significant portion of the network comprises nodes with relatively
fewer connections. The standard deviation of 0.3406, being a
measure of spread on the log scale, shows that the degree
distribution has some variability but not extremely wide-ranging.

The negative Likelihood Ratio R � −324.2192 and the significant
p − value � 0.0 , these statistics support the suitability of the log-
normal distribution for modeling the network’s degree distribution,
suggesting that the degree distribution follows a log-normal pattern
more closely than a power-law. Given these observations, the Largest
connected subgraph exhibits properties conducive to fractal analysis.

As illustrated in Table 5 and Figure 5, in this model the provinces
such as Shandong, Guangdong, Hunan, Henan, and Sichuan have
substantial medical network sizes. As reflected by the number of
network connectivity results, highlighting their significance within
the national medical network. Notably, Shandong Province, with the
largest connected subgraph, demonstrates it provides essential services
to the Large base population. Given the requirements for network
connectivity and representativeness in subsequent research, the largest
connected subgraphs were chosen as the basis for fractal analysis. This
choice is grounded not only on the consideration of node quantity but
also on the importance of this subgraphs within the overall
network structure.

4.2.3 Largest connected subgraph assortativity
coefficient analysis

To gain a deeper understanding of the network’s connectivity
patterns and their self-similar characteristics across different scales,
we further computed the assortativity coefficient of the largest
connected subgraph. It is calculated by comparing the degree
distribution of nodes in the network to the degree distribution of
their neighbors. The formula for calculating the assortative
coefficient, as shown in 9, is as follows [35]:

r �
1
E∑ijiki − 1

2E∑i ji + ki( )[ ]2
1
2E∑i j2i − k2i( ) − 1

2E∑i ji + ki( )[ ]2 (9)

Here, E represents the total number of edges, ji and ki are the
degrees of the nodes at either end of edge i. The assortative
coefficient r ranges from −1 to +1, where +1 indicates perfect
assortative mixing, −1 indicates perfect disassortative mixing,
and 0 indicates no assortative, implying random connections
between nodes. In this study, the calculated result revealed a high
positive assortative, the assortativity coefficient of the network is
r � 0.998. This suggests that nodes of high degree tend to connect
with other high-degree nodes, while low-degree nodes tend to
connect with other low-degree nodes. Such a pronounced pattern
of assortative may indicate a strong community structure within
the network, an important marker of fractal properties,
suggesting consistency in connectivity patterns across
different scales.

TABLE 5 Connectivity and diameter metrics of network subgraphs.

Subgraph index Number of nodes Network diameter Central province

Subgraph 1 820 4 Shandong

Subgraph 2 693 5 Guangdong

Subgraph 3 615 4 Hunan

Subgraph 4 581 6 Henan

Subgraph 5 576 5 Sichuan

TABLE 4 Network characteristics of the largest connected subgraph.

Network metric Value

Nodes 820

Edges 12,976

Average Degree 28.202

Diameter 4

Density 0.034

Connected Components 1

Modularity 0.908

Mean Clustering Coefficient 0.499

Average Path Length 1.267
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Furthermore, the power-law distribution analysis for the entire
network and the largest connected subgraphs has highlighted the
presence of hub nodes within the network. These nodes possess
unusually high connections, serving as central pivots around the
network. Such a structural configuration suggests that similar
connectivity patterns may be observed across different scales,
indicating the potential fractal nature of the network.

5 Experimental results

5.1 Calculation of fractal dimension

In the quest to quantify the fractal dimension of the Good
Doctor website Health Community’s hospital distribution network,
the Compact Box Burning (CBB) [36] algorithm offers a viable
approach. However, the inherent randomness in the node selection
process for box occupation within the CBB algorithm can
inadvertently disrupt the structural integrity of the network. This
is particularly problematic in geographical or social network, where
nodes exhibit complex dependency relations, necessitating a higher
number of boxes to achieve comprehensive network coverage [37].
Such randomness can decrease the accuracy of node coverage within
boxes and fail to preserve network connectivity. To address the
limitations of the CBBmethod, this study employs a centrality-based
box-counting approach to calculate the fractal dimension of the
network structure [37, 38]. The methodology unfolds as follows:

Define the box size lb, and construct a set C containing all
uncovered nodes.

Select the node iwith the highest centrality and include all nodes
within a shortest path distance li < lb as part of the box.

Count the number of boxes Nb(lb) required to cover the entire
network at box size lb.

Repeat steps 2 and 3 until the set C is empty, culminating in the
calculation of the fractal dimension db as a characteristic feature of
the network’s fractal structure. The fractal dimension is estimated as
follows (10) [22]:

db � lnNb lb( )
ln lb( ) (10)

Here, db represents the fractal dimension of box b, lb is the size of
the box, and Nb(lb) is the minimum number of boxes of size lb
required to cover the entire network. Furthermore, to accurately
quantify the network’s fractal dimension, our study employed a
linear regression analysis on the outcomes of the centrality-based
box-counting method. By analyzing the logarithmic relationship
between box sizes and the count of boxes required for coverage, we
determined the network’s fractal dimension. This centrality-based
methodology not only mitigates the issue of structural integrity loss
but also enhances the precision of network coverage, thus providing
a more accurate representation of the network’s fractal nature.

5.2 Renormalization group analysis

This study employed the hospital node weights (0.05, 0.5, 0.65,
0.8) as varied thresholds network and calculated fractal dimensions.
Networks Gwn at each threshold were defined by removing edges

with weights below the specified valuewn. To preserve the network’s
structural integrity and connectivity, we concentrated our analysis
on the largest connected subgraph. In this study, we concentrated on
three primary parameters for fractal analysis: Fractal Dimension,
Regression Coefficient, and Regression Intercept. The Fractal
Dimension serves as a metric to characterize fractal patterns or
sets, quantifying complexity as the ratio of change in detail relative
to scale change. Typically, a fractal dimension approaching or
exceeding 2 indicates a network structure of high complexity and
interconnectivity [22]. The Regression Coefficient reveals the
network’s complexity variation across different scales, determined
through logarithmic transformations of box sizes and counts. A
coefficient near −1 suggests a proportional relationship between
these log-transformed values, while significant deviations
from −1 indicate a more intricate relationship, highlighting the
scale-dependent nature of the network’s complexity. Meanwhile, the
Regression Intercept provides an initial complexity measure at the
smallest scale analyzed, with higher values generally pointing to
increased complexity at these smaller scales. Applying
renormalization group analysis to this subgraph across the range
of threshold weights unveiled distinct power-law decays.

Figure 6 and Table 6 present the network’s fractal dimension
and regression analysis. These findings underscore that at a
threshold weight of 0.5, the network’s fractal characteristics are
most pronounced. At threshold 0.05 (wn � 0.05): The fractal
dimension is 0.426, indicating relatively low structural complexity
when including the weakest connections. The regression coefficient
of −0.426 suggests a straightforward relationship between box size
and count after logarithmic transformation, with network
complexity not significantly varying across scales. A higher
regression intercept of 5.694 indicates a certain level of structural
complexity even at the smallest scale, suggesting that even weak
connections play a role in the network structure at smaller scales.

Elevating the threshold to 0.50 (wn � 0.5): The fractal dimension
increases significantly to 3.197, demonstrating pronounced fractal
properties and dense connectivity when considering Level
2 hospitals after excluding lower-weight nodes. The regression
coefficient of −3.197 indicates a significant increase in network
complexity with scale. The regression intercept of 4.865, lower than
that at 0.05 threshold, suggests that although overall complexity is high,
complexity at the smallest scale is relatively lower.

At threshold 0.65 (wn � 0.65): The fractal dimension stands at
2.211, maintaining relatively high structural complexity while
considering higher-tier (Level 2A–3A) hospitals. The regression
coefficient of −2.211 reflects significant but less pronounced changes
in network complexity across scales compared to the threshold to 0.50
(wn � 0.5). The regression intercept at 4.612 indicates further reduced
complexity at the smallest scale, showing that as the threshold increases,
the network tends toward a more simplified structure.

At threshold 0.80 (wn � 0.80): The fractal dimension reduces to
0.345, suggesting the loss of most fractal characteristics and a shift
towards a more simplified and centralized structure when focusing on
the highest-tier (Level 3-3A) hospitals. The regression coefficient
of −0.345 implies a simpler relationship between complexity and
scale changes, predominantly influenced by strong connections
among top-tier hospitals. The regression intercept of 4.815, slightly
higher than at the 0.65 threshold, indicates a tendency towards a more
centralized network structure at the highest threshold.
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The fractal analysis of the network, particularly at the threshold
weight of 0.5, unveils a pronounced fractal nature, marking it as a
pivotal point for capturing the network’s structural dynamics. Here,

the network demonstrates a dense and interconnected fabric. This
complexity signifies a resilient system, particularly evident when
considering secondary (Level 2) hospitals. As the threshold weight

FIGURE 5
Structural network of the largest connected subgraph (shandong province).

FIGURE 6
Fractal dimension analysis at multiple thresholds.

TABLE 6 Fractal dimension and regression analysis results at multiple thresholds.

Threshold weight Fractal dimension Regression coefficient Regression intercept

0.05 0.426 −0.426 5.694

0.50 3.197 −3.197 4.865

0.65 2.211 −2.211 4.612

0.80 0.345 −0.345 4.815
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increases beyond this point, there is a noticeable shift in the
network’s fractal characteristics. This transition is marked by a
decrease in fractal properties, leading to a more centralized and
simplified structure, suggesting that the network’s intricacy is most
optimally represented at the mid-level threshold.

5.3 Self-similarity and assortativity
coefficient analysis

This research conducts an in-depth analysis of secondary and
higher-level network hospitals in Shandong Province, emphasizing
the shifts in power-law exponents across three specific threshold
values: 0.5, 0.65, and 0.8. In the field of network science, self-
similarity refers to the characteristic of a network in maintaining
similar structural features across various scales. A pivotal metric for
assessing self-similarity in networks is the power-law exponent. This
exponent quantifies the distribution of node degrees, offering a
measure of how connections within the network are dispersed
among nodes. The calculation of the power exponent is the same
as the MLE method, using formulas (4) and (5).

Table 7 delineates the power-law exponent analysis for both the
original network and its largest connected component (LCC) at
varying thresholds by the aforementioned method. Figure 7 presents
the degree distributions of the network under varying thresholds. At

the wn � 0.5 threshold, which aligns with Level 2 hospitals, the
original network exhibits a power-law exponent of α � 1.225,
whereas the LCC demonstrates a slightly lower exponent of
α � 1.073. This indicates a substantial presence of highly
connected nodes within the network. As the threshold increases
to wn � 0.65, aligning with Level 2-A hospitals, the exponent for the
original network slightly decreases to α � 1.180, and the LCC to
α � 1.054. This shift suggests a marginal decrease in network
density, yet connectivity remains notably concentrated. Elevating
the threshold to wn � 0.8, which includes only Level 3 hospitals,
leads to a significant reduction in the original network’s power-law
exponent, dropping to α � 0.964, while the LCC is at α � 1.036.
Original network’s power-law exponent substantial decline reflects
the scarcity of higher-tier hospitals in the network, resulting in a
sparser network structure. Despite variations in thresholds, the LCC
consistently maintains a higher power-law exponent.

Table 8 shows the assortativity coefficient analysis for different
threshold weights, revealing the network’s connectivity patterns among
various hospital tiers. At the 0.5 Threshold, the assortativity coefficient
r � 0.971 indicates a highly assortative network structure. This high
correlation underscores a homophilous connectivity pattern within the
network. At 0.65 Threshold, there is a slight decrease in the assortativity
coefficient r � 0.945. This reduction signals a gradual diversification in
the network’s connectivity. Level 2-A and higher-tier hospitals have
started to establish more connections with different-tier hospitals but
are primarily still maintaining network assortativity. At the
0.8 Threshold, the assortativity coefficient further decreases
r � 0.865. This marked decline reflects an increased heterogeneity in
the network’s structure. Top-tier hospitals (Level 3-3A) demonstrate a
tendency to form connections with a wider variety of hospital tiers,
leading to a more diversified.

This result demonstrates that the network distribution of
secondary hospitals exhibits self-similarity and assortativity
characteristics at different thresholds. Additionally, the largest
connected component (LCC) of the network at different
thresholds shows smaller change in power-law exponent values,
thereby maintaining a degree of structural consistency.

6 Discussion and conclusion

This study provides valuable insights into the fractal nature and
power-law characteristics of Chinese hospital network. The
importance of secondary hospitals is emphasized in ensuring
equitable distribution and improving the accessibility to
healthcare resources. Allocating additional resources to these
essential healthcare centers, particularly secondary hospitals, is
expected to elevate public access to medical services. This
enhancement is crucial for meeting immediate healthcare needs

TABLE 7 Power law exponent analysis at multiplet thresholds.

Threshold Original network Largest connected component (LCC)

0.5 1.225 1.073

0.65 1.180 1.054

0.8 0.964 1.036

FIGURE 7
Degree distribution and power law fit at multiple thresholds.

TABLE 8 Assortativity coefficient analysis at multiple thresholds.

wn � 0.5 wn � 0.65 wn � 0.8

r 0.971 0.945 0.865
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and ensuring the long-term stability and robustness of the
healthcare network. The necessity of a balanced, strategically
dispersed healthcare network is underscored. Optimizing resource
allocation and service delivery across different healthcare levels is
imperative for a resilient, responsive, and fair healthcare system.

Of course, certain limitations and future directions should be
acknowledged. One of the primary constraints of this research is the
scope of data, which, although comprehensive, is limited to a static
in time. Healthcare networks are dynamic, with patterns of
connectivity and hospital roles evolving in response to policy
changes, technological advances, and public health needs. For
future work, it is considered to design a multi-faceted analytical
approach that incorporates economic development indices, political
support for healthcare, and administrative efficiency across different
provinces. Further research could also benefit from tracking changes
to observe the effects of healthcare reforms and investments. Such a
study could help improve the resilience of the healthcare system.

Secondly, the analyze method is limited to network
characteristics analysis. The introduce of machine learning
models may help uncovered hidden patterns under the network,
informing future healthcare policy decisions.

Lastly, collaboration with urban planners and public health
experts could yield a comprehensive framework that aligns
hospital network development with broader urbanization
objectives. This inter-disciplinary approach could facilitate a
more holistic view of healthcare provision, where network
analysis informs both the strategic placement of new hospitals
and the optimization of existing resources.
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