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Defining the “Correlate(s) of
Protection” to tick-borne
encephalitis vaccination and
infection – key points and
outstanding questions
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Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System

(CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of

protective immunity after TBEV infection or TBE vaccination relies on the

integrated responses of many distinct cell types at distinct physical locations.

While long-lasting memory immune responses, in particular, form the basis for

the correlates of protection against many diseases, these correlates of protection

have not yet been clearly defined for TBE. This review addresses the immune

control of TBEV infection and responses to TBE vaccination. Potential correlates

of protection and the durability of protection against disease are discussed, along

with outstanding questions in the field and possible areas for future research.
KEYWORDS

tick-borne encephalitis (TBE), correlates of protection, cellular immunity, humoral
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1 Introduction

Defining the so-called “correlates of protection” against a disease, namely which

immune subsets are capable of consistently protecting individuals from illness and at

which levels, is critical not only for monitoring responses to vaccination, but also for

assessing susceptibility to disease in the population and developing immunization

strategies. Tick-borne Encephalitis (TBE) is a severe, vaccine-preventable disease of the

Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV) and

transmitted to humans primarily through the bite of infected Ixodid ticks. TBE is typically

caused by infection involving one of three TBEV subtypes, namely the European, Siberian,

and Far Eastern subtypes, transmitted primarily by Ixodes ricinus (European subtype) and
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I. persulcatus (Siberian and Far Eastern subtypes) ticks, with the

distribution of viral subtypes reflective of the geography of their

respective tick vectors [reviewed by (1–3)]. In addition, two other

viral subtypes, Baikalian (4) and Himalayan (5), have been recently

described. TBEV is widespread throughout Central, Eastern, and

Northern Europe as well as parts of Asia with between 10,000-

15,000 cases reported annually [reviewed in (1, 3, 6)]. These

estimates, however, likely represent just a subset of the total

disease burden as the sometimes mild, or unspecific nature of the

disease most certainly contributes to undertesting and

underreporting of cases. In addition to preventing tick bites,

active immunization is the most important protective measure

against TBEV infections. Europe uses two of the six licensed

vaccines. The standard immunization schedule for both of these

vaccines includes three doses, followed by regular boosters to

maintain protection [reviewed in (7–10)].

The immune responses which protect individuals against

disease represent a complex interplay between many distinct cell

types at various times and over different locations. Innate immunity

comprises the “first line” defenses following pathogen exposure,

acting rapidly and broadly to protect against invaders. Adaptive

immune responses, comprised by both humoral (i.e. antibody), and

cell-mediated (i.e. T cell) responses, take more time to be

established as they require the initial activation of the innate

immune system, but provide highly-specific protection against

invading pathogens, and further offer immune memory – a subset

of cells which are maintained long-term (up to decades), and

provide rapid protection upon later re-exposure to the same

pathogen. These memory immune responses form the basis for

vaccination as well as the correlates of protection. Here we review

our current understanding of the immune responses to TBEV

infection and TBE vaccination, focusing on potential correlates

of protection.
2 TBEV transmission and early and
innate immune responses to infection

Small mammals serve as the natural reservoir for TBEV with

humans acting only as “dead end” hosts. While TBEV is transmitted

primarily through tick bites, approximately 1% of cases occur via

consumption of unpasteurized dairy products produced from the

milk of viremic animals [alimentary transmission, reviewed in (3,

6)] and rare cases of transmission via organ or blood donation have

been documented (11, 12). Within the tick vector, the virus is

thought to reside within the salivary glands and is thought to be

transmitted, via saliva, in the first several minutes following a bite

(13). Transmission of TBEV is further facilitated by factors within

the tick’s saliva [(14) reviewed in (15)] which contains components

that suppress both local innate responses, as well as the initiation of

adaptive immunity [reviewed in (16)].

Following infection, an estimated 70% of TBEV exposures are

asymptomatic [reviewed in (17–19)]. This is, however, likely a

substantial underestimation. Recent nationwide seroprevalence

estimates from Switzerland, for example, indicate that

approximately 5% of the unvaccinated population is seropositive
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for TBEV (20), although the average annual incidence is only 3-5

cases/100,000 individuals; approximately 1000-fold lower (21),

suggesting that further studies are needed to better understand

the true burden of infection.

Of individuals which do go on to develop symptomatic illness,

approximately 70-80% experience a single phase of influenza-like

illness after an incubation period ranging from 2-28 (generally 7–

14) days following tick bite. The incubation after foodborne

infection is generally shorter, around 4 days. Initial illness

typically lasts approximately 1 week (1-10 days) and is

characterized by non-specific symptoms such as fatigue, fever,

headache, and myalgia. The first phase of disease is followed by

clinical amelioration or an interval without any symptoms for up to

1 week (range 1-31 days). Around 20-30% (up to 46%) of patients

experiencing the first clinical phase go on to develop a second phase

of TBE characterized by CNS involvement [reviewed in (3, 6, 7,

22)]. In adults, symptoms of CNS disease include meningitis,

encephalitis, myelitis, radiculitis, or any combination of these.

TBE caused by the European viral subtype presents as meningitis

alone in roughly 40% of cases and includes encephalitis in 55% of

cases. The most severe forms of disease include myelitis and occur

approximately 5% of the time (23–26). These manifestations are

often milder in children, though severe disease does occur [reviewed

in (27)]. Myelitis can lead to paresis of the extremities, or of the

respiratory muscles requiring artificial ventilation. Following CNS

disease, permanent sequelae occur in 30-50% of affected individuals.

Sequelae range from mild (approximately 30%), to moderate

(approximately 60%), to severe (approximately 10%) with the

severity of sequelae correlating with the severity of acute disease.

Death occurs in 0.5-2% of clinical cases and tends to depend on age

(23–26). Fatality rates tend to be higher following disease caused by

the Siberian or Far Eastern viral subtypes and special disease forms,

such as chronic progressive disease and a hemorrhagic form, have

also been associated with these subtypes [reviewed in (7)].
2.1 Infection in the skin and early
immune control

The innate immune system comprises the earliest defenses

against viral infection and is particularly important in “naïve”

hosts that have not yet been exposed to a particular pathogen and

developed protective adaptive immune memory. TBEV belongs to

the genus Orthoflavivirus, which also includes the clinically-

relevant, arthropod-borne viruses Dengue, West Nile, Yellow

Fever, and Zika (3, 6, 28) and the early immune responses to

TBEV infection share many features with these viruses (29). Innate

immunity can be divided into an intrinsic intracellular response

elicited by viral infection, and an innate extracellular response

mediated by specialized immune cells [reviewed for TBE in (7)].

Innate immune recognition of pathogens relies on the host’s

expression of pattern recognition receptors (PRRs), which detect

conserved moieties expressed by potential pathogens. Following

exposure to TBEV-infected ticks, gene expression analyses have

demonstrated that local skin inflammatory responses already begin

within the 1-3 hours of attachment of [(30–32), Figure 1A].
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2.1.1 Viral recognition
PRRs important in the detection of RNA viruses, in general,

include Toll-Like Receptors (TLRs) and Retinoic Acid-Inducible

Gene I (RIG-I)-Like Receptors (RLRs), including RIG-I and

Melanoma Differentiation-Associated protein 5 (MDA5). PRR

activation leads to signaling cascades which result in the

activation of the Interferon (IFN) regulatory factor 3 (IRF-3)

signaling pathway and subsequent production of IFN. While the

function of TLR signaling in protection from TBEV infection is less

clear, with potential involvement of TLR-3 [reviewed in (33)], roles

for RIG-I and MDA5 in the innate immune recognition of TBEV

proteins, including non-structural protein 5 (NS5) have been

demonstrated (31). This results in an early immune response

dominated by type I IFN (IFN-a and IFN-b), which seems to be

the key mediator of protection during initial stages of infection in

both in vitro and in vivomodels (34, 35), similar to many other viral

infections. Consistent with this, mice lacking the IFN-a/b Receptor

(IFNAR), a key type I IFN receptor, are unable to control TBEV

infection and studies of polymorphisms in innate immune response

genes in patients have identified polymorphisms in the interferon-

induced antiviral proteins oligoadenylate synthetase 2 (OAS2) and

3 (OAS3) which may predispose individuals for the development of

clinical TBE (36). Of key importance, however, is that local, early

immune responses which control the virus at this stage before

further spread could prevent the establishment of later clinical

disease (Figure 1A).
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2.1.2 Local dendritic cell responses
DCs represent a group of cells with a range of functions

including acting as a major source of type I IFN during viral

infection and playing critical roles in antigen presentation and

activation of adaptive immune responses. After TBEV is

transmitted, skin-localized DCs are among the first cell types to

be infected and they likely play roles in viral trafficking

(Figure 1A). Thus, DCs represent a key cell type in the TBEV

life-cycle within the human host. Infection of DCs in vitro with

Langat virus (LGTV), an attenuated member of the TBE

serogroup, inhibits type I IFN signaling and reduces IL-12

production – a key activator of type 1 adaptive immune

responses (37). Furthermore, in vitro infection of DCs with

distinct TBEV strains results in distinct functional capacities,

impacting later activation of CD4+ T cells (38). This is further

supported by recent work demonstrating differential activation of

IRF-3 and Protein kinase B (PKB/Akt) by high and low virulence

TBEV strains (39). Together, these finding suggest potential TBEV

strain-specific differences in the activation of subsequent adaptive

immune responses. Additionally, higher infectious doses in mice

led to delays in DC activation and IFN production, and impacted

viral spread to the CNS, indicating the importance of the initial

infectious dose on downstream immune responses also dependent

on DCs (38). This is perhaps not surprising given the key

role of DCs as the interface between innate and adaptive

immune responses.
BA

FIGURE 1

TBE-specific immune responses (A) after tick bite-mediated transmission of the TBE virus, and (B) after TBE vaccination.
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2.2 Primary viremia and seeding of
peripheral tissues

In the absence of early local immune control within the skin, the

virus next traffics to the draining lymph nodes (Figure 1A). This

process is not yet well understood, but it is thought that the

migration of virally-infected phagocytes or DCs from the skin

following activation, as described above, may play an important

role (40). This initial trafficking occurs during the asymptomatic

incubation phase of illness [2-28 days post-viral exposure (3, 6, 22)].

Once within the lymph nodes, the virus undergoes further rounds

of replication, eventually seeding peripheral tissues. During this

viral expansion into the periphery, the host experiences a period of

primary viremia [3-38 days post viral exposure (3, 6, 22, 41, 42);

Figure 1A]. Consistent with other studies assessing the early

immune response to TBEV infection, work in a mouse LGTV

model has demonstrated that the type-I IFN response is critical for

control of this initial viral replication and systemic viral spread (43).

Otherwise, relatively little is known about potential mechanisms for

viral control at this primary viremic stage of infection. However,

due to the delayed kinetics of the initiation of adaptive immune

responses, antibody and T cell responses likely do not yet play an

important role in the protection of “naïve” hosts at this stage.
2.3 Secondary viremia and CNS disease

In a biphasic disease course, CNS symptoms occur anywhere

from 4 to 68 days post viral exposure (3, 6, 22). TBEV is neurotropic

– preferentially infecting cells of the nervous system. TBEV

replication, for example, is 10,000-fold higher in human neuronal

cells compared to epithelial cells (44). The ability of the virus to

cross the blood brain barrier and invade the CNS is the root cause of

human disease. The route by which CNS seeding occurs, however, is

not well-understood, though breakdown of the blood brain barrier

(BBB) does not appear to be necessary for TBEV entry into the

brain (45, 46). The virus is generally no longer present in the blood

once CNS involvement becomes clinically apparent.

Patients typically present to the clinic only after the occurrence

of clinical CNS illness, and much of what is known about immune

responses to TBEV in humans has been observed in the context of

CNS disease. Several studies have reported a host of cytokines to be

upregulated in the blood of TBE patients including Chemokine (C-

C-motif) Ligand (CCL)5, CCL7, Chemokine (C-X-C-motif) Ligand

(CXCL)10, CXCL11, CXCL13, Tumor Necrosis Factor (TNF)-a,
Interferon (IFN)-g, Interleukin (IL)-1 a, IL-6, IL-15, and IL-18,

among others (47–53), though a “TBE-specific” cytokine profile,

which could be useful for diagnostic purposes, has not been defined.

In general, the response appears to be heterogenous but consistent

with a type 1 immune response, typical of viral infections.

Importantly, cytokine-mediated trafficking promotes the entry of

immune cells into the brain, which may contribute to

immunopathology observed during severe infection in animal

studies (46). In TBE patients, increased levels of CCL5 (47) and
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CXCL10 (47, 50) in the cerebral spinal fluid (CSF) may recruit T

cells [via expression of CCR5 (47) CXCR3 (50)] into the brain

during disease. Similarly, TBEV-infected mice demonstrate

increased levels of CXCL10 in the serum and brain during

infection (54). Strong cytokine expression in the brain, coupled

with very low neutralizing antibody responses, has been linked to

enhanced susceptibility to severe disease and death (55).

Interestingly, polymorphisms in CCR5, which plays important

roles in leukocyte migration, have been implicated in TBE disease

susceptibility and severity [reviewed in (33)]. These findings

underscore the potential contribution of high cytokine expression

to immunopathology and poor disease outcomes. Therefore, a

better understanding of specific cytokines upregulated during

acute disease could be of therapeutic value.

2.3.1 NK cell responses during CNS disease
Natural killer (NK) cells are a subset of cytotoxic innate

lymphocytes which play important roles in eliminating virally-

infected and tumor cells. While not much is known about the

role of NK cells in TBE prior to the development of CNS disease,

NK cell-associated cytokines, including IL-12, IL-15, IL-18, IFN-g,
and TNF-a are upregulated in the serum of patients during severe

disease (56) and NK cells can further be detected in the CSF;

indicating their migration to the CNS (57). Interestingly, while NK

cells detected in the peripheral blood of patients have an activated

(CD57+ CD56dim) phenotype (56), they appear to be poorly

functional, possibly indicating limited protective capacities (56).

Thus, clear roles for NK cells in the context of TBE have yet to be

defined, though few studies have addressed this to date. NK cell

maturation and activity in cases of mild disease have not been

reported and may be distinct from that observed in severe disease.

2.3.2 Neutrophil responses during CNS disease
Neutrophils are important phagocytic cells during the early

immune response to viral infections and are major producers of

inflammatory cytokines. In tick feeding experiments, they are

attracted to the bite site and can be infected with TBEV (40).

However, like NK cell responses, little is understood about their role

in protection prior to CNS disease. One study of TBE patients found

that neutrophils are universally present in the CSF, and, that IL-8 (a

neutrophil chemoattractant) is the most abundant CSF cytokine

(58). In the same study, neutrophil counts were highest in the most

severe cases of disease and their prolonged presence in follow-up

CSF samples was associated with neurologic sequelae (58).

Similarly, a study of TBE vaccine breakthrough infections found

high systemic levels of IL-8 and CXCL8 (an additional neutrophil

chemoattractant) during acute infection which remained elevated

into convalescence (59). Supporting this, work in a mouse LGTV

model demonstrated increased neutrophil migration into the CNS,

and, further, that depletion of neutrophils resulted in decreased

viral loads, decreased immunopathology, and improved survival

(60). Together these findings indicate a role for neutrophils in

immunopathology during severe TBE disease, making them a

potential target for immunotherapeutic approaches.
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3 Cellular immune responses to TBEV
infection and vaccination

Cellular immune responses comprise one arm of the so-called

“adaptive” immune system. As discussed, a key feature of adaptive

immunity is the ability to form immune memory following primary

pathogen exposure, which is able to provide rapid protective

responses upon later pathogen re-encounter. Cellular immunity

relies primarily on T cell-mediated immune responses. While T cell

responses during TBEV infection (Figure 1A) or TBE vaccination

(Figure 1B) are substantially less well-understood than humoral

responses, they seem to play an important role in protection. As

with early innate immune responses, a major issue in our

understanding of cellular immunity during TBEV infection is that

most studies are conducted in patients with relatively severe disease,

and late in the disease course – namely after CNS involvement. This

is critical for identifying potential areas for therapeutic

development, though is not representative of the majority of TBE

cases. As a consequence, our understanding of what constitutes an

“ideal” protective immune response is limited.
3.1 CD4+ T cells

CD4+ T cells are key producers of cytokines which help to drive

antiviral immune responses. They are also essential to provide the B

cell help necessary for antibody production. Like other

orthoflaviviruses, TBEV encodes seven non-structural proteins

[NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5 (3, 6, 28)], but has

only three structural proteins: the C (capsid) protein and two

membrane-associated proteins, prM/M (precursor of Membrane/

Membrane) and E (envelope) (3, 6, 28). The structural proteins

appear to be the major targets of CD4+ T cell responses during

infection (61, 62). While they have been documented to some

extent, additional information on responses to NS proteins during

infection could potentially be useful in identifying additional

vaccine targets, or in the development of assays which could

distinguish between vaccination and infection. In clinical TBE

cases, T cell activation appears to peak approximately one week

after hospitalization, indicating that primary T cell responses are

delayed until the CNS phase of illness, at least in cases of severe

disease (63, 64). Whether this is the case in mild infections is

not clear.

The majority of CD4+ T cells observed during TBEV infection

are polyfunctional, producing mainly IL-2, TNF-a, and IFN-g; the
major cytokines of type 1 immune responses [(61, 64), Figure 1A].

IFN-g-mediated responses, in particular, are known to be important

in type 1 control of viral infections and are often also associated

with direct antiviral effector functions in CD4+ T cells. CD4+ T cells

appear to have a moderate activation phenotype during TBE

infection, suggesting that they may play a less important role in

direct viral clearance, but also, may have less immunopathogenic

potential, than, for example, CD8+ T cells (65). In line with their

potential protective roles, adoptive transfer of CD4+ T cells into

TBEV-infected Severe Combined Immunodeficiency (SCID; no T
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or B cells) mice was demonstrated to protect against lethal

disease (44).

Following vaccination, CD4+ T cell counts positively correlate

with anti-TBEV antibody responses (66) and vaccine responders

have increased antigen-specific T cell proliferation compared to

non-responders (67). Like infection, vaccination elicits CD4+ T

cells specific to TBEV C, prM/M, and envelope E proteins (61, 68),

with cells specific to two of the four alpha helices of C and domain

III of E (EDIII) dominating the response (62). TBEV-specific CD4+

T cells generated by vaccination, however, appear to react to a

narrower range of viral targets compared to those generated by

infection (61, 62) and while the majority of CD4+ T cells generated

by vaccination, like infection, are polyfunctional (61, 64),

vaccination-elicited IFN-g responses reach only about half those

elicited by infection in terms of both magnitude and number of

virus-derived peptides capable of eliciting IFN-g responses ((61),

Figure 1 B). Vaccine responses further tend to be biased towards IL-

2 and TNF-a production compared to infection [(64), Figure 1B].

Ideally, vaccines would elicit more robust IFN-g-producing CD4+ T

cell responses. However, whether CD4+ T cells are indeed directly

involved protection from infection (including asymptomatic or

mild and severe infection) as has been suggested in animal studies

(44) is not yet clear, but would be valuable to understand.
3.2 CD8+ T cells

CD8+ T cells, also known as cytotoxic T cells, play crucial roles

in viral infection by identifying and destroying infected host cells,

thereby limiting the spread of the virus in the body. During TBEV

infection, it appears that NS proteins are important targets of the

CD8+ T cell response; among 6 CD8+ T cell epitopes identified in

one study, all were derived from viral nonstructural (NS) proteins

(69). This is in contrast to CD4+ T cells, which appear to target

structural proteins, demonstrating differences in viral targets

between T cell types. In TBE patients, at the peak of the T cell

response 1 week following hospitalization, CD8+ T cell activation

was substantially increased compared to CD4+ T cells, indicating

that responses tend to be CD8-dominated (65). These CD8+ T cells

further displayed an effector phenotype (CD45RA-CCR7) (65, 69),

and had a highly-activated Eomes+Ki67+T-bet+ transcriptional

profi le (65) . These effectors , however , tended to be

monofunctional (65). Following acute infection, as patients

became convalescent, antigen-specific CD8+ T cells transitioned

to an Eomes-Ki67-T-bet+ phenotype (65), consistent with a type 1

effector memory (TEM) population. Interestingly, in comparing

Human Leukocyte Antigen (HLA)-A2- and HLA-B7-restricted

CD8+ cells, the most prevalent phenotype among HLA-A2-

restricted cells was effector memory (TEM), whereas the HLA-B7-

restricted population was predominantly of a TEM-reexpressing

CD45RA (TEMRA) phenotype (69), indicating that CD8+ T cells

w i th d i s t inc t v i ra l spec ific i t i e s may have d i ff e r en t

memory phenotypes.

While the immune responses to acute CNS disease is CD8-

dominated (Figure 1A), the role of these CD8+ T cells in

immunopathology versus protection during TBE disease is not
frontiersin.org
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clear. That nearly all studies assessing CD8+ T cell responses utilize

patients with severe disease limits our understanding of whether

this population is an important mediator of protection in mild or

asymptomatic illness. Results in animal studies have also been

mixed. CCR5-deficient animals experienced a temporal lag in

lymphocyte migration into the CNS which led to increased

mortality in LGTV infection, which could be alleviated by

adoptive transfer of wildtype (but not CCR5-deficient) T cells,

demonstrating the importance to T cell responses in protection

from lethal infection (60). In contrast, survival following lethal

TBEV infection in SCID and CD8-knockout mice was increased

compared to wildtype or mice with adoptively transferred CD8+ T

cells, demonstrating that CD8+ T cells can also contribute to lethal

infection (44). Similarly, CD8+ T cell infiltrates are commonly

found in the post-mortem brains of fatal TBE cases (70–72), and a

separate study found that, in severely infected patients, nearly all

virus-specific CD8+ T cells expressed a4 and b1 integrins (VLA-4),
which are important in lymphocyte homing and the ability of cells

to cross the blood-brain barrier (69). However, breakdown of the

BBB during infection in mice was observed in both wildtype and

CD8-knockout animals, indicating that CD8+ T cells are not

responsible for BBB permeability during disease (46).

Interestingly, in a mouse model of TBEV infection, TCR CDR3

gene usage differed between lethally and non-lethally infected mice,

although no differences in T-cell activation markers or apoptosis-

related genes were observed, suggesting that disease severity may be

related to antigen specificity, rather than simply the number or

activation level of brain-infiltrating T cells (73). While the

mechanism by which TBEV causes CNS destruction remains

unclear, it may involve a combination of both direct neuronal

damage by the virus and indirect damage caused by the

immune response.

In contrast to infection, data on CD8+ T cell responses

following vaccination are limited (Figure 1B). While T cell

receptor (TCR) sequencing analysis has demonstrated that CD8+

T cells do respond and expand following vaccination (74), few

TBEV-reactive CD8+ T cells are detectable in the peripheral blood

of vaccinees and overall vaccine responses are clearly CD4-biased

(68), suggesting that CD8+ T cells play a minor role in vaccine-

elicited protection. As mentioned, the primary CD8+ T cell targets

during infection are viral NS proteins (69). Importantly, these

proteins are expressed during active viral replication and,

therefore, are detectable in only small quantities in currently used

inactivated vaccines (75). This may also explain, in part, the low

CD8+ T cell responses to vaccination. While TBEV infection is

thought to elicit lifelong protective CD8+ responses, little

information on this is available (76, 77). Differences in the

epitopes targeted by infection versus vaccination could potentially

play a role. However, as CD8+ T cell responses likely contribute to

both protection and immunopathology, it is unclear whether

vaccines which promote strong CD8+ T cell responses would be

desirable. Their powerful anti-viral functions could provide rapid

protection, though, if appropriately harnessed. While not yet

explored in the context of TBEV, tissue-resident immune

responses, including tissue-resident memory T cells [TRM (78,

79)] could represent interesting potential targets for future study.
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Perhaps such skin-localized T cell immunity, elicited by a vaccine,

for example, could help to provide rapid protection against the

development of disease at the site of initial infection and prior to

viral spread.
4 Humoral immune responses in TBEV
infection and vaccination

Humoral immunity, mediated by antibodies produced by B

cells, is the arm of the adaptive immune response that functions to

neutralize and eliminate extracellular microbes and microbial

toxins. It plays a vital role in protection from viral infections with

antibodies functioning to neutralize virus binding and entry to host

cells, as well as coating viral particles to induce their uptake and

destruction by phagocytic immune cells. The long-term

maintenance of memory B cells further enables the immune

system to mount faster and more effective responses upon

reinfection as these cells quickly differentiate into antibody-

producing plasma cells when they encounter the same virus

again, helping to eliminate the virus before it can cause

widespread infection and disease. Humoral immunity is thought

to play a crucial role in protection against TBE by generating

antibodies that specifically target TBEV. These antibodies

neutralize the virus and prevent its spread, helping to limit the

severity of infection and providing long-term immunity against

future TBEV exposures.
4.1 B cells

In contrast to T cell responses, which, as discussed, peak

approximately 1 week post-symptomatic CNS disease, TBEV-

specific humoral responses are observed earlier in infection.

Among TBE patients, antibody-secreting cells, activated B cells

which have begun to produce antibodies, are already detected at the

time of hospital admission and do not appear to expand further,

indicating that they likely develop prior to CNS-symptomatic

infection (80). Similarly, in the same study, all patients presented

with detectable TBEV-specific IgM and IgG upon admission which

were maintained into convalescence (80). In comparing immune

responses detectable in the peripheral blood and CNS during TBEV

infection, several studies have suggested that type 1 cellular immune

responses tend to be higher in the CSF (49, 51, 57, 81), while Th17-

type (dominated by follicular helper T cells which provide help to

antibody-producing B cells) and B cell responses tend to be more

pronounced in the blood (49, 51, 57, 81). Together, these findings

are consistent with the idea that B cells and subsequent antibody-

mediated responses are important in controlling the viremic stages

of infection where TBEV may spread and seed several peripheral

tissues (Figure 1A).

The E protein is comprised of three domains (EDI, EDII, and

EDIII) and a C-terminal stem-anchor region (82). In TBE-

vaccinated individuals, anti-EDIII memory B cell clones are

expanded, consistent with the important role of the EDIII in viral

infection (83). Neutralizing antibody responses, however, are
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reduced compared to those observed in infected individuals (83).

Age appears to influence the functionality of memory B cell

populations established in response to vaccination with individuals

aged 60+ generating approximately 3-fold fewer virus-specific

memory B cells compared to younger individuals aged 20-30 (66).

Consistent with this, virus-specific IL-2-producing CD4+ T cell

responses were reduced among older individuals, suggesting that

decreased antibody responses in the elderly are likely due to a

combination of reduced B cell and CD4+ T cell responses (66).

After booster vaccination, similar frequencies of “reactivated” B cells

were observed in both groups, but overall antibody production

remained lower in older individuals, suggesting reduced

functionality (66). It is clear, however, that memory responses to

TBEV can be maintained for long periods of time (perhaps decades)

at low levels in the body (Figure 1B), including into older age. This is

particularly evident in the context of TBE vaccination where, even in

individuals a decade or more post-last vaccination that have become

seronegative, booster vaccination results in anamnestic responses

reaching levels considered to be seroprotective (84, 85). That

antibody responses can rapidly recalled upon booster vaccination

indicates the important role of memory B cells in protection and

perhaps suggests that a subset of neutralizing antibody-producing

memory B cells could be a correlate of protection. However, the

memory B cell populations driving these responses are not well-

described nor understood among vaccinated or TBEV-infected

individuals. The nature of B cell memory established following

TBE vaccination, including their specificities and protective

capacities, remains an important area for further research.
4.2 Antibody responses

The dynamics of antibody responses following TBEV infection

and primary vaccination have been well-reviewed (7, 10, 86–88) and

are generally better understood than cellular immune responses.

IgM antibodies are observed early during symptomatic disease,

whereas IgG antibodies peak later into convalescence (89). At the

time of the first CNS symptoms, TBEV-specific IgM is present in

serum; within the first six days, IgM levels rise and decreases again

by six weeks, but remain detectable for several months after

infection (90, 91). Serum IgG levels increase only moderately

during the CNS phase of the infection, peaking approximately 6

weeks after the onset of the first neurological symptoms; however,

their presence is long-lasting (86, 90–92). After infection, IgG can

persist life-long and is thought to play a key role in preventing

reinfection (91, 93).

While T cells target a variety of TBEV proteins, B cell and

antibody-mediated responses seem to primarily target E and, to

some extent, NS1. The E glycoprotein mediates viral binding and

entry into host cells [heparan sulfate has been identified as a likely

host cell receptor for TBEV (94)] and is the primary target for

neutralizing antibodies both during infection and in response to

vaccination (95). More than 12 distinct epitopes have been

identified which elicit antibodies characterized by varying degrees

of neutralization potency (95). Antibodies specific for NS proteins
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do not directly neutralize virus infectivity, but may protect via other

effector mechanisms (95). Compared to whole-virus antibodies,

anti-NS1 antibodies are produced at lower titers and appear later

during disease (96, 97). Several studies have shown, though, that

NS1-specific antibodies play a protective role against TBE (75, 98–

103) and detection of anti-NS1 antibodies may distinguish infection

from vaccination, as non-structural proteins are produced mainly

during viral replication (97, 104, 105). Recent research has shown,

however, that NS1-specific antibodies can be generated by

vaccination, although the titers in vaccinees remain low compared

to TBE patients, making it unlikely that vaccination-induced anti-

NS1 antibodies play a significant role in protection (20).

Here we focus on two specific aspects of the antibody response

to TBEV infection and vaccination; neutralization potential, and

intrathecal antibodies.

4.2.1 Neutralization potential
Neutralizing antibodies are thought to be key players in the

protective immune response generated following TBE vaccination,

and, indeed, they are considered by the WHO as a surrogate

measurement for the “correlate of protection” against disease

(106), with titers of 1:10 or greater generally considered as

sufficient evidence of protection (107). Orthoflavivirus

neutralization is a “multiple hit” phenomenon requiring

engagement by more than a single antibody (95). Epitopes have

been mapped to sites within each of the three E protein domains, to

domain-overlapping sites within the same protein monomer, to E

protein dimer-specific sites involving residues from both

monomers, and to sites not represented by soluble forms of the E

protein but requiring the quaternary arrangement in virus particles

(108). Potent orthoflaviviral neutralizing antibodies have been

shown to interfere with the process of virus-induced membrane

fusion (83, 109, 110). Other antibodies are thought to block the

binding of the virion to cellular receptors, block the interaction of

the virion with cellular receptors through steric hindrance, or block

membrane fusion inside endosomes or phagosomes through the

cross-linking of E molecules (111). It is plausible that the

mechanism of neutralization of many E-specific antibodies

involves both steps of virus entry and is modulated by the

composition of antibody populations in polyclonal sera (108),

complicating potential therapeutic development.

The dominance of antibodies to different E domains is strongly

affected by both host-species-specific and virus-specific factors.

Many of the most potent orthoflaviviral neutralizing antibodies

characterized to date recognize the upper lateral surface of EDIII

that protrudes from the surface of the virion; these antibodies

contribute strongly to the neutralizing response in mice but not

in humans (95, 112). Antibodies against EDI and EDII are

dominant in the human immune response against TBEV (113).

However, binding of some EDIII- and EDII-specific antibodies

could result in rearrangement of the surface of glycoprotein E

and increase the availability of the fusion loop to specific antibodies

(114, 115). Due to the potent neutralizing activity of anti-EDIII

antibodies, a vaccine strategy focusing on this domain could

potentially be beneficial (83).
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It is known that the specificity of antibodies produced upon

infection and vaccination differ and anti-TBEV neutralizing

antibody titers are much higher among infected, compared to

vaccinated individuals (76, 116). Since most TBE vaccines are

inactivated virus preparations [reviewed in (7–10)], the amount of

antigen available to the immune system is fixed and responses are

biased towards CD4+ T cells by virtue of the exogenous nature of

the antigens (CD4+ and CD8+ T cells respond to exogenously- and

endogenously-derived antigens, respectively). By contrast, infection

allows for a larger and more persistent supply of antigen due to viral

replication and active infection of host cells additionally drives

CD8+ T cell responses. These distinct responses to infection and

vaccination likely explain the substantially higher neutralization

titers associated with infection (65, 117), as well as the CD4+ T cell-

biased response to vaccination. On the other hand, the development

of neutralizing antibodies in the acute phase of disease is delayed

compared with their rapid appearance following vaccination (76,

116). Interestingly, the functional activity of antibodies appears to

be individually imprinted; for vaccinated individuals, there is a

tendency to maintain a specific antibody profile established during

initial priming of the immune response (118).

Infection with one orthoflavivirus results in the production of

both species-specific and cross-reactive antibodies due to the high

antigenic similarity among various orthoflaviviruses (119). Such

orthoflavivirus cross-neutralizing antibodies can be induced during

the acute phase of infection and disease (83, 120–122). They are,

however, not typically durable and cross-neutralization is thought

to be retained only a few months (123). Furthermore, while cross-

neutralization may offer some level of cross-protection, pre-existing

immunity to other orthoflaviviruses can also hinder and alter the

immune response to TBEV vaccination (124, 125). While TBE

vaccination does not appear to offer protection against other

orthoflaviviral infections, it is generally believed that TBEV

vaccines can protect from infection by both homologous and

heterologous TBEV subtypes (122, 126–128). However, some

studies of European vaccines have demonstrated reduced

protection against some Far Eastern and Siberian subtype strains

(127, 129). Thus, the question whether or not vaccines sufficiently

protect against heterologous strains warrants further investigation,

optimally including viral strains other than the prototypes of

each subtype.

Due to their potential for protection, antiviral antibodies may be

valuable as therapeutics. Indeed, several studies have evaluated the

use of monoclonal antibodies, chimeric antibodies, or intravenous

immunoglobulin for TBE therapy. Concern over reports of

antibody-dependent enhancement (ADE) after post-exposure

prophylaxis in children, however, have led to discontinuation of

the use of anti-TBEV immunoglobulins in Europe. While

antibodies have been shown to be protective when given before,

and even after, infection (54, 83, 130–133) there remains, to date, no

consensus on whether it is safe to use antibody therapy as post-

exposure prophylaxis against TBEV. Thus, in addition to the use of

specific and non-specific immunoglobulins, the administration of

recombinant antibodies may be potential approach to

immunotherapy (7, 134).
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4.2.2 Intrathecal antibodies
While circulating antibody responses in the serum are well-

described and several studies have demonstrated protective roles for

early serologic response in the blood (135–138), roles of antibody

responses in the CNS (intrathecal antibodies, within the CSF)

during infection are less understood. IgM is produced locally

within the CNS but is not passively transferred into the CSF to a

great extent, indicating that TBEV-specific antibody-secreting cells

or plasma cells must have first entered the CNS. At the onset of

symptoms, IgM in the CSF can be found in only up to 50% of

patients (91, 137, 139), in contrast to their detection in the blood in

nearly all patients at this timepoint. However, within 10 days after

onset of illness, CSF IgM is almost invariably detectable and peak

concentrations are reached approximately 14 days after CNS

symptom onset (24, 91, 140, 141). IgG, which naturally follows a

slower kinetic compared to IgM, increases only moderately during

acute CNS disease, but peaks in CSF approximately 6 weeks after

the first neurological disease symptoms, well into convalescence (86,

90, 91). At the timepoint of hospitalization or within one month,

IgG is detectable in the CSF in 43% or 92% of patients, respectively

(137, 139). Unlike IgM, however, IgG is transferred passively to the

CSF, especially during inflammatory processes in the CNS that

disturb the blood-brain barrier.

Intrathecal synthesis of total IgG, IgM, and also IgA appears

to be higher in severe, compared to mild, disease (24, 137). On

the other hand, a lower IgG intrathecal index at hospital

admission is a possible risk factor for developing persistent

sequelae (142), and the intrathecal anti-TBEV IgM response

may be associated with significantly quicker resolution of the

cellular CSF infiltrate (137). Thus, the role of intrathecally

produced antibodies remains somewhat unclear and would

benefit from further investigations.
5 Durability of protection

Following infection antibody titers remains stable at high levels

over many years (76, 77). Furthermore, and in contrast to

vaccination, titers following infection are comparable between

both older and younger individuals. While it is thought that IgG

generated following infection persist lifelong and may mediate

protection from reinfection (86), a comparison of seroprevalence

and average TBE incidence rates from the 1980s through 2001

suggests that previous infection actually may not induce lifelong

immunity (143). Thus, it remains to be determined whether TBE

mediates lasting protection against TBEV reinfection.

In contrast to infection, seropersistence data after primary and

booster vaccinations with both European vaccines (77, 84, 85, 124,

144–161) demonstrates that TBEV-neutralizing antibody titers

induced by vaccination decline over time (144, 145) but persist

between 5 to 10 years at least (145–150). Lasting protection against

TBE is maintained by booster vaccinations. Manufacturers’

recommendations for both European TBE vaccines include a first

booster three years after completion of the three-dose primary

vaccination series. The need for a first, three-year booster is not
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completely clear. In one study, seropositivity among 18-50 year-

olds declined to 89-92% after two to three years (144) and another

study found that only 51% of individuals without a first booster had

protective titers eight or more years later (162). Studies evaluating

the persistence of anti-TBEV antibodies following primary

immunization have demonstrated that titers decline at a slower

rate after at least one booster and that protective titers can be

subsequently maintained up to 10 years or more (85, 144, 149, 150,

156, 158, 162–167).

Additionally, and in contrast to infection where titers remain

high in older individuals at levels comparable to those observed in

younger individuals, the magnitude of antibody responses following

TBE booster immunization is reduced among adults aged 50+ (84,

145, 148, 155, 158, 165), as is the duration of seropositivity (85, 148,

164, 165). While all ages are at risk for TBE, those aged 50+ make up

the majority of cases and have the greatest incidence of severe

disease (168, 169). Vaccine responses, however, are reduced in this

age group. Rates of antibody seroconversion are lower (144), titers

are reduced (85, 145, 148), and long-term seropositivity is reduced

(85, 150). Rates of vaccination failure are also higher (170). Work

from Sweden has demonstrated reduced vaccination failures among

older individuals with additional booster vaccine doses (171), as

well as increased titers among those 50+ randomized to receive a

four-dose primary vaccination schedule (172). Taken together,

these findings suggest that the length of booster intervals should

be carefully considered in light of age dependent differences in

antibody durability.

While antibody responses are typically used to assess

responsiveness to TBE vaccination, field effectiveness data (173–

177) indicate that antibody responses may not necessarily be a

suitable surrogate for vaccine effectiveness (VE) estimates. Field

effectiveness data from several studies indicates that VE for

European TBE vaccines ranges from 90-99% [(173–175, 178–180)

reviewed in (9, 181, 182)]. Similarly, studies throughout Europe have

estimated the frequency of TBE vaccination failures at approximately

2-7% (92, 169–171, 183–185). Furthermore, increasing evidence

shows that TBE VE remains high (>90%) for at least 10 years after

completion of the primary series (175–177), despite the clear decline

in both total IgG and neutralizing antibody titers over time,

indicating that antibody responses do not always clearly track with,

and may underestimate, protection. This, in turn, suggests important

roles for other immune populations in maintaining long-term

protection. While memory B cells, for example, have been shown

to ensure anamnestic antibody responses even after extended periods

post-vaccination and even in individuals who have become

seronegative (84, 85), there remains a need for future research

investigating the sustained responsiveness of CD4+ and/or CD8+ T

cells after infection and vaccination.
6 Discussion

Here we discuss the immune responses to TBEV infection and

TBE vaccination, outlining points where “correlates of protection”

might play key roles, and highlighting outstanding questions

(Table 1). During the early stages of infection, for example, the
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immune response is critically shaped by local responses within the

skin. Whether there might be roles for local trained innate immune

responses or “tissue-resident” T or B cell populations in protection in

previously exposed hosts or following vaccination remain interesting

areas worth further exploration, potentially allowing for rapid

protection at the initial infection site before viral spread. Similarly,

as cytokine expression patterns could contribute to either protection,

or immunopathology, a better understanding of specific cytokines
TABLE 1 Summary of outstanding questions discussed in this review.

Immune
subset

Outstanding questions

Skin-
resident
immune
populations

• As the host must develop immune responses protective in
distinct environments following infection, it is appropriate to
consider site-specific immunity; as initial viral replication occurs
in the skin, skin-resident immune populations could represent
an interesting area of future study with implications
for vaccination.

Cytokines • Cytokine responses are responsible for cellular trafficking,
including trafficking of leucocytes into the central nervous
system, during TBE, and represent potential therapeutic targets.
• Further study of cytokine responses following vaccination
could potentially provide insights into differences between
vaccine responders and low/non-responders.

NK cells
and
neutrophiles

• While neutrophils are a major player in the immune response
to infection, they appear to have an immunopathologic role in
severe infections, making them a potential target for
immunotherapeutic approaches.

CD4+
T cells

• CD4+ T cells are generated by both infection and vaccination,
though their functional capacities differ. Ideally, vaccines would
elicit more robust IFN-g-producing CD4+ T cell responses.
• Whether CD4+ T cells are directly involved in protection is
not clear, but would be valuable to understand from the
perspective of vaccine development.
• While CD4+ responses to TBEV structural proteins are well-
documented in response to vaccination and infection, additional
information on responses to NS proteins during infection would
be useful to identify additional vaccine targets.

CD8+
T cells

• As CD8+ T cells are poorly-elicited by vaccination, their
responses in this context are not well-studied. As CD8+ T cells
contribute to protection and immunopathology, it is unclear
whether vaccines which elicit CD8+ T cell responses would be
desirable.
• Nearly all studies assess CD8+ T cell responses in the context
of patients with severe disease, hampering understanding of
whether this population is an important mediator of protection
in mild or asymptomatic illness.

Antibody
response

• The significance of the intrathecal synthesis of the specific
antibodies is unclear and would benefit from further
investigations.
• While it is generally believed that infection mediates life-long
immunity, whether this is indeed the case and by which
immune subsets may warrant further investigation.
• Whether vaccines sufficiently protect against heterologous
strains warrants further investigation, optimally including
strains other than the subtype “prototype” strains.

B cells • The memory B cell populations driving the rapid recall of
antibody responses upon secondary antigen contact are not
well-described nor understood among vaccinated or TBEV-
infected individuals. The nature of B cell memory established
following TBE vaccination, including their specificities and
protective capacities, remains an important area for
further research.
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upregulated early on in acute TBE disease, or after vaccination, could

have therapeutic value or provide insights into differences between

vaccine responders and low- or non-responders.

In terms of adaptive immunity, while much work has focused

on antibody responses in TBE disease and following vaccination,

memory B and T cell responses also appear to act as important

mediators of protection. The rapid recall of antibody (including

neutralizing antibody) responses upon booster vaccination

underscores the vital role played by memory B cells. Importantly,

memory B cells depend heavily on initial CD4+ T cell help and it

remains to be explored whether CD4+ T cells may themselves, play

a role in direct viral clearance, similar to CD8+ T cells. There is,

however, a key need for additional studies fo

using on the functions of these adaptive immune subsets

particularly in asymptomatic and mild disease, which represent

“ideal” protective immune responses and could provide a baseline

for what vaccine-mediated immunity “should” look like.

Importantly, monitoring the duration of immunity is also key for

ensuring long-term protection, as well as for developing effective

immunization strategies. Whether infection mediates life-long

immunity and by which immune subsets warrants additional

investigation. Similarly, as vaccine effectiveness data indicate that

neutralizing antibody titers do not clearly track with protection,

further understanding of which immune subsets do will be necessary

for establishing reliable correlates of protection following vaccination.
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64. Varnaitė R, Blom K, Lampen MH, Vene S, Thunberg S, Lindquist L, et al.

Magnitude and functional profile of the human CD4(+) T cell response throughout
primary immunization with tick-borne encephalitis virus vaccine. J Immunol (2020)
204(4):914–22. doi: 10.4049/jimmunol.1901115

65. Blom K, Braun M, Pakalniene J, Dailidyte L, Béziat V, Lampen MH, et al.
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152. Janik M, Płaczkowska S, Woźniak M, Bil-Lula I. Analysis of multiple risk
factors for seronegative rate of anti-tick-borne encephalitis virus immunization in
human serum. Medicina (Kaunas) (2020) 56(5). doi: 10.3390/medicina56050244

153. Poellabauer E, Angermayr R, Behre U, Zhang P, Harper L, Schmitt HJ, et al.
Seropersistence and booster response following vaccination with FSME-IMMUN in
children, adolescents, and young adults. Vaccine (2019) 37(24):3241–50. doi: 10.1016/
j.vaccine.2019.03.032

154. Schoendorf I, Ternak G, Oroszlàn G, Nicolay U, Banzhoff A, Zent O. Tick-born
encephalitis (TBE) vaccination in children: advantage of the rapid immunization
schedule (i.e., days 0, 7, 21). Hum Vaccin (2007) 3(2):42–7. doi: 10.4161/hv.3.2.3747

155. Beran J, Douda P, Gniel D, Zent O. Long-term immunity after vaccination
against tick-borne encephalitis with Encepur using the rapid vaccination schedule. Int J
Med Microbiol (2004) 293 Suppl 37:130–3. doi: 10.1016/S1433-1128(04)80023-8

156. Plentz A, Jilg W, Schwarz TF, Kuhr HB, Zent O. Long-term persistence of tick-
borne encephalitis antibodies in adults 5 years after booster vaccination with Encepur
Adults. Vaccine (2009) 27(6):853–6. doi: 10.1016/j.vaccine.2008.11.082

157. Rendi-Wagner P, Paulke-Korinek M, Kundi M, Wiedermann U, Laaber B,
Kollaritsch H. Seroprotection 4 years following booster vaccination against tick-borne
encephalitis. Int J Med Microbiol (2008) 298:305–8. doi: 10.1016/j.ijmm.2008.01.004

158. Paulke-Korinek M, Rendi-Wagner P, Kundi M, Laaber B, Wiedermann U,
Kollaritsch H. Booster vaccinations against tick-borne encephalitis: 6 years follow-up
indicates long-term protection. Vaccine (2009) 27(50):7027–30. doi: 10.1016/
j.vaccine.2009.09.068

159. Euctr PL. Open-label phase IV study to investigate the seropersistence of tick-
borne encephalitis (TBE) virus antibodies after the first booster and the response to a
second booster vaccination with FSME-Immun 0.5ml in adults (follow up to study 223) -
TBE Seropersistence Adults (2007). Available at: https://trialsearchwhoint/Trial2aspx?
TrialID=EUCTR2007-000440-27-PL.

160. Vene S, Haglund M, Lundkvist A, Lindquist L, Forsgren M. Study of the
serological response after vaccination against tick-borne encephalitis in Sweden.
Vaccine (2007) 25(2):366–72. doi: 10.1016/j.vaccine.2006.07.026

161. Schöndorf I, Schönfeld C, Nicolay U, Zent O, Banzhoff A. Response to tick-
borne encephalitis (TBE) booster vaccination after prolonged time intervals to primary
immunization with the rapid schedule. Int J Med Microbiol (2006) 296 Suppl 40:208–
12. doi: 10.1016/j.ijmm.2006.01.009

162. Aerssens A, Cochez C, Niedrig M, Heyman P, Kühlmann-Rabens I, Soentjens
P. Analysis of delayed TBE-vaccine booster after primary vaccination. J Travel Med
(2016) 23(2):tav020. doi: 10.1093/jtm/tav020

163. Rendi-Wagner P, Zent O, Jilg W, Plentz A, Beran J, Kollaritsch H. Persistence
of antibodies after vaccination against tick-borne encephalitis. Int J Med Microbiol
(2006) 296 Suppl 40:202–7. doi: 10.1016/j.ijmm.2006.01.030

164. Rendi-Wagner P, Kundi M, Zent O, Banzhoff A, Jaehnig P, Stemberger R, et al.
Immunogenicity and safety of a booster vaccination against tick-borne encephalitis
more than 3 years following the last immunisation. Vaccine (2004) 23(4):427–34. doi:
10.1016/j.vaccine.2004.07.002

165. Rendi-Wagner P, Paulke-Korinek M, Kundi M, Wiedermann U, Laaber B,
Kollaritsch H. Antibody persistence following booster vaccination against tick-borne
encephalitis: 3-year post-booster follow-up. Vaccine (2007) 25(27):5097–101. doi:
10.1016/j.vaccine.2007.01.116

166. Wittermann C, Izu A, Petri E, Gniel D, Fragapane E. Five year follow-up after
primary vaccination against tick-borne encephalitis in children. Vaccine (2015) 33
(15):1824–9. doi: 10.1016/j.vaccine.2015.02.038

167. Beran J, Xie F, Zent O. Five year follow-up after a first booster vaccination
against tick-borne encephalitis following different primary vaccination schedules
Frontiers in Immunology 14
demonstrates long-term antibody persistence and safety. Vaccine (2014) 32
(34):4275–80. doi: 10.1016/j.vaccine.2014.06.028
168. Altpeter ES, Zimmermann H, Oberreich J, Peıt́er O, Dvorá̌k C. Tick related
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