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Abstract. We present a method for the analysis and compact description of large-scale multivariate weather
extremes. Spatial patterns of extreme events are identified using the tail pairwise dependence matrix (TPDM)
proposed by Cooley and Thibaud (2019). We also introduce the cross-TPDM to identify patterns of common
extremes in two variables. An extremal pattern index (EPI) is developed to provide a pattern-based aggregation
of temperature. A heat wave definition based on EPI is able to detect the most important heat waves over Europe.
As an extension for considering simultaneous extremes in two variables, we propose the threshold-based EPI
(TEPI) that captures the compound character of spatial extremes. We investigate daily temperature maxima and
precipitation deficits at different accumulation times and find evidence that preceding precipitation deficits have
a significant influence on the development of heat waves and that heat waves often co-occur with short-term
drought conditions. We exemplarily show for the European heat waves of 2003 and 2010 that TEPI is suitable
for describing the large-scale compound character of heat waves.

1 Introduction

Extreme weather events over Europe, such as heat waves and
droughts, but also heavy rainfall events have repeatedly at-
tracted attention in recent years due to their dramatically high
impact on socioeconomic systems. The most prominent Eu-
ropean heat waves in the 21st century occurred in 2003, 2010,
and 2018. The high temperatures, which lasted for a period
of several weeks to months, in combination with compound
drought periods, led to disastrous effects on socioeconomic
and local natural systems, such as an increased number of
wildfires, crop failure, and increased health-related deaths
(see, e.g., Liu et al., 2020; Fischer and Schär, 2010). For
instance, according to WHO, more than 70 000 additional
deaths in 12 European countries can be attributed to the Eu-
ropean heat wave in 2003 (Anderson et al., 2004), which
was very likely the hottest summer in 500 years (Luterbacher
et al., 2004).

Several studies indicate that an increase in the global mean
temperature and its variability leads to more frequent heat
wave and drought events that are characterized by longer du-

rations and greater severity (Gershunov and Douville, 2009;
Dai et al., 2018; Guerreiro et al., 2018; Della-Marta et al.,
2007). This is also confirmed in the recent IPCC report
(IPCC, 2021), saying that European hot extremes (includ-
ing heat wave) have significantly increased in intensity and
number since 1950. Particularly severe heat waves in Europe
occurred in recent years in 2018, 2019, and 2022, often in
connection with drought conditions. The 2022 heat wave re-
sulted in record-breaking temperatures in France, Spain, the
United Kingdom, and Germany (Rousi et al., 2023). Our un-
derstanding of the underlying dynamics of heat waves and,
consequently, the changes that can be expected under climate
change have improved considerably in recent years. In con-
trast, the dynamics and underlying structure of co-occurring
temperature and drought events are much less understood.
However, studies show that concurrent drought events can
strongly influence heat extremes (Zscheischler and Senevi-
ratne, 2017). For example, for the heat wave of 2003, it has
been demonstrated that the co-occurring drought was a key
contributor to the extreme temperature anomalies (e.g., Fis-
cher et al., 2007; Black et al., 2004; Ferranti and Viterbo,

Published by Copernicus Publications.



30 S. Szemkus and P. Friederichs: Spatial patterns and indices for heat waves and droughts over Europe

2006). Therefore, when considering potential changes under
climate change, joint consideration of heat and drought ex-
tremes is necessary.

Several definitions and indices for drought and heat waves
can be found in the literature. Heat wave indices usually
include daily maximum temperature exceeding a certain
threshold for several consecutive days (Robinson, 2001).
Standard indices for heat waves are, e.g., the heat and cold
wave index (HCWI) (Lavaysse et al., 2018), which is imple-
mented in the Copernicus European Drought Observatory or
the heat wave duration index (HWDI) and has been recom-
mended by the IPCC (Griggs and Noguer, 2002). Standard
meteorological drought indices are, e.g., the Palmer drought
severity index (PDSI) (Palmer, 1965) and the standardized
precipitation index (PSI) (McKee et al., 1993). A recent,
promising approach to identifying heat waves and droughts is
presented by Schädler and Breil (2021). They base their eval-
uation on so-called regional climate networks (RCNs) and
identify extremes over Germany. Indices for compound heat
waves and drought are less common in the literature. Recent
approaches to index definition include the dry-hot magnitude
index (Wu et al., 2019) or the standardized compound event
indicator (Hao et al., 2019).

Detection and attribution (D&A) provides a powerful sta-
tistical tool for analyzing climate change’s complex causes
and effects. Reviews of the application of D&A to meteo-
rological data are given in Slater et al. (2021) and Ummen-
hofer and Meehl (2017). In the high-dimensional space of
the climate system, both the natural variability of the sys-
tem and some internal variability overshadow the signals of
climate change (Fischer and Knutti, 2016). Therefore, local
changes, especially on smaller scales, only become visible
if the data are analyzed in a compressed form. Data com-
pression is therefore of great importance for a successful and
reliable D&A study.

There exists a variety of statistical methods of different
complexity for information compression. For example, a rel-
atively simple approach is to aggregate the data spatially, but
this usually neglects the spatial dependence structure of the
underlying extreme values. Other techniques may include fil-
tering using Fourier or wavelet transforms or adaptive data
methods such as principal component analysis (PCA). How-
ever, most data compression methods focus on the descrip-
tion of the bulk of the underlying distribution, as described
by first- and second-order moments, and provide little to no
information about the tail of the distribution. Adaptive data
methods have been widely used to study the spatial struc-
ture of heat waves. For example, Stefanon et al. (2012) use
a clustering approach to identify six common heat wave pat-
terns over Europe. Schubert et al. (2014) identify and ana-
lyze spatial patterns related to precipitation and temperature
based on rotated empirical orthogonal functions (EOFs) over
Russia. The studies agree that the patterns identified are con-
sistent with large-scale blocking anticyclones associated with
Rossby waves.

For the D&A of extreme events, mathematical methods are
needed that achieve a targeted description of extremes. The
framework in which these methods operate is the multivari-
ate extreme value theory (MEVT) with broad applications
in mathematical and meteorological research (e.g., Beirlant
et al., 2006; Coles et al., 2001). New approaches combine
MEVT with existing information compression methods. The
rich experience with these methods in atmospheric research
allows their targeted application to extreme events. For ex-
ample, Morris et al. (2019) use an approach based on em-
pirical basis functions to model the spatial dependence of
low-rank max-stable processes. Janßen and Wan (2020) and
Saunders et al. (2021) propose clustering approaches com-
bined with an extremal framework, and Goix et al. (2017)
also use a clustering approach to design a statistical learn-
ing procedure for anomaly detection based on a dataset with
standard Pareto margins. Boulaguiem et al. (2022) combine
generative adversarial networks with extreme value theory to
model spatial dependencies in temperature and precipitation
extremes. This shows that some of these methods are suitable
for the description of composite extrema in two variables. For
example, Vignotto et al. (2021) use an extreme value depen-
dence clustering approach to identify spatial patterns of situ-
ations where precipitation and wind extremes are very likely
to occur simultaneously.

Another promising approach comes from Cooley and
Thibaud (2019). They propose the tail pairwise dependence
matrix (TPDM), which summarizes extremal dependence us-
ing a regular varying framework and a threshold-based es-
timator. They build on the work of Larsson and Resnick
(2012), who first defined this matrix for the bivariate case
and show that the TPDM has some favorable properties that
it shares with the covariance matrix so that the TPDM can
be used as an analog to the covariance matrix for extremes.
Jiang et al. (2020) and Rohrbeck and Cooley (2023) propose
a PCA study using the TPDM with applications to daily pre-
cipitation over the United States (Jiang et al., 2020) as well
as historical river flow levels across northern England and
southern Scotland (Rohrbeck and Cooley, 2023). Drees and
Sabourin (2019) also investigate a PCA based on the TPDM
but focus more on describing the mathematical background.
Finally, Fix et al. (2021) use the TPDM to propose a new
model for spatial dependencies inspired by the simultaneous
autoregressive (SAR) model with application to a gridded
dataset of daily precipitation over Colorado.

In this paper, we introduce the extremal pattern index
(EPI) for spatial weather extremes. The EPI is constructed
based on the leading patterns derived from a PCA for ex-
tremes, as proposed by Jiang et al. (2020). Climate indices
based on PCA, e.g., for the North Atlantic Oscillation (Barn-
ston and Livezey, 1987), are already well-established tools
in climate monitoring and analysis. By replacing the covari-
ance matrix with the TPDM, we shift our focus to identifying
extreme weather patterns, such as heat waves and droughts,
while leaving the PCA procedure basically unchanged.
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We use daily maximum 2 m temperature (maxT2m) from
COSMO-REA6 reanalysis to derive the TPDM and identify
spatial patterns associated with temperature extremes. Its EPI
describes the intensity and spatial extent of heat waves in the
area under consideration. To test the suitability of the EPI for
describing heat waves, we focus on the two European heat
waves in 2003 and 2010, about which many publications al-
ready exist. We compare our findings with existing literature.

We further explore the potential use and benefits of the
TPDM in describing co-occurring heat waves and meteoro-
logical droughts. We again use maxT2m and define precip-
itation deficit (PD) as the additive reciprocal of daily pre-
cipitation accumulated over periods ranging from 11 to 47 d.
To identify the pairwise extremal dependence between both
variables, we introduce the cross-TPDM and provide an es-
timator thereof. We decompose the estimator of the cross-
TPDM using a singular value decomposition (SVD), provid-
ing insight into the co-occurrence of extreme spatial patterns
in two variables. Finally, we apply an analogue definition of
the EPI using the SVD of the cross-TPDM. In order to tar-
get the index to co-occurring events, a modulated threshold-
based estimator of EPI (TEPI) is defined.

The remainder of the paper is organized as follows. First,
the theoretical framework of regular variation underlying the
definition of the TPDM is presented in Sect. 2. Here we also
discuss the estimation of the TPDM and its decomposition.
Accordingly, we introduce the cross-TPDM in Sect. 3. We
then discuss their evaluation (Sect. 4) and the definition of
the various extremal pattern indices (Sect. 5). Section 6 dis-
cusses the data and some pre-processing steps. The results
are presented in Sect. 7 with a discussion first on the tem-
perature extremes and the EPI to define heat waves and then
the compound heat wave and drought events. The paper con-
cludes with a summary and discussion in Sect. 8.

2 The tail pairwise dependence matrix (TPDM)

2.1 Definition of the TPDM

The definition of the TPDM is based on regularly vary-
ing random variables. Regularly varying variables are de-
fined by the tail behavior of their distribution function F (x)
in the limit x→∞. A summary on regular variation is
given by Resnick (2007) saying “regularly varying functions
are those functions which behave asymptotically like power
functions”. Let X be a non-negative random variable with
positive and measurable distribution function F (x) on R+.
We call F to be a regularly varying function with tail index
ρ ∈ R (denoted by F (X) ∈ RVρ), if for all t > 0

lim
x→∞

F (xt)
F (x)

= tρ . (1)

If the tail function, F (X)= 1−F (X), is a regularly vary-
ing function, i.e. F (X) ∈ RV−ρ (ρ > 0), then X is a reg-
ularly varying random variable with tail index ρ (Resnick,

2007, Theorem 3.6), and we write X ∈ RVρ . If X is Fréchet-
distributed with F (x)= exp(−x−α) and x ≥ 0, then X is a
regularly varying random variable with tail index α (Resnick,
2007).

Now let X be a positive multivariate random variable of
dimension p with Fréchet-distributed margins and tail index
α. In the following, we denote X ∈ RV +α . For multivariate
regularly varying random variables, it is convenient to trans-
form the random vector to generalized polar coordinates with
the angular component ω and the radial component r . With
any norm || · || we define the unit sphere Sp−1

+ as

Sp−1
+ =

{
x ∈ Rp+ : ||x|| = 1

}
(2)

and the polar coordinate transform as

x→

(
||x||,

x

||x||

)
=: (r,ω) for ||x||> 0, (3)

with r = ||x|| and ω = x/||x||. IfX is regularly varying, then
its radial and angular components become conditionally in-
dependent for r→∞.

To understand the derivation and definition of the TPDM,
we explore the properties of a regularly varying random vari-
able. This exploration is done through the lens of weak con-
vergence (Resnick, 2007), restricted to the special case of
vague convergence, denoting convergence of Radon mea-
sures. Given a multivariate, Fréchet-distributed random vec-
tor X ∈ RV +α , the definition of regular variation says that
there is a sequence bn with n→∞ and a limit measure
ν(·), such that we can write nP

[
X/bn ∈ ·

]
ν
−→ ν(·) as n→∞.

Here,
ν
−→ denotes vague convergence in M+([0,∞]p r {0}),

the space of Radon measures on (0,∞]r {0}. After the po-
lar transform, one can specify ν(dr×dω)= ρr−ρ−1drdH (ω)
where ρ is the tail index of X, and H is some Radon mea-
sure, referred to as the angular measure on Sp−1

+ . It can be
interpreted as a probability measure for ω (for a detailed de-
scription see, e.g., Larsson and Resnick, 2012; Cooley and
Thibaud, 2019; Resnick, 2007).

Larsson and Resnick (2012) found that the measure H ,
on the unit sphere Sp−1

+ , holds information about extremal
dependencies. They define the extremal dependence measure
of any regularly varying, bivariate random vector based on its
angular components after polar transformation.

Cooley and Thibaud (2019) expand the original ap-
proach to higher dimensions. They concentrate on Fréchet-
distributed variables with tail index α = 2 and choose the L2
norm when transforming into polar coordinates. They define
the tailed pairwise dependence between the ith and j th ele-
ment of X, using its angular component ω as

σij =

∫
Sp−1
+

ωiωjdH (ω). (4)

The TPDM (6X) is then a p×p matrix, which summa-
rizes the pairwise extremal dependencies of X for all mar-
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gins i,j = 1, . . .,p: 6X = (σij )i,j=1...p. Cooley and Thibaud
(2019) show that by their choice of parameters, the properties
of the TPDM are very close to those of the covariance ma-
trix. The most important property for our application is that
the TPDM is symmetric and positive definite with real and
positive eigenvalues. For rigorous derivations and proofs as
well as additional literature, the reader is referred to Cooley
and Thibaud (2019).

2.2 Estimation of the TPDM

Let xt , t = 1, . . .,n be a sample of a p-dimensional ran-
dom vector X with Fréchet margins and sample components
xt,i, i = 1, . . .,p. The estimator of the individual elements of
the TPDM is given by Jiang et al. (2020) as

σ̂ij = 2n−1
ij,exc

n∑
t=1

wt,iwt,j I(rt,ij>r0,ij ). (5)

with rt,ij =
√
x2
t,i + x

2
t,j as well as wt,i = xt,i/rt,ij and

wt,j = xt,j/rt,ij . r0,ij is a threshold that can be set individ-
ually, with the index function I ensuring that only observa-
tions larger than r0,ij are considered for the estimation, and
nij,exc =

∑n
t=1I(rt,ij>r0,ij ) is the number of elements which

are greater than r0,ij . The positive definiteness of the TPDM
is not guaranteed by the proposed estimator in Eq. (5). If
the estimator is not positive definite, we follow Cooley and
Thibaud (2019) by computing the nearest correlation matrix
(Higham, 2002).

Pre-processing is required when using meteorological
data. Again we follow Jiang et al. (2020) and transform the
marginal distribution of the original data to Fréchet mar-
gins with tail index α = 2. Let Xorig be the original ran-
dom vector with marginal distribution F orig

i (X), i = 1, . . .,p
and X the transformed random vector with Fréchet margins
Fi(X)= exp(−x−αi ). Due to the conservation of probability,
we have to ensure that Fi(X)= F orig

i (Xorig), which leads us
to the transformation

Xi =
(
− logF orig

i (Xorig)
)−1/α

. (6)

As an estimator for F orig
i , we may either use the empirical

distribution function or fit a parametric distribution (e.g. nor-
mal distribution).

2.3 Decomposition of TPDM

The eigenvalue decomposition (EVD) of a covariance matrix
is a standard tool in climate data analysis to reduce the di-
mensionality of high-dimensional weather and climate data
(see, e.g., Wallace et al., 1992). The eigenvectors (EVs) form
an orthogonal, complete base system. Here we use an estima-
tor based on extreme dependencies instead of covariances,
which leads to a targeted consideration of extremal depen-
dencies. For an introduction to EVD and its applications,

see, for example, Wilks (2011), Jolliffe (1986), and Björns-
son and Venegas (1997). The decomposition of the TPDM,
with6XX = U3UT , provides the eigenvector matrixU with
eigenvectors u(k),k = 1, . . .,p and components u(k)

1 , . . .u
(k)
p ,

as well as the diagonal-matrix 3, containing the eigenvalues
λ1, . . .λp.

The TPDM is defined on the basis of positive real num-
bers. The transformation to Fréchet margins leads to the in-
put variable X being consistent with this assumption. How-
ever, the EVs of the TPDM live by construction in Rp. For
the EVs to form an orthogonal basis in Rp+, we have to
transform the EVs from Rp to Rp+. We again follow Cooley
and Thibaud (2019) and use τ (y)= log(1+ exp(y)) with its
back-transform τ−1(y)= log(exp(y)−1). The Fréchet distri-
bution, as well as the orthogonality of the EVs, is preserved
under this transformation. We transform the EVs component-
wise with e(k)

j = τ (u(k)
j ), for each of the j = 1, . . .,p compo-

nents and k = 1, . . .,p vectors. The time series of principal
components (PCs), in contrast, are calculated by a projection
of the back-transformed data X on the respective EV as

η = UT τ−1(X). (7)

We can reconstruct a filtered data set for each sample xt (t =
1, . . .,n) of the p-dimensional input variable X using x̃t =
τ (ηtU ).

3 The cross-TPDM

3.1 Definition of the cross-TPDM

The TPDM presented above provides information on the
pairwise dependencies between the margins of a random vec-
tor. Here we introduce the cross-TPDM as a measure of ex-
tremal dependency between two random vectors, such as spa-
tial fields of maxT2m and PD.

Let X and Y be Fréchet random vectors with tail in-
dex α and dimensions p and q, respectively. For the fol-
lowing definitions, we consider a joint random vector Z =
(X1, . . .,Xp,Y1, . . .,Yq )T of dimension (p+q). As in Sect. 2,
we use the L2 norm ||z|| to define the unit sphere:

S(p+q)−1
+ = {z ∈ Rp+q+ : ||z|| = 1}. (8)

Along with the transformation of z into polar coordinates,

z→

(
||z||,

z

||z||

)
=: (r,ω), (9)

with r = ||z|| and ω = z/||z||. Following Eq. (4) we define
the joint TPDM, which has the dimensions (p+q)× (p+q).
It separates into 6XX, 6YY , and the cross-TPDM 6XY ,
which is a p× q matrix. If we break down ω into its x
and y components ωx = (x1/||z||, . . .,xp/||z||)T and ωy =
(y1/||z||, . . .,yq/||z||)T , the cross-TPDM 6XY has the en-
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tries

σij =

∫
S(p+q)−1
+

ωxi ω
y
j dH (ω). (10)

The cross-TPDM is the counterpart of the cross-covariance
matrix and represents an extension of the TPDM to two vari-
ables. By definition, it is a component of the joint TPDM,
obtained from the joint random vector Z. While it is con-
ceivable that the joint TPDM could also be used to extract
information about the extremal dependence between X and
Y , this approach is relatively rare and involves higher com-
putational costs.

3.2 Estimation of the cross-TPDM

Let xt , yt , t = 1, . . .,n be samples of two Fréchet random
vectors X and Y , with components xt,i , i = 1, . . .,p and yt,j ,
j = 1, . . .,q. To estimate the cross-TPDM, we compute, for
the radial component,

rt,ij =

√
x2
t,i + y

2
t,j (11)

and, for the angular components,

wxt,i =
xt,i

rt,ij
;w

y
t,j =

yt,j

rt,ij
. (12)

We then estimate each element of the cross-TPDM 6XY as

σ̂ij = 2n−1
ij,exc

n∑
t=1

wxt,iw
y
t,j I(rt,ij>r0,ij ). (13)

with threshold r0,ij and nij,exc =
∑n
t=1I(rt,ij>r0,ij ), the num-

ber of exceedances.

3.3 Decomposition of the cross-TPDM

The SVD of a cross-covariance matrix is a standard tool in
climate data analysis to reduce the dimensionality of high-
dimensional weather and climate data (see, e.g., Wallace
et al., 1992). The singular vectors (SVs) form an orthogonal
basis, which can be used for information compression. Here
we use an estimator based on extreme dependencies instead
of cross-covariances, which leads to a targeted consideration
of extremal dependencies. For an introduction to SVD and its
applications, see, for example, Wilks (2011), Jolliffe (1986),
and Björnsson and Venegas (1997).

The decomposition of the cross-TPDM with 6XY =

U3V T provides left and right singular vectors (SVs), as well
as the matrix 3, which contains the singular values on its di-
agonal. The SVs can be interpreted as pairs of spatial patterns
that explain the maximum possible proportion of extremal
dependence, analogous to SVD in Newman and Sardesh-
mukh (1995). As they point out, one should be cautious in the
physical interpretation of the patterns, since they are first of

all statistical patterns. However, data reduction based on SVs
does not require the physical interpretability of the patterns.
The singular values provide information about the extent to
which the dependencies are explained by the respective SV
patterns.

The cross-TPDM is defined on the basis of positive real
numbers. The transformation to Fréchet margins leads to the
input variables X and Y being consistent with this assump-
tion. However, the SVs live by construction in Rp. For the
SVs to form an orthogonal basis in Rp+, we have to trans-
form the SVs from Rp to Rp+. We again follow Cooley
and Thibaud (2019) and use τ (y)= log(1+ exp(y)) with its
back-transform τ−1(y)= log(exp(y)− 1). The Fréchet dis-
tribution, as well as the orthogonality of the SVs, is pre-
served under this transformation. Again, we transform the
SVs component-wise. The time series of expansion coef-
ficients (ECs) are calculated by a projection of the back-
transformed data X and Y on the respective SVs as

η =UT τ−1(X) (14)

ν =V T τ−1(Y ). (15)

Reconstructions of each sample xt and yt (t = 1, . . .,n) are
obtained using x̃t = τ (ηtU ) and ỹt = τ (νtV ).

4 Evaluation

To assess how many EVs or SVs are needed to represent the
main features of the data, we use the fraction of explained
covariance, which is

ECFk =
λk∑p

i=1λi
, (16)

with λk the kth largest eigenvalue or singular value in3. The
term ECF (explained covariance function) in the context of
(cross-)TPDM may be misleading because, strictly speaking,
SVs no longer provide information about (cross-)covariance
but about extremal dependence. Nevertheless, we use the
term here because it is a fixed term for measuring the ex-
plained dependencies in PCA or SVD.

To examine the extent to which each pattern is dominated
by individual events that occurred during the training pe-
riod and find an appropriate number of modes that yields a
representative subset of patterns, we perform 2-fold cross-
validation. There are several measurements that aim to find
the “optimal” number of modes after PCA (see, e.g., Abdi
and Williams, 2010). We useQ2

m as a rather simple but effec-
tive measure to assess overfitting (i.e., the point at which the
quality of the prediction decreases with an increasing num-
ber of modes). To derive Q2

m we divide the time series into
two periods of equal length and calculate a (cross-)TPDM for
each period, respectively.

The reconstructions follow Sect. 2.3 and 3.3. The within-
sample reconstruction x̃mt = τ (ũT τ−1(xt )ũ) uses the first

https://doi.org/10.5194/ascmo-10-29-2024 Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, 2024



34 S. Szemkus and P. Friederichs: Spatial patterns and indices for heat waves and droughts over Europe

m EVs/SVs ũ derived from the period including t , while
the out-of-sample reconstruction x̂mt uses the corresponding
EVs/SVs û of the period not including t . The reconstructions
of the two periods are then merged to calculate Q2

m defined
as

Q2
m = 1−

∑n
t=1||xt − x̂

m
t ||2∑n

t=1||xt − x̃
m−1
t ||2

, (17)

with || · ||2 the L2 norm.Q2
m is a measure of information gain

relative to the increase of noise. A positiveQ2
m means that the

mth EV/SV mode significantly improves an out-of-sample
reconstruction relative to the in-sample reconstruction us-
ing m− 1 EV/SV modes. The number of modes m at which
Q2
m becomes negative indicates the point at which overfitting

starts to occur. The standard error of Q2
m is assessed by re-

sampling using a block bootstrap method of annual data with
100 samples.

5 Extremal pattern index

We define an extremal pattern index (EPI) based on the PCs
using the L2 norm. The L2 norm is chosen since both PCA
and SVD may be defined as an L2-minimization problem
(see, e.g., Abdi and Williams, 2010). Let be given m PCs
ηt at time t as derived by Eq. (7) using the m leading EV of
a TPDM. We further incorporate the leading eigenvalues/sin-
gular values λ1,...,m to normalize the EPI, which we define at
time t as

EPIηt =

√∑m
k=1η

2
t,k√∑m

j=1λj

. (18)

The EPI represents a spatial aggregation and shows when in-
dividual patterns or a linear combination of patterns are par-
ticularly pronounced. The first EV/SVs of the (cross-)TPDM
show little spatial variation (see, e.g., Cooley and Thibaud,
2019), so ηt,1 and νt,1 essentially represent the spatial mean
of the Fréchet-distributed variables. The higher modes are
those representing the spatial variation patterns. Thus, the
EPI can become extreme even if the first principal compo-
nent is not outstanding.

The SVD of the cross-TPDM provides two ECs, for the
right and the left singular vectors. We define the EPI for the
cross-TPDM analogously as

EPIη,νt =

√∑m
k=1(η2

t,k + ν
2
t,k)√∑m

j=1λj

. (19)

This definition of EPI describes scenarios where either one
or both of the corresponding ECs are high. To account for
the simultaneous occurrence of extremes, we introduce a
threshold-based approach that considers both the left and
right ECs of each mode k to be prominently expressed. We

refer to this as the threshold-based extremal pattern index
(TEPI).

TEPIη,νt =

√∑m
k=1(η2

t,k + ν
2
t,k)I(|ηt,k |>qη,|νt,k |>qν )√∑m
j=1λj

, (20)

with threshold values qη and qν . The threshold ensures
that the associated patterns are simultaneously highly pro-
nounced.

6 Application

6.1 Data description

This study relies on the COSMO-REA6 regional reanaly-
sis (Bollmeyer et al., 2015). COSMO-REA6 was developed
within the Hans Ertel Centre for Weather Research (HErZ)
at the University of Bonn. COSMO-REA6 is currently avail-
able for the period from 1995 to 2019 at the opendata FTP
server1 of the German meteorological service (DWD).

We use accumulated PD, as well as daily maxT2m. PD is
defined as the additive inverse of precipitation accumulated
over various periods between 11 and 47 d using a centered
moving-average approach (e.g., for an accumulation period
of 11 d, PD is estimated at the center including the 5 d pre-
ceding and following the center date, respectively). The use
of the moving average for precipitation is less common in
the literature, but for our application, we consider it appro-
priate. Otherwise, we would rather focus on the precipita-
tion deficit before a heat wave. (e.g., PD from 1 to 30 June
in conjunction with maxT2m on 30 June). The spatial do-
main of COSMO-REA6 is according to the CORDEX EUR-
11 specifications2 but with a higher horizontal resolution of
about 6 km horizontal grid space. We limit our analysis to
land areas and also exclude countries that have little to no
precipitation during northern hemispheric summer months.
We further restrict our analysis to the northern hemispheric
summer months from June to August, when heat waves have
particularly strong impacts on social and environmental sys-
tems through associated effects such as forest fires and heat
stress.

6.2 Data pre-processing

Our pre-processing requires three steps: (1) in order to re-
duce spatial non-stationarity we choose to standardize the
data at grid point level. Along with standardization, we also
remove seasonal trends, which we identify in maxT2m and
PD. To this end, we estimate mean and standard devia-
tion at each grid point and day of the year, which are then

1https://opendata.dwd.de/climate_environment/REA/COSMO_
REA6/ (last access: 20 December 2023)

2https://euro-cordex.net/060374/ (last access: 20 December
2023)
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used for standardization. (2) The spatial fields in COSMO-
REA6 contain 824×848 grid points, resulting in a matrix of
698752× 698752 pairwise dependence measures. To limit
the computational cost, the number of grid points is reduced
to a 121× 117 grid. For consistency with extreme value the-
ory, we reduce the grid size using spatial block maxima in-
stead of standard interpolation techniques. To this end, we
compute the maximum in a 7×7 neighborhood of grid points
for spatial reduction. (3) To transform maxT2m and PD to a
Fréchet distribution with tail index α we use the empirical
distribution function with

F̂
orig
Yi

(y)=
1
n

n∑
t=1

I(yorig
t,i ≤ y). (21)

6.2.1 Choice of threshold

The choice of the threshold value for estimating the TPDM
is always critical. If the threshold is too low, there is a risk
that the asymptotic limit of the extreme value model has
not yet been reached, which leads to biases in the estima-
tion. A threshold that leaves too few data points to which
the model can be fitted leads to large uncertainties in the es-
timates. To determine a suitable threshold, we consider the
rank of the TPDM and determine its stability as a function of
the threshold value in Fig. 1. A stable linear downward trend
is given for thresholds below the 98 % quantile (red line),
but a rapid decline is seen for higher thresholds. The 98 %
quantile, therefore, seems suitable as a threshold for further
calculations.

Figure 2 shows maxT2m and the 15d PD at two grid points
in COSMO-REA6 near Paris and Bonn. Only the data out-
side the gray shaded area (i.e., above the 98 % quantile) are
used to estimate the cross-TPDM. The dependence between
maxT2m at grid points with a distance between Paris and
Bonn is strong even for the extreme values since the tem-
perature variations are usually dominated by large-scale pat-
terns and therefore still show dependencies, even at large dis-
tances. In contrast, the dependencies in the PD and between
PD and maxT2m are much lower, which is due to the small-
scale structures of the extreme values in the PD.

Figure 2 may be used to illustrate the asymptotic depen-
dence/independence between Fréchet-distributed time series.
The measure H (ω) of the angular component ω describes
the tail dependence on the unit sphere Sp−1

+ (Sect. 2). With
asymptotic independence, we expect the mass of H (ω) to be
at the edges, so we do not expect an extreme event to occur in
both variables simultaneously. With asymptotic dependence,
corresponding probability mass exists on the unit circle, and
we observe events that are extreme in both components.

As Jiang et al. (2020) point out, the assumption of asymp-
totic dependence, which is the basis of the concept of reg-
ular variations, may not be fulfilled. Jiang et al. (2020) fo-
cus on precipitation data, which are clearly not asymptoti-
cally dependent at the continental scale. This is less clear

Figure 1. Rank of the TPDM, calculated for maxT2m and varying
thresholds r0 (Eq. 5). Vertical line: 98 % quantile. Red line: linear
least-squares fit of the rank using a threshold between 90 % and
98 % quantile.

for regional-scale maxT2m and PD and cross-dependence.
The TPDM method is nevertheless well suited to decompose
(cross-)dependencies in our case since we typically do not
reach the asymptotic limit for real data. For real data, we are
more likely to be in the pre-asymptotic limit, which is char-
acterized by significant dependencies, as seen in Fig. 2.

7 Results

7.1 Spatial patterns of extreme daily maximum 2m
temperature

We start our analysis with the estimation of the TPDM for
maxT2m. The estimation is based on maxT2m values ex-
ceeding the local 98 % quantile on the reduced grid (see
Sect. 6.1). Figure 3 shows the first 12 EVs of the TPDM. The
first mode represents the nonzero spatial mean and consists
of nearly constant values with only small variations of order
10−2. Since the data are defined in R+ (see Sect. 2.3), the
mean value is not removed unlike in standard PCA (cf. Jiang
et al., 2020; Cooley and Thibaud, 2019).

Higher-order EVs show large-scale patterns associated
with the typical dipole and multipole structures also known
from PCA. Since the EVs are transformed on R+, val-
ues > log(2) refer to positive and values < log(2) to neg-
ative anomalies (see Sect. 2.3). The wave-like structures
are strongly reminiscent of westward-propagating Rossby
waves, which are the main driving force for large-scale circu-
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Figure 2. Scatter plots of Fréchet-transformed maxT2m and PD (black dots) at two grid points in COSMO-REA6 at Paris and Bonn. PD has
been calculated from 15 d accumulated precipitation. The circle indicates the respective 98 % quantile, and the values inside the circle (gray
shading) are not used for the estimation of the (cross-)TPDM.

Figure 3. First 12 (from top to bottom, left to right) EVs of the TPDM for maxT2m in northern hemispheric summer months (JJA). Each
vector is transformed to the positive real numbers Rp→ Rp

+
such that τ (0)= log(2) corresponds to zero.

lation patterns in northern mid-latitudes (see, e.g., Liu et al.,
2020; Schubert et al., 2011; Gershunov and Douville, 2009).

An important question is how representative the EVs are
and at what number of modes significant information is no
longer added by further modes but overfitting prevails. In

Figs. 4 and 5 we show explained variance and Q2 as intro-
duced in Sect. 4. The first EV contributes to about 25 % of
the total variance, followed by less than 8 % for the second
EV. As in Jiang et al. (2020) and Cooley and Thibaud (2019),
the first EV (i.e. changes in the spatial mean maxT2m) dom-
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Figure 4. Explained variance ECFk for each mode k (Eq. 16). Cal-
culated from TPDM using maxT2m in northern hemispheric sum-
mer months (JJA).

Figure 5. Q2
m for the first m= 20 modes (Eq. 17). Calculated

from TPDM for maxT2m in northern hemispheric summer months
(JJA). The error bars indicate the standard error determined using
100 bootstrap samples.

inates the variance. About 52 % (75 %) of the variance is ex-
plained by the first 10 (50) EVs. The out-of-sample infor-
mation gain as measured by Q2

m is positive for the leading
10 EVs. Both measures indicate that the first 10 EVs provide
a representative subset for the spatial variation patterns of ex-
treme maxT2m.

7.2 Extreme pattern index for temperature extremes

Our calculation of the EPIη (Eq. 18) uses the first 10 PCs ηk
with k = 1, . . .,10. The time series of the PCs for the first
six EVs are displayed in Fig. A1 in the Appendix. Figure 6
shows EPIη for the June to September months from 1995
to 2019 with values varying between 0.5 and 13.5. Peaks in
EPIη indicate intense heat waves within the studied region.
Although the 2010 summer heat wave prominently stands out
in EPIη, we also identify other peaks associated with typical
heat waves. The large outliers in the PCs as well as in EPIη

indicate a heavy tail behavior, as already shown by Cooley
and Thibaud (2019) for the PCs.

We will now examine the two heat waves of 2003 and
2010 in more detail using our framework. Both heat waves
have been extensively studied and analyzed in the existing
literature. The 2010 heat wave is characterized by the high-
est peak EPI in the period considered. This indicates that the
2010 heat wave was the most extreme event in terms of its
combination of intensity and spatial extent over the period
considered. The 2003 heat wave, on the other hand, did not
reach the highest peak but is characterized by its long, highly
pronounced duration. Finally, both heat waves had significant
impacts on socio-economic systems, underlining their im-
portance for understanding extreme heat events (see Benis-
ton, 2004; Barriopedro et al., 2011; Kueh and Lin, 2020;
Schubert et al., 2011; Gershunov and Douville, 2009). Fig-
ure 7 (bottom panel) shows EPIη for the June to September
months in 2003. The respective averaged maxT2m anomalies
are shown in the upper panels for the periods during periods
as marked with (a) to (c). We observe a first heat wave in mid-
July (a) in western Europe, which is most pronounced over
the United Kingdom, Iceland, and Norway. This short-term
event is followed by a few non-extreme days (b), after which
we observe a very severe heat wave over central and southern
Europe from late July to mid-August (c) (see also García-
Herrera et al., 2010; Liu et al., 2020). In Fig. 7 we also dis-
play the reconstruction of the maxT2m fields using only the
leading 10 EVs. The spatial structure of the heat wave pattern
in maxT2m is well represented within the 10-dimensional
subspace. The reconstructed patterns are somewhat smoother
and thus more clearly highlight the areas affected by the heat
wave. Thus, the subspace spanned by the 10 eigenvectors of
the TPDM is sufficient to describe the 2003 heat wave and
fulfills the goal of a compact description of large-scale heat
waves.

In Fig. 8, we analyze the Russian heat wave in 2010. High
values of EPIη consistently capture their evolution from the
second week of July to mid-August, as analyzed, e.g., in Bar-
riopedro et al. (2011) or Liu et al. (2020). Since we observe
the strongest expressions of EPIη in the first half of August,
we focus on this period in the following. The beginning of
August is characterized by the most intensive phase of the
heat wave according to EPIη (a), with its center located over
Moscow, western Russia. In the second week, we observe a
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Figure 6. EPIη as calculated from first 10 PCs after a PCA of the TPDM for maxT2m. Shown are the northern hemispheric summer months
(JJA) from 1995 to 2019.

Figure 7. Overview of the temporal evolution of the 2003 heat wave. Top: pattern of mean anomalies within the periods (a) 11–19 July 2003,
(b) 19–30 July 2003, and (c) 30 July–14 August 2003. We show the maxT2m anomalies (upper pattern) and the reconstruction, using the
first 10 modes of PCs (lower pattern). All patterns use the same color scale and only show values exceeding the 98 % quantile, respectively.
Bottom: EPIη as in Fig. 6 but for JJA months in 2003.

westward shift of the maxT2m anomalies, accompanied by a
short drop in EPIη (b). Then the heat wave intensifies again
for 2 d, with a new center over Belarus and Lithuania (c), be-
fore it collapses in mid-August. This particular feature of the

2010 heat wave has received little attention in the literature,
although it is clearly visible in station measurements in, e.g.,
Moscow (Grumm, 2011). Consequentially, the Russian heat
wave can also be well described by our method.
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Figure 8. Overview of the temporal evolution of the 2010 heat wave. Top: pattern of mean anomalies within the periods (a) 3–10 Au-
gust 2010, (b) 10–14 August 2010, and (c) 14–16 August 2010. We show the maxT2m anomalies (upper pattern) and the reconstruction,
using the first 10 modes of PCs (lower pattern). All patterns use the same color scale and only show values exceeding the 98 % quantile,
respectively. Bottom: EPIη as in Fig. 6 but for JJA months in 2010.

To further evaluate the suitability of EPIη for heat wave
detection and representation, we compare event definitions
using EPIη with other heat wave definitions. A heat wave is
usually defined on the basis of grid points (hereafter GRD
event), e.g., a 5 d continuous exceedance of the 98 % quan-
tile of maxT2m, with seasonal trends removed. A GRD event
exists when a 5 d continuous exceedance occurs in at least
3 % of the grid points. Using maxT2m of COSMO-REA6,
we obtain a number of 32 GRD events during the summer
months in 1995–2019 in Europe. To rank heat wave events
in terms of their “extremeness”, DWD compares predefined
heat waves (i.e. GRD events) based on the properties of du-
ration, maximum number of grid points affected (GRDsize),
and average magnitude of maxT2m anomalies (GRDmean)3.
The time period of the 15 strongest GRD events with respect
to GRDsize and GRDmean is displayed in black in Table 1.

We define an EPI event as a period when EPIη exceeds
the 80 % quantile for at least 5 consecutive days. The thresh-

3https://www.dwd.de/EN/ourservices/rcccm/int/rcccm_int_
hwkltr.html (last access: 7 July 2022)

old is chosen so that we get a similar number of heat waves
for the EPI events as for the GRD events, yielding a total
of 28 heat waves. In Table 1, we compare the top 15 EPI
events according to their average EPIη (EPImean), with the
top 15 GRD events according to their GRDsize and GRD-
mean. Of the top 15 GRD events, 3 (June 2002, August 2008,
and August 2012) are not classified as EPI events. For each
of these events, the maxT2m fields exceeding the 98 % quan-
tile and the EPIη are shown in the Appendix Fig. A2. We
find EPIη exceeds the 80 % quantile in all three GRD events,
but the duration is less than 5 d in each case. Of the top 15
EPI events, 13 are identified as being among the top 15 GRD
events in terms of GRDsize as well, suggesting that EPIη is
particularly successful in the identification of large-scale ex-
tremes. This is largely due to the property of PCA, which
detects large-scale patterns mainly in the first few modes.
Large-scale extremes are thus weighted more strongly than
small-scale events.

The Cooley and Thibaud framework requires the as-
sumption of independent and identically distributed samples.
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Table 1. Periods of strongest heat waves defined by EPI and GRD events. Periods indicated in black are within the top 15 strongest events
using the respective index (EPImean, GRDsize, and GRDmean). Periods in bold are heat waves with a lower rank than 15, and underlined
periods show no correspondence in the respective counterpart (EPI or GRD).

EPImean GRDsize GRDmean

1995-08-17–1995-08-22 1995-08-17–1995-08-22 1995-08-17 1995-08-22
1998-06-11–1998-06-21 1998-06-11–1998-06-21 1998-06-11–1998-06-21

2002-06-08–2002-06-12 2002-06-08 2002-06-12
2003-07-14–2003-07-18 2003-07-14–2003-07-19 2003-07-14 2003-07-19
2003-07-31–2003-08-14 2003-07-31–2003-08-14 2003-07-31 2003-08-14
2006-06-02–2006-06-06 2006-06-02–2006-06-06 2006-06-02 2006-06-06
2006-06-18–2006-06-23 2006-06-18–2006-06-23 2006-06-18–2006-06-23
2006-07-06–2006-07-11 2006-07-06 2006-07-10 2006-07-06 2006-07-10
2007-07-15–2007-07-25 2007-07-15–2007-07-25 2007-07-15 2007-07-25
2007-08-14–2007-08-19 2007-08-13–2007-08-20 2007-08-13–2007-08-20
2007-08-21–2007-08-27 2007-08-22–2007-08-27 2007-08-22 2007-08-27

2008-08-15 2008-08-19 2008-08-15 2008-08-19
2009-06-25–2009-06-29 2009-06-25–2009-06-29 2009-06-25 2009-06-29
2010-07-07–2010-08-17 2010-07-07–2010-07-14 2010-07-07–2010-07-14
2010-07-07–2010-08-17 2010-07-16–2010-08-17 2010-07-16–2010-08-17

2012-08-17 –2012-08-21 2012-08-17 2012-08-21
2014-08-03–2014-08-07 2014-08-03–2014-08-07 2014-08-03–2014-08-07
2015-06-30–2015-07-08 2015-06-30–2015-07-08 2015-06-30 2015-07-08
2016-06-17–2016-06-27 2016-06-17–2016-06-27 2016-06-17–2016-06-27
2017-06-29–2017-07-04 2017-06-29–2017-07-04 2017-06-29 2017-07-04
2017-08-01–2017-08-06 2017-08-01–2017-08-06 2017-08-01 2017-08-06
2019-06-12–2019-06-16 2019-06-12–2019-06-16 2017-08-01–2017-08-06
2019-06-25–2019-07-02 2019-06-25–2019-07-02 2019-06-25 2019-07-02
2019-07-23–2019-07-27 2019-07-23–2019-07-27 2019-07-23 2019-07-27

This assumption is generally not given for daily values of
maxT2m and PD. However, it turns out that our method is
quite robust in this respect. We evaluate this in Appendix
Fig. A3 using the EPI calculated on the one hand from the
patterns of daily maxT2m data and on the other hand from
the patterns of weekly maxima of maxT2m. It can be seen
that the EPI is robust to small deviations in individual pat-
terns. The range of EPI values changes slightly as the first 10
modes explain a higher proportion of the variance.

7.3 Decomposition of the cross-TPDM for maxT2m and
PD

We have shown that the decomposition of the TPDM pro-
vides a set of spatial patterns to describe extremal dependen-
cies in maxT2m and leads to a suitable definition of a heat
wave index. We now turn to the cross-TPDM, which encodes
the extremal covariability of maxT2m and PD. Commonly
used indices, e.g., the standard precipitation index (SPI), are
calculated on relatively long accumulation times from 3 to
48 months (McKee et al., 1993). However, so-called “flash
droughts”, e.g., occur instantaneously at sub-seasonal scales.
They are characterized by rapid development and intensi-
fication of drought, usually accompanied by exceptionally
high temperatures (see, e.g., Peters et al., 2002; Hunt et al.,

2009; Cook et al., 2018). To capture this structure, Mo and
Lettenmaier (2016), e.g., calculate PD using 5 d precipita-
tion averages. Here, we want to capture both perspectives on
the dynamics and the evolution of compound heat wave and
drought events and therefore assess extremal covariability for
different accumulation times from 11 to 47 d.

To allow for a computation of the cross-TPDM for many
different accumulations times, we need to lower the compu-
tational costs by further reducing the grid size. For this pur-
pose, we increase the neighborhood in the COSMO-REA6
grid to 21× 21 grid points and take the respective maximum
of PD and maxT2m as the value (in Sect. 7.2 we used a neigh-
borhood of 7×7 grid points). With this approach, we obtain a
grid of size 40×39. To ensure that no important information
gets lost in this new reduction, in Appendix Fig. A4 we ex-
emplarily show the EPIη as calculated in Sect. 7.2 against the
EPIη on the highly reduced grid. The differences in the tem-
poral behavior are small, and the EPIη is robust to this further
data reduction. Although not shown here, we have produced
similar diagrams for the other indices we have defined, with
similar results.

Not only the duration of a dry spell but also when it occurs
in relation to the heat wave can be important for dynamic
interpretation. For example, there is evidence that a dry phase
can promote the development of an intense heat period (see,
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e.g., Sousa et al., 2020). To account for different feedback
mechanisms between PD and maxT2m, we introduce a time
shift between PD and maxT2m, in the sense that PD leads
maxT2m in time when there is a negative shift. The cross-
TPDM and its decomposition using SVD are calculated for
each time shift and accumulation time, respectively.

We assess statistical significance based on the singular val-
ues. To this end, we generate a 100-head bootstrap sample
where we draw maxT2m and PD of a season independently
so that the temporal relationship is destroyed while season-
ality is preserved in the data. In Fig. 9, we show the first and
the sum of the first and second singular values of the cross-
TPDM, normalized by the respective average over the boot-
strap samples. This is shown as a function of time shift and
accumulation level. For values > 1 the measure of the ex-
tremal covariability between maxT2m and PD is larger than
on average in the bootstrap sample. White dots indicate val-
ues that exceeded the 95 % confidence interval of the values
in the bootstrap sample with “no statistical association”.

For short accumulation times, maximum association is ob-
tained for instantaneous anomalies. For higher accumulation
times, the association is maximal for negative shifts when
anomalies in PD precede the maxT2m anomalies. This in-
dicates that a heat wave is preferentially formed when it is
preceded by a drought period. Considering the sum of more
singular values (see Appendix Fig. A5 for the first 10 singu-
lar values), this time-shifted dependence structure weakens
but remains significant. We conclude that the statistical asso-
ciation between the large-scale patterns in matT2m and PD
is significant and that the accumulation time of PD must be
evaluated together with a temporal shift.

We now turn to the large-scale patterns of extremes in
maxT2m and PD. In Fig. 10, we show the patterns for an
accumulation time of 11 d and a time shift of 0 d. The large-
scale patterns again show the characteristic wave-like struc-
ture previously discussed in Sect. 7.1. The corresponding
anomalies in maxT2m and PD have a very similar struc-
ture, with the regions of the strongest gradients in PD slightly
shifted compared to the gradients in maxT2m (second pattern
– eastwards, third pattern – southwards). Although a physi-
cal interpretation of the SVs should always be approached
with caution (see Sect. 3.3), it is possible that eastward-
propagating Rossby waves (Sect. 7.1) could explain this pat-
tern if, for example, strong gradients in the temperature fields
are associated with frontal systems typically associated with
precipitation. The leading patterns are also very similar for
other accumulation times and time shifts.

7.4 Extremal pattern indices for compound maxT2m
and PD extremes

As in Sect. 5 we base our calculation of an extremal pattern
index on the expansion coefficients, where ηk represents the
respective expansion coefficient of maxT2m and νk of PD.
We calculate the EPIη,ν (Eq. 19) and the TEPIη,ν (Eq. 20) us-

ing ηk and νk of the leading 10 SVD modes of maxT2m and
PC, respectively. As a threshold for the TEPIη,ν , we use the
90 % quantile, respectively. This gives us a sufficient number
of events without losing focus on the extremes. In this way,
we obtain a flexible tool for the analysis of different event
characteristics of compound extremes in maxT2m and PD.

Our investigation focuses on three cases with varying ac-
cumulation periods and lead times for PD anomalies: one
with 11 d accumulations and immediate anomalies, another
with 35 d accumulations and a PD anomaly lead time of 8 d,
and a third case with 93 d accumulations and a PD anomaly
lead time of 38 d. The first case represents short-term, co-
incident events, while the second and third cases represent
monthly and seasonal PD driving a heat wave. In all cases,
we find significant statistical dependence between maxT2m
and PD (Fig. A5). Although not shown, we obtain a signif-
icant value of 1.13 for the third case 93 d accumulation and
38 d shift. Figure 11 displays the TEPIη,ν for all cases. The
heat waves in 2003 and 2010 are indicated with colors.

Both the 2003 and 2010 heat waves show a strong sig-
nal in instantaneous TEPI. TEPIη,ν events coincide with heat
wave events as indicated by the EPIη, suggesting that both
heat waves were accompanied by short-term PD. This in-
dicates typical weather conditions during heat waves with
clear skies, strong solar radiation, and little to no precipita-
tion (Fischer et al., 2007).

Furthermore, the 2003 heat wave was preceded by a PD
that was mainly evident on a seasonal timescale, whereas the
2010 heat wave was preceded by a more pronounced PD on
a monthly timescale. In both cases, the high agreement of
TEPIη,ν and EPIη suggests that PD contributed to the ex-
treme maxT2m during 2003 and 2010 (see also Fischer et al.,
2007; Fink et al., 2004; Zaitchik et al., 2006; Christian et al.,
2020).

Thus, the heat waves in 2003 and 2010 display different
dynamics concerning common extremes of PD and maxT2m.
Our TEPI definition effectively captures these characteris-
tics, demonstrating that both events meet the IPCC defini-
tion of compound events as “two or more extreme events oc-
curring simultaneously or sequentially” (Seneviratne et al.,
2012).

We thus demonstrate that our definition of TEPI for dif-
ferent accumulation times and temporal shifts summarizes
many characteristics of compound extremes and represents a
suitable index.

8 Discussion and conclusion

In this study, we apply the promising approach of Cooley
and Thibaud (2019) to describe extremal dependencies us-
ing the TPDM. The TPDM has comparable properties to the
covariance matrix and can be decomposed similar to PCA
while focusing on the tail behavior of the variables. To de-
scribe the dynamics of large-scale temperature extremes, we
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Figure 9. First and first + second singular values of the cross-TPDM calculated from maxT2m and PD in northern hemispheric summer
months for varying shift and accumulation times. Each value has been normalized by the respective mean of 100 bootstrap samples where
the temporal relation is destroyed. White dots indicate values exceeding the 95 % confidence interval of “no statistical relation”.

Figure 10. Second, third, and fourth left and right SVs of the cross-TPDM, associated with anomalies in maxT2m (d, e, f) and 11 d PD (a,
b, c). As in Fig. 3, we transformed each vector to the positive real numbers Rp→ Rp

+
such that τ (0)= log(2) corresponds to zero.

calculated the TPDM based on maxT2m and identified typ-
ical temperature patterns of European heat waves. Our re-
sults are in line with previous studies that identify large-scale
blocking events as the primary mechanism behind European
heat waves (e.g. Schubert et al., 2014; Stefanon et al., 2012).
We determine the optimal number of patterns to describe the
main features of European heat waves and show exemplar-
ily for the 2003 and 2010 heat waves that the description of
the dynamics of large-scale temperature extremes is suitable
with only the 10 leading eigenmodes.

We define the extremal pattern index (EPI) based on the
time series of PCs and obtain a pattern-based spatial aggrega-
tion index. Thus, we can specifically identify spatially related
extreme events with minimal reliance on pre-defined thresh-
olds and regions of influence in grid point space. Although
we cannot completely eliminate the use of a threshold, as it
is a fundamental factor in estimating extreme dependencies
based on the TPDM, all data, even those below the thresh-
old, are included in the EPI estimator. We can show that this
results in little information being lost with respect to the heat
wave description.
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Figure 11. Scatter plot of EPIη and TEPIµ,η. TEPIµ,η is shown for calculation from PD using three different combinations of shift and
accumulation (11 d accumulation, 0 d shift; 35 d accumulations, 8 d shift; and 93 d accumulation, 46 d shift). All indices were calculated
using the first 10 PCs of the cross-TPDM from maxT2m and PD for northern hemispheric summer months. The 2010 and 2003 heat waves
(31 July–14 August 2003; 7 July–17 August 2010), as identified in Table 1, are highlighted in blue and red, respectively.

Using the 2003 and 2010 European heat waves as exam-
ples, we examine how well the EPI captures the essential
characteristics of heat waves. The temporal progression of
both heat waves can be effectively illustrated using the EPI
and aligns with the findings of previous analyses. Some char-
acteristics, such as the collapse of the 2010 heat wave be-
tween 10 and 14 August, can be clearly identified using the
EPI yet have received little exploration in the existing lit-
erature. An additional condition of heat waves besides spa-
tial extent and intensity is usually temporal persistence. This
condition can also be applied to EPI by defining heat waves.
In Sect. 7, e.g., we define a heat wave (i.e., an EPI event) such
that the EPI exceeds a threshold for at least 5 consecutive
days. We propose an EPI-based definition of heat waves that,
compared to a conventional definition, gives very consistent
results. This shows that the EPI is suitable as an alternative
to conventional heat wave indices with minimum reliance on
user-defined thresholds. The EPI is thus a powerful tool for,
e.g., attribution studies, climate monitoring, and characteri-
zation of extreme weather conditions.

Since pronounced heat waves over Europe cover a large
part of the area studied, the spatial mean describes the course
of the heat waves relatively well. Nevertheless, the higher
modes of the PCs contribute significantly to the description
of heat waves, as we discuss in Sect. 7.1. It can be assumed
that the dominant influence of the first PC on the EPI would
decrease when analyzing a larger geographical area.

To include the temporal persistence of heat waves as an-
other condition, one could include only those patterns that
exhibit a certain persistence and then aggregate them over
time. However, too hard a condition could be detrimental.

After initially focusing on the description of heat waves
using maxT2m, we extend our approach and go beyond the
examination of individual variables. We deal with common
extremes in maxT2m and PD. To this end, we propose a
cross-TPDM model as an analog to the cross-covariance ma-

trix that describes pairwise extremal dependencies between
the two variables. Previous studies for compound events have
usually referred to monthly or even seasonal variables (Wu
et al., 2019; Hao et al., 2019). We calculate PD from daily
precipitation using different duration scales. To generalize
our approach and apply it to compound events as well, we
shift the time series against each other. This allows us to in-
vestigate the dynamics of compound extremes in maxT2m
and PD, even at relatively short duration levels. Using the
singular values following an SVD, we analyze the dynamics
of compound extremes in PD and maxT2m and show that
preceding extremes in PD exert a significant influence on the
evolution of heat waves (see, e.g., Christian et al., 2020).
The investigation of additional variables such as hydrolog-
ical drought indices and boundary layer heights would un-
doubtedly be interesting and may provide new insights into
physical relationships.

Last but not least, we extend the EPI from considering
a single variable to describing simultaneous extremes in
two variables. We introduce a threshold-based estimator, the
TEPI, which ensures simultaneous extremes of the underly-
ing patterns. To demonstrate the utility of the TEPI, we again
focus on the 2003 and 2010 heat waves and analyze their dif-
ferent dynamics in terms of compound extremes in maxT2m
and PD using the TEPI. We analyze both heat waves using
two event types: short-term coincident events and long-term
precipitation deficit triggering a heat wave. In both cases,
we can use TEPI to reconstruct the known characteristics
of these events and demonstrate its effectiveness as a valu-
able tool for analyzing compound extremes. TEPI is a way
to focus on specific events. A disadvantage of our formula-
tion of TEPI is the hard condition of exceeding a threshold
(see Fig. 11). We need to investigate whether a less strict se-
lection or weighting would be beneficial.

There are several indicators for assessing climate indices
(see, e.g., Keyantash and Dracup, 2002; Redmond, 1991).
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Both EPI and TEPI are robust to application to different
data sources, although we believe they are most successful in
identifying large-scale extremes. In principle, they are appli-
cable to point (e.g., measured data) and gridded data sets. The
mathematical theory and derivation are quite complex, but
the application is comparatively simple since existing func-
tions for PCA and SVD, etc., can be used in various program-
ming languages. Jiang et al. (2020) also make their R code
for calculating TPDM, data pre-processing, and performing
PCA available.

The cost-intensiveness of calculating TPDM based on
high-resolution climate models is a universal problem that af-
fects methods for dealing with spatial dependencies. This can
possibly be solved by clever mathematical reformulation or
extension of the working memory. As shown in Fig. A4, the
data reduction approach we propose, using the spatial block
maximum, provides a robust estimate of the EPI.

The TPDM assumes asymptotic dependence. However, we
recognize that this assumption may not hold for maxT2m,
PD, and their interdependencies. As Jiang et al. (2020), we
nevertheless choose to decompose using the TPDM, as it
opens up a new way to examine extreme patterns in maxT2m
and PD. The resulting patterns are consistent with previous
findings in the field and provide a meaningful dynamic con-
text.

Appendix A

Figure A1. First six (from left to right, top to bottom) PCs of the TPDM as calculated from maxT2m in northern hemispheric summer
months (JJA).
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Figure A2. EPIη and maximum maxT2m anomaly of top 15 EPI events (according to EPImean) which are not identified as GRD events
(Sect. 7.2). (a, b, c) Maximum maxT2m anomaly. Shown are only grid points exceeding the 98 % quantile. (d, e, f) EPIη as shown in Fig. 6
but for single years 2002, 2008, and 2012. Time periods of corresponding EPI events are marked in gray.

Figure A3. Scatter plot representation of EPIη calculated on EVs and eigenvalues of daily maxT2m and weekly maximum of maxT2m.

https://doi.org/10.5194/ascmo-10-29-2024 Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, 2024



46 S. Szemkus and P. Friederichs: Spatial patterns and indices for heat waves and droughts over Europe

Figure A4. Scatter plot representation of EPIη calculated on [117×
121] grid (see Sect. 7.2) vs. EPIη calculated on [40× 39] grid
(Sect. 3).

Figure A5. As in Fig. 9 but for the sum of first 10 singular values.
The white line connects the maximum values over each accumula-
tion stage.
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