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Efficient and precise thinning during the orchard blossom period is a crucial

factor in enhancing both fruit yield and quality. The accurate recognition of

inflorescence is the cornerstone of intelligent blossom equipment. To advance

the process of intelligent blossom thinning, this paper addresses the issue of

suboptimal performance of current inflorescence recognition algorithms in

detecting dense inflorescence at a long distance. It introduces an

inflorescence recognition algorithm, YOLOv7-E, based on the YOLOv7 neural

network model. YOLOv7 incorporates an efficient multi-scale attention

mechanism (EMA) to enable cross-channel feature interaction through parallel

processing strategies, thereby maximizing the retention of pixel-level features

and positional information on the feature maps. Additionally, the SPPCSPC

module is optimized to preserve target area features as much as possible

under different receptive fields, and the Soft-NMS algorithm is employed to

reduce the likelihood of missing detections in overlapping regions. The model is

trained on a diverse dataset collected from real-world field settings. Upon

validation, the improved YOLOv7-E object detection algorithm achieves an

average precision and recall of 91.4% and 89.8%, respectively, in inflorescence

detection under various time periods, distances, and weather conditions. The

detection time for a single image is 80.9 ms, and the model size is 37.6 Mb. In

comparison to the original YOLOv7 algorithm, it boasts a 4.9% increase in

detection accuracy and a 5.3% improvement in recall rate, with a mere 1.8%

increase in model parameters. The YOLOv7-E object detection algorithm

presented in this study enables precise inflorescence detection and

localization across an entire tree at varying distances, offering robust technical

support for differentiated and precise blossom thinning operations by thinning

machinery in the future.
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1 Introduction

An excessive number of blossoms on fruit trees can lead to

unnecessary nutrient depletion, insufficient resources for fruit

development, resulting in numerous but small-sized fruits with

low sugar content and poor quality (Kweon and Sagong, 2021). This

increases the probability of larger tree sizes, diminishing the

economic benefits of orchards. In some newly established

orchards, the lack of effective blossom thinning can disrupt the

balance between the tree’s growth and fruiting, adversely affecting

the development and formation of tree branches and root systems,

thereby extending the orchard’s revenue cycle (Reighard et al.,

2015).With the continuous advancement of technological

capabilities, there is an increasingly profound understanding of

the relationship between the load capacity of branches, the balance

between nutritional supply and consumption in tree canopies, and

the correlation between the amount of retained blossoms and

fruiting rates in fruit trees (Liu et al., 2017). Thinning blossoms

not only serves to control fruit quality but can also be employed to

estimate optimal yields. The distribution and total number of fruits

significantly impact fruit size and other quality parameters, making

blossom thinning a key technique in regulating both size and

quality (Xia et al., 2022).

Iwanami et al. (2018) proposed a crop load management

technique based on determining the optimal number of fruits per

inflorescence over a decade. According to their findings, effective

blossom thinning during the flowering period of fruit trees, guided

by the optimal number of fruits per inflorescence, can maintain total

fruit yield while effectively enhancing fruit quality. Iwanami et al.

(2019) focused on Fuji apples and, over a two-year period,

developed a theoretical model elucidating the relationships among

blossom thinning timing, crop load, fruit weight, and flowering. The

study revealed that when there are three fruits per square centimeter

of branch cross-sectional area, the individual fruit weight is 270 g.

However, with a crop load of six fruits per square centimeter of

branch cross-sectional area, the individual fruit weight decreases to

180 g. This research underscores the significance of efficient

blossom thinning during the flowering period of fruit trees,

demonstrating its crucial role in extending the peak fruiting

period, ensuring fruit quality, and enhancing overall fruit tree yield.

In practical orchard management, orchard owners aim to

maximize economic returns by removing excess pear blossoms

during orchard blossom period. Blossom thinning methods

include manual, chemical, and mechanical thinning. However,

these three methods primarily focus on the sole objective of

reducing the number of blossoms. They often overlook the

scientific requirements regarding the quantity and spatial

distribution of blossoms on pear tree branches (Reighard et al.,

2015). This limitation arises because both manual and mechanical

thinning rely on human visual observation, making it challenging to

accurately assess blossom density (Kon et al., 2013). With

technological advancements, orchard owners increasingly seek

intelligent blossom thinning operations. This approach allows

them to save on labor costs while simultaneously determining
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fruit yield and quality from the thinning phase. Therefore, there

is a need for intelligent blossom thinning machinery capable of

precise and rapid thinning (Palacios et al., 2020). However, the

prerequisite for intelligent blossom thinning machinery is the real-

time and accurate acquisition of information about pear tree

inflorescences (Farjon et al., 2020).

In recent years, with the continuous innovation of deep learning

networks, the application of computer vision technology in the field

of agriculture has become increasingly widespread, and the

technological bottlenecks for accurate detection of fruit tree

blossoms are diminishing (Xu et al., 2021). Tian et al. (2020)

proposed an apple blossom segmentation algorithm based on the

U-Net backbone network. They improved the Mask RCNN

(Girshick, 2015) head network using the U-Net backbone (He

et al., 2017), enhancing the original network’s utilization of image

features. The segmentation accuracy for apple blossoms at different

stages reached 96.43%, with a recall rate of 95.90%. Wang et al.

(2020) introduced a pixel-level apple blossom segmentation

algorithm based on a fully convolutional network. The F1 score

on low-resolution images reached 0.85. However, this type of

algorithm is susceptible to lighting conditions and lacks

robustness. Zhang et al. (2022) used drones to capture RGB

images of fruit trees and matched these images with three-

dimensional point cloud information from the trees. This

approach enabled the visualization-based estimation of apple tree

inflorescence density. While this method offers high accuracy and

excellent visualization, the process of fruit tree 3D reconstruction

and point cloud processing involves significant computational

demands. The fitting of RGB images with point clouds is slow

and cannot meet the requirements of real-time detection (Tian

et al., 2020).

In recent years, one-stage object detection algorithms, with the

YOLO series as a representative example, have undergone

continuous iterations and updates. These algorithms are

characterized by their fast detection speed, high accuracy, and

real-time output of detected object categories and positions,

making them better suited for the practical requirements of

blossom thinning work (Xia et al., 2022).

Wu et al. (2020) improved the YOLOv4 object detection

algorithm by implementing channel reduction. This simplification

of the model network maintained the accuracy of apple blossom

detection, achieving an average detection accuracy of 97.31% across

three apple varieties: Fuji, Red Delicious, and Gala. Li et al. (2022)

proposed a method for kiwifruit blossom recognition and

localization based on YOLOv5l. The method achieved an average

accuracy of 91.60%, with a high matching accuracy of 97.60% for

identifying individual blossoms and clusters. Shang et al. (2023)

introduced an apple blossom detection method based on the

YOLOv5S algorithm. This model utilized Ghost modules and

ShuffleNetv2 modules to replace the Conv modules in the original

network’s Neck section and backbone network. The detection

accuracy for apple blossoms under various weather conditions

was 88.40%, with a recall rate of 86.10%. The mean average

precision was 91.80%. However, the input images mainly
frontiersin.org
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consisted of close-up shots and did not satisfy the actual

requirements for blossom thinning at a distance. Xia et al. (2023)

proposed a whole-tree object detection algorithm by incorporating

the Spatial Temporal Pyramid Attention Feature Pyramid Network

(He et al., 2015) into the MTYOLOX backbone network. This

enhancement increased the network’s focus on small target

blossoms, resulting in a precision and recall rate of 83.4% and

93.3%, respectively. Additionally, it facilitated tree-level blossom

density mapping. However, this method targeted early-stage apple

tree blossoms, which exhibit uniform features and no leaf occlusion.

Further research is needed to address scenarios where blossoms

overlap and branches or leaves obstruct the view in practical

blossom thinning operations.

In summary, both two-stage and one-stage object detection

algorithms have made significant advancements in the field of fruit

blossom detection. However, they also face certain challenges. Blossom

detection typically occurs during the early or late stages of

inflorescence, and there is limited research on reducing false

negatives and distinguishing between blossoms and buds, especially

in scenarios where blossoms heavily overlap during actual blossom

thinning operations (Wu et al., 2020). Most detection scenarios involve

close-up shots of individual blossoms, and long-range detection is

limited by the convolutional layers’ ability to capture only local

relationships. Although reducing the number of channels has been

employed to enhance inflorescence discrimination, it often neglects the

extraction of precise positional information of inflorescences.

In light of the current research status on inflorescence

recognition, and to further advance the development of intelligent

blossom thinning, this paper focuses on pear tree inflorescences as

the detection target. Building upon the YOLOv7 neural network

model, we propose a YOLOv7-E object detection algorithm to

address the following issues:
Fron
(1) Currently, most applications of object detection algorithms

involve close-up shots of blossoms, with limited research on

long-distance tree-level inflorescence detection. This does

not align with the normal working distance requirements

for blossom thinning equipment.

(2) Existing studies often concentrate on early or late stages of

inflorescence development. However, given the rapid

changes during the flowering period of fruit trees, it is

impractical for blossom thinning operations to be

completed entirely within a specific time frame. In

practical blossom thinning work, the object detection

algorithm needs to adapt to the varying characteristics of

blossoms at different stages, supporting continuous

operation of intelligent blossom thinning equipment

throughout the entire period.

(3) In the context of long-distance tree-level inflorescence

recognition, as the distance increases, discernible features

of blossoms in input images become smaller, leading to

increased overlap between flowers and greater influence

from leaf occlusion. Addressing how to reduce the

probability of missed detections and false positives in

long-distance detection scenarios is crucial.
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The work outlined in this paper is structured as follows:
Chapter 2 begins by introducing the sources and classification

of the datasets used in the experiments. It then proceeds to

elucidate the methods employed and the evaluation metrics for

enhancing the original YOLOv7 object detection algorithm.

Chapter 3 provides an in-depth explanation of the

experimental details and carries out experiments to address

the established research objectives.

Chapter 4 validates the effectiveness of the proposed methods

and conducts comparative evaluations with similar detection

algorithms under the same conditions. This validation aims to

achieve precise blossom detection on entire trees at long

distances. Finally, based on the experimental result, the paper

concludes its research findings and presents future prospects.
2 Data and methods

2.1 Data

The dataset in this study consists of pear tree inflorescence

images, collected from the pear orchard at the Fruit Tree Institute of

Jiangsu Academy of Agricultural Sciences. The collection period

spans from March 2, 2023, to March 27, 2023, covering an entire

pear tree flowering season. Data was gathered between 14:00 and

16:00. The collection device used was a Huawei AL10 smartphone

with a resolution of 3000×4000 pixels and a focal length of 26 mm.

The inflorescence images in this research are categorized into A,

B, and C classes. The specific experimental data is outlined in

Table 1. To avoid potential overfitting due to insufficient dataset

size, data augmentation techniques were applied to the A, B, and C

datasets using the OpenCV library. Geometric transformations such

as rotation, translation, jittering, and splicing, as well as pixel

changes such as Gaussian noise, HSV contrast adjustment, and

histogram equalization, were employed. Each augmented image was

expanded fivefold, resulting in a final dataset comprising 3,390

images. The training, validation, and test sets were proportionally

composed of A, B, and C class images in a 3:4:3 ratio. LabelImg

software was used for inflorescence image preprocessing, and the
TABLE 1 Details of the captured images.

Name Influencing
factors

Specific
categories

Number

A Time early stage
mid-stage

middle stage

165
280
335

B Distance close-up (10-30 cm)
branch (40-60 cm)

panoramic (80-120 cm)

130
300
730

C Weather sunny
cloudy
overcast

420
135
330
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flower category classification included two classes: flowers and

flower buds.

The inflorescence characteristics of pear trees vary significantly

at different stages. In the early stages, there is minimal overlap

among blossoms, and the inflorescence features primarily consist of

flower buds with almost no leaf occlusion. In the middle stages,

blossoms coexist with flower buds, and leaf occlusion is generally

moderate. In the later stages, the inflorescence features are

predominantly blossoms, with a high degree of overlap and

mutual occlusion among them. To ensure that the proposed

model accommodates inflorescence detection at different stages,

the A-class dataset, as depicted in Figures 1A–C, includes

inflorescence images from the early, middle, and late stages.

With increasing distance, the pixel values of inflorescences in

input images decrease, and the difficulty of extracting effective

image features increases due to the combined effects of leaf

occlusion and blossom overlap. To enable the proposed model to

adapt to inflorescence detection at different distances, the B-class

dataset, as illustrated in Figures 2A–C, includes inflorescence

images taken at close-up (10-30 cm), intermediate (40-60 cm),

and panoramic (80-120 cm) distances.

Variations in lighting conditions are a crucial factor to consider

in target recognition. Blossom thinning operations often occur on

sunny days; however, the weather during the flowering period of

fruit trees is variable. To ensure that the proposed model can

achieve inflorescence detection under challenging lighting

conditions, the C-class dataset, as depicted in Figures 3A–C,

comprises inflorescence images taken on sunny, overcast, and

rainy days.
2.2 Methods

2.2.1 YOLOv7 network
YOLOv7 (Xia et al., 2023) stands as the current leading object

detection algorithm, offering optimal speed ranging from 5FPS to

160FPS while maintaining accuracy. Its network architecture, as

illustrated in Figure 4, comprises the input, backbone, and head
Frontiers in Plant Science 04
components. Image inputs undergo preprocessing before being fed

into the Backbone network for feature extraction. The input to the

head layer consists of three feature maps of different sizes. These

maps are processed using Rep VGG blocks and convolution layers

for tasks such as image classification, foreground-background

classification, and bounding box refinement, ultimately yielding

the detection results (Chen et al., 2017).

What sets YOLOv7 apart from previous detectors in the YOLO

series is its foundation on the Rep VGG structure (Ding et al., 2021).

It introduces a novel reparameterization convolution module,

which accelerates network inference performance without

sacrificing accuracy. Additionally, a coarse-to-fine label

assignment method is proposed, wherein initial training utilizes

the prediction results from a guidance head, increasing the number

of positive samples to expedite training efficiency. The optimal

results are subsequently selected based on precision. The ELAN-W

module extends the feature dimension of channel and

computational modules using three distinct convolution

combinations. It merges different features through shuffle and

merge cardinality methods, gradually enhancing the network’s

capacity for diverse feature learning without compromising the

existing gradient pathways (Zhao et al., 2023).The unique label

assignment strategy, efficient aggregation network, and

reparameterization methods of YOLOv7 are well-suited to

address the detection scenarios posed by pear tree inflorescence

images, which involve a high number of small-sized blossoms with

similar features.

2.2.2 Multi-scale attention module
While ensuring the accuracy of flower recognition, it is essential

to detect the precise spatial information of the blossoms, which is a

necessary condition for ensuring the precise operation of the

thinning equipment. Detecting inflorescences on an entire tree

poses a significant challenge. As the distance increases, the size of

the target blossoms in the image becomes progressively smaller.

This diminishes the contrast, making it difficult to label and identify

inflorescences. To enhance the YOLOv7 algorithm’s capability for

detecting small, distant targets, a novel Efficient Multi-Scale
A B C

FIGURE 1

Inflorescence at different stages. (A) Early stage (B) Mid-stage (C) Late stage.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1330141
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1330141
Attention (EMA) (Ouyang et al., 2023) mechanism is introduced, as

shown in the structural diagram in Figure 5. EMA is an efficient

multi-scale attention mechanism based on Coordinate Attention

(CA). It employs a parallel strategy to divide the original input

feature map of size CHW into G (G≤C) sub-features. Three path

ways, A, B, and C, are utilized to extract feature information weights

from different channels. The A branch represents the original input

feature map, while the B branch consists of feature maps with sizes

G×1×W and G×H×1. After applying global average pooling, these

branches retain feature information in the vertical and horizontal

directions. Subsequently, one 1x1 convolution is applied to share

similar features, resulting in two 1D feature encoding vectors. These

vectors are then processed with a Sigmoid function to adjust the

encoding weights for precise spatial information. The feature map

in the C branch undergoes one 3×3 convolution to obtain finer-

grained local channel features without significantly increasing

computational complexity. To further collect spatial information

at multiple scales without reducing channel dimensions or

increasing computational load, the channel attention maps from

the C branch, which have not been subjected to normalization

probability processing, are multiplied by the attention maps from
Frontiers in Plant Science 05
the B branch. This multiplication is performed after applying Group

Normalization to the B branch’s channel attention maps (Simonyan

et al., 2014).

In a nutshell, EMA achieves the linkage between spatial positions

and channels through a parallel structure. It encodes global positional

information for both the B and C branches by utilizing two-

dimensional global average pooling. This encoding is established

through simple multiplicative operations, creating a set of spatial

attention weight values. This approach maximizes the capture of

pixel-level relationships across the feature map while retaining precise

positional information. Moreover, the Group Normalization (Wu

and He, 2018) applied to the B branch is unaffected by batch size

variations, rendering it highly advantageous in scenarios involving

long-distance small targets with high similarity.

It should be noted that the EMA attention mechanism performs

exponential weighted averaging on historical attention weights.

This process, particularly in scenarios involving long sequences

and large-scale models, can lead to an increase in computational

complexity. Furthermore, during the application, continuous

adjustments to the decay factor are necessary, introducing added

difficulty to the model tuning process.
A B C

FIGURE 3

Inflorescence in different weather conditions. (A) Sunny (B) Overcast (C) Rainy.
A B C

FIGURE 2

Inflorescence at different distances. (A) Close-up (B) Branches (C) Panoramic.
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2.2.3 SPPCSPCS module
As neural network designs continue to evolve, enhancing

algorithm performance using methods like NAS has become

increasingly challenging (Gao et al., 2018). In YOLOv7, we have

taken a foundational approach to optimize network layers, aiming

to improve the accuracy of the original network without

significantly increasing computational costs. In practical

applications, variations in the distance between image capture

devices and pear trees result in differences in the sizes of pear

inflorescences within the input network. Inflorescences are less

noticeable as the distance increases, and they appear larger when

the distance is shorter. Furthermore, different image capture devices

have varying image resolutions. To enhance the algorithm’s ability

to handle a broader range of scale features and improve

compatibility with edge devices, solely adding attention

mechanisms is insufficient to achieve optimal results.

Therefore, we proposed an improved SPPCSPCS module based

on the original SPPCSPC module within the network, as illustrated

in Figure 6. Initially, input features are split into two branches. The

first branch undergoes conventional processing with a 1×1

convolution having a stride of one. The second branch first passes

through four different pooling layers for multi-scale feature fusion,

followed by a 1×1 convolution with a stride of one and a 3×3

convolution with a stride of two. Finally, the outputs of the two
Frontiers in Plant Science 06
branches are merged, resulting in a minimal increase in

computational load while significantly improving the model’s

accuracy and compatibility with images of varying resolutions.

Based on the characteristics of actual inflorescence images, the

original network architecture’s SPPCSPC module utilizes max-

pooling. However, in inflorescence images, neighboring and

similar features are abundant, and applying max-pooling tends to

retain only the most prominent features, making it prone to missing

the detection of identical objects. Soft-pooling (Stergiou et al., 2021)

employs a weighted approach based on soft-max to retain the

original attributes of the input while enhancing features. Its

computation is defined as in Equations 1 and 2.

Wi =
eai

oj∈Re
aj (1)

Where, R represents the selected local region, a denotes a

feature value, and Wi represents the weight of the feature value.

~a =oi∈RWiai (2)

Where, ~a represents the summation of the product of relevant

feature values and their corresponding weights.

The Soft-pooling method begins by calculating the weights of

the corresponding feature values within the selected regions
frontiersin.or
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through an exponential computation. Subsequently, it multiplies

each feature value by its respective weight and performs a weighted

sum. This approach allows for a comprehensive consideration of

feature values from all regions, categorizing important features

based on weight magnitudes. In contrast to the direct selection of

the maximum value in the former approach, Soft-pooling retains

more information. Additionally, Soft-pooling is differentiable,

which means it can provide minimal gradient values during the
Frontiers in Plant Science 07
backpropagation process, making it more conducive to

model training.

2.2.4 Soft-NMS
In computer vision technology, generating corresponding

bounding boxes for target categories has always been a

fundamental challenge, especially in tasks involving densely

occluded object detection. The process of filtering candidate
FIGURE 6

SPPCSPCS architecture.
FIGURE 5

EMA architecture.
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bounding boxes is directly linked to the algorithm’s detection

accuracy, as cited in reference (Tychsen-Smith and Petersson,

2018). During our use of the YOLOv7 network for pre-training,

we observed that the non-maximum suppression (NMS) method

used by YOLOv7 resulted in numerous missed detections and false

alarms in scenarios where pear blossoms are densely clustered and

occluding each other (Hosang et al., 2017).

As illustrated in Figures 7A, B, the scores for two pear blossoms,

f1 and f2, are 0.9 and 0.8, respectively. According to the NMS

strategy, despite f2 having a high score of 0.8, it would still be deleted

due to the excessive overlap with f1 and leading to a missed

detection. If we simply raise the NMS threshold, it could easily

result in false alarms as depicted in Figure 7C.

In response to the aforementioned scenario, the Soft Non-

Maximum Suppression method is introduced (Bodla et al., 2017).

The algorithm conceptual pseudo code is illustrated in Figure 8. In

this method, B represents the collection of scores for all candidate

bounding boxes. After obtaining the highest score M, it is extracted

from the B collection and added to the final detection box set D.

Simultaneously, for candidate bounding boxes in the B set that have

an overlap with M greater than the threshold Nt, a lower score Si is

assigned. What sets Soft-NMS apart from traditional NMS is its

approach to candidate bounding boxes with the same overlap

values. Instead of directly removing them, Soft-NMS applies a

decay function. In simpler terms, if a candidate bounding box

significantly overlaps with the bounding box with the highest score

M, it is assigned a lower score rather than being eliminated. This

approach helps prevent missed detections. The calculation of the

decay function Si is defined as shown in Equation 3.

Si = Sie
−
IoU(M,bi )

2

s (3)

Where, Si is equivalent to the confidence score bi of the prior

box,M represents the prior box with the highest confidence score in

the confidence branch, and s is a hyper parameter.

It is important to note that while Soft-NMS does not impact

model size and is plug-and-play, it exhibits sensitivity to the sizes

and shapes of bounding boxes. In scenarios where there is a

significant disparity in object sizes, Soft-NMS may not perform as

well as traditional NMS. Therefore, if applied to detect diverse floral

arrangements, adjustments to the decay function parameters

are necessary.
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2.3 Evaluation metrics

This study employs four metrics, precision (P), recall (R), mean

average precision (mAP), and F1 score, to evaluate the accuracy of

the proposed pear blossom detection model. Model efficiency is

assessed based on model parameters, frames per second (FPS), and

floating-point operations per second (FLOPS). The formulas for

these metrics are provided in Equations 4–7.

P =
TP

TP + FP
� 100% (4)

R =
TP

TP + FN
� 100% (5)

mAP = oAP

Ni
(6)

F1 =
2(P � R)
P + R

(7)

Where, true positives (TP), false positives (FP), and false

negatives (FN) represent the number of detection boxes correctly

predicting positive samples, the number of detection boxes

incorrectly predicting positive samples when they are negative,

and the number of actual positive samples incorrectly predicted

as negative, respectively. The mean average precision (mAP)

measures the model performance across each class. Ni represents

the total number of classes the model can detect. In this study, there

are two detection classes: buds and blossoms, thus Ni =2.
3 Results and discussions

3.1 Experimental details

All experiments in this study were conducted on a desktop

server equipped with an Intel Core i5-13600 (3.49 GHz) CPU, an

NVIDIA Tesla A100 (80 GB) GPU, and 125 GB of RAM. The

software environment included Windows 10 Professional, CUDA

11.8, Python 3.8, and PyTorch 1.13 deep learning frame work.

During the training phase, the initial weights were initialized using

YOLOv7 weights from the CoCo dataset. Our training strategy
A B C

FIGURE 7

NMS detection performance.
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involved the use of weighted image strategy and multi-scale training

methods to address the class imbalance issue, enhance model

robustness, and cache images in memory for faster training. The

training parameters for the model are summarized in Table 2.
3.2 Results

3.2.1 Visual detection results of YOLOv7-E
To validate the detection performance of the proposed model

across different stages of pear tree inflorescences, testing was conducted

using images from dataset A representing various inflorescence stages

(with no significant changes in distance and weather conditions).

Figures 9A–C depict the detection results for the early, middle, and

late stages of inflorescences, respectively. According to the evaluation,

the YOLOv7-Emodel achieves an average precision of 92.27%, 91.24%,

and 90.06% for the early, middle, and late stages of pear inflorescences,
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with a variance of 0.8. The results demonstrate that the proposedmodel

can accurately identify pear inflorescences across different stages and

possesses the capability for inflorescence detection throughout the

entire flowering period.

To validate the inflorescence detection performance of the

proposed model at different distances, testing was conducted using

inflorescence images from the B-class dataset captured at various

distances. Figures 9D–F present the detection results for late-stage

pear inflorescences at distances of 30 、60 and 120 centimeters,

respectively. Upon evaluation, the average precision of detection was

determined to be 91.51%, 90.41%, and 89.43% for the respective

distances, with a variance of 0.7. The results indicate that the

YOLOv7-E model maintains consistent precision under varying

distances, aligning with the practical requirements of blossom

thinning operations.

As it is well known, blossom thinning operations predominantly

occur on sunny days; however, the weather during the flowering

period is subject to variability. To validate the inflorescence detection

performance of the improved model under different weather

conditions, testing was conducted using inflorescence images from

the C-class dataset captured under diverse weather conditions.

Figures 10A, B depict the detection results for late-stage pear

inflorescences (distance: 30-40 cm) on overcast and sunny days,

respectively. Upon evaluation, the average precision of detection

under overcast and sunny conditions was determined to be 88.14%

and 91.28%, respectively. As illustrated in Figure 10 (1, 2, 3, 4),

whether on overcast or sunny days, the YOLOv7-E model

demonstrates the capability to correctly identify occluded blossoms

even in situations of high blossom overlap. The results indicate that

the proposed model achieves precise inflorescence detection under

varying weather conditions.
3.3 Discussion

3.3.1 Ablation experiment
In order to assess the effectiveness of the interactions among the

various modules in the proposed YOLOv7-E model, this study

conducted ablation experiments using the same training and test

datasets. The performance metrics for each model are presented in

Table 3. In Table 2, YOLOv7 represents the original YOLOv7 model,

YOLOv7-EMAindicates the model with the efficient attention

mechanism introduced, YOLOv7-SPPCSPCS represents the model

with the improved SPPCSPCSmodule, and YOLOv7-Soft NMS is the

model using the Soft Non-Maximum Suppression method.

According to Table 3, it is evident that the YOLOv7-EMA and

YOLOv7-SPPCSPCS models, in comparison to the original

YOLOv7 model, exhibit improvements in mAP by 4.2% and

1.7%, respectively. Furthermore, they demonstrate an increase in

recall rates by 5.9% and 2%. The model size experiences slight

increments of 1% and 0.5%, while the GFLOP increases by 2.3% and

0.3%. However, it’s important to note that the detection speed is

slower by 2.6 ms and 0.3 ms for these models. In the case of

YOLOv7-Soft NMS, there is a noticeable enhancement in mAP and

recall rates by 3.1% and 4.4%, respectively, when compared to the

original network model. However, this improvement leads to a
TABLE 2 Model training parameters.

Training parameters Values

Epochs 300

Batch-size 16

Img-size 1280×1280

Initial learning rate 0.001

Warmup epochs 5

Lrf 0.1

Weight_decay 0.0005
FIGURE 8

The concept of the Soft-NMS algorithm.
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slight reduction in detection speed by 1.9 ms. The model size

remains unchanged. This indicates that Soft Non-Maximum

Suppression, without impacting the original network structure

and model size, can significantly improve the original network’s

detection accuracy in scenarios with high overlap. This is achieved

through the effective allocation of a decay function strategy, which

reduces both missed detections and false positives.

For YOLOv7-E, there is a notable increase in mAP and recall

rates by 4.9% and 5.3%, respectively, when compared to the original
Frontiers in Plant Science 10
network. However, this improvement comes at the cost of a 3.7%

increase in GFLOP and a 1.8% growth in model size. The average

detection speed is slightly slower by 6.7 ms. The results suggest that

the EMA, based on parallel strategies, effectively captures finer-

grained local channel features without significantly increasing

computational demands. It does so through the construction of a

set of spatial attention weight values, thereby enhancing the capture

of pixel-level relationships for small targets on the feature map in

long-distance detection scenarios. Additionally, the Soft-pooling-
A B

D

E F

C

FIGURE 9

Detection results in different scenarios. (A) Early stage (B) Mid-stage (C) Late stage (D) Close-up (E) Branches (F) Whole tree.
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enhanced SPPCSPCS module, as training progresses during

backpropagation, accelerates the update of target weight values

and retains a greater amount of regional feature information.

From the experimental results, it can be concluded that the

proposed YOLOv7-E model, with only a minimal increase in

model size, effectively enhances the YOLOv7 network model’s

accuracy in detecting highly overlapping inflorescences at long

distances while maintaining the overall model structure.

3.3.2 Performance comparison of
different models

To further validate the effectiveness of the proposed YOLOv7-E

network model, this study conducted a comparative analysis with

four other object detection algorithms, namely, MTYOLOX、

YOLOv7、YOLOv5、Faster R-CNN and YOLOv8. All models

were trained using the same training dataset, and the training

process consisted of 300 epochs. Given the primary focus of this

study on enhancing the original network model’s ability to detect

overlapping inflorescences at long distances, testing was performed

without the use of a separate test dataset. Figure 11 displays the

Precision-Recall (P-R) curves obtained with different test datasets.

In Figure 11A represents a test dataset equally divided into three

classes (ABC) in a 3/3/4 ratio, while (b) depicts a test dataset with

classes (ABC) divided in a 2/6/2 ratio.

From Figures 11A, B, it is evident that YOLOv7-E exhibits

excellent P-R curves in both close-range and long-range scenarios.
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This observation suggests that the proposed method can effectively

meet the practical requirements of sparse flower operation, enabling

accurate detection of pear inflorescences at distances ranging from

80 to 120 centimeter.

As shown in Table 4, the improved YOLOv7-E model in this

study demonstrates a 4.9% increase in Mean Average Precision

(MAP) and a 5.3% increase in recall compared to the original

model. While enhancing accuracy, the model also reduces the false-

negative rate. Regarding model parameters and inference speed,

YOLOv7-E exhibits an increase of 0.7 M in parameter count and 6.7

ms in inference speed compared to the original model. Without

compromising detection speed, the slight increase in model

parameters results in a noticeable improvement in model

inference accuracy, making it an acceptable trade-off.

The MAP values of the YOLOv7-E model are respectively 1.2%,

10.6%, and 20.1% higher than those of MTYOLOX, YOLOv5, and

Faster RCNN object detection algorithms. The recall rate is 8.6% and

16.4% higher than YOLOv5 and Faster-RCNN, and 2.3% lower than

MTYOLOX. In terms of detection speed, YOLOv7-E outperforms

Faster RCNN, MTYOLOX, YOLOv5, and YOLOv8. Regarding model

size, YOLOv7-E is 35.6 M, 68.4 M, 9.2 M, and 6.1 M smaller than

MTYOLOX, Faster-RCNN, YOLOv5, and YOLOv8, respectively,

making it more convenient for deployment on embedded devices.

It is noteworthy that, in comparison to the latest YOLOv8

object detection algorithm, YOLOv7 exhibits a 1.3% decrease in

Mean Average Precision (MAP) and a 1.7% decrease in recall.
A B

FIGURE 10

Detection results under different lighting conditions. (A) Overcast (B) Sunny.
TABLE 3 Performance parameter comparison between improved YOLOv7 and original YOLOv7.

Algorithm mAP/% Recall% F1% GFLOPs
Average

speed/(ms)
Model size/M

YOLOv7 86.5 84.5 85.4 104.8 74.2 36.9

YOLOv7-EMA 90.7 90.4 90.5 107.3 76.8 37.4

YOLOv7-SPPCSPCS 88.2 86.5 87.3 105.2 74.5 37.1

YOLOv7-Soft NMS 89.6 88.9 89.3 104.5 76.1 36.9

YOLOv7-E 91.4 89.8 90.6 108.7 80.9 37.6
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However, in this study, YOLOv7-E surpasses YOLOv8 in both

average precision and recall by 3.6%. This suggests that the

Exponential Moving Average (EMA) attention mechanism,

through the aggregation of spatial attention weight values,

effectively preserves the pixel-level relationships of each

inflorescence in the input images. Moreover, by employing a

unique decay function, YOLOv7-E captures inflorescence

information that was missed in the original model and YOLOv8.

Furthermore, YOLOv8 has 5.1M more parameters and 36.5

additional GFLOPS compared to YOLOv7. The results indicate

that the approach of YOLOv7-E, which links spatial position and

channel information, is more flexible and efficient than YOLOv8.

Unlike YOLOv8, which abandons predefined anchor boxes and

uses feature maps of different scales to detect targets of various sizes,

YOLOv7-E requires fewer computational resources while

demonstrating more flexible and efficient performance.

3.3.3 Problem analysis
To further verify the inflorescence detection capabilities of the

improved YOLOv7-E model at operational distances in flower

thinning machinery, experiments were conducted on Y-trellis pear

trees in the mid-flowering stage at the pear orchard of the Jiangsu

Academy of Agricultural Sciences. The detection results are depicted

in Figures 12A–C. Figure 12A shows the real image captured at a

distance of 120 cm from the Y-trellis pear tree. Figure 12B presents

the detection results obtained using YOLOv7-E, which identified 246

blossoms and 73 buds. In Figure 12C, the inflorescence detection

results were visualized as a heat map using the Grad-CAM (Class
Frontiers in Plant Science 12
ActivationMapping method), with red areas indicating blossoms and

blue areas representing buds. The results demonstrate that the EMA

attention mechanism and the improved SPPCSPCS module

introduced in this study effectively capture the overall inflorescence

features at long distances, reduce the focus on irrelevant information,

maximize the retention of global image features and positional

information. Additionally, the soft-NMS algorithm allows for

distinguishing between blossoms and buds, even when they overlap.

As shown in Figure 12B, the inflorescence within the yellow

circle was not detected. The reasons for this false negative (missed

detection) are analyzed as follows.
(1) The pear inflorescence images were captured using a

Huawei AL10 smartphone. During photography, the focal

point of camera was in the densely populated flower area,

causing background blurring within the yellow circle area

and resulting in the loss of inflorescence features.

(2) The images were taken on an overcast day, and the

inflorescence within the yellow circle was located at a

greater distance. Since pear blossoms are white and tend

to blend with the color of the sky in the background as the

distance increases, it added difficulty to feature extraction,

leading to the missed detection.
The edge device utilized for image processing in this experiment

is the NVIDIA Jetson AGX Orin (64GB) Developer. With an input

resolution of 1024×1024 images, the detection speed reached 40fps,

and the detection performance was minimally impacted, marking
A B

FIGURE 11

P-R curve. (A) P-R curve at 30-60 cm. (B) P-R curve at 80-120 cm.
TABLE 4 Performance comparison of different object detection algorithms.

Algorithm MAP% Recall% F1% GFLOP Speed/ms Model size/M

YOLOv7 86.5 84.5 85.4 104.8 74.2 36.9

MTYOLOX 90.2 92.1 91.1 111.3 89.8 73.2

YOLOv5 80.8 81.2 80.9 89 84.2 46.8

Faster RCNN 71.3 73.4 72.3 206 108.3 106

YOLOv8 87.8 86.2 86.9 145.2 92.5 43.7

YOLOv7-E 91.4 89.8 90.6 108.7 80.9 37.6
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the achievement of an initial milestone. However, in practical

blossom thinning operations, the development kit employed in

this study, despite its superior performance, proves cost-prohibitive

for integration into blossom thinning equipment. Considering the

performance of embedded devices in real-world applications, the

proposed YOLOv7-E algorithm faces the following limitations:
Fron
(1) The model size is slightly large, occupying excessive memory

and limiting the system’s ability to simultaneously run

multiple tasks.

(2) The high detection accuracy and lengthy inference time

demand significant computational resources, potentially

causing performance bottlenecks in embedded systems

and compromising real-time responsiveness.

(3) The power consumption during the inference process is

substantial, leading to device overheating and requiring

high thermal dissipation capabilities in embedded systems.
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4 Conclusion

With the continuous development of smart agriculture, to

facilitate the precision and intelligence of blossom thinning

processes, this study, taking into consideration the practical

requirements of blossom thinning work, addresses challenges

related to high overlap of inflorescences, abundant similar

features in pear blossom images, and the difficulty of long-

distance detection. In response to these challenges, the study

introduces a YOLOv7-E object detection algorithm. The main

research findings are as follows.
(1) The YOLOv7-E object detection algorithm proposed in this

paper achieves cross-channel feature interaction,

maximizing the retention of positional information in

inflorescence images captured at long distances. It

effectively detects tree-level inflorescences at distances of
A B

C

FIGURE 12

The detection results of the Y-trellis pear tree. (A) Y-trellis pear tree (B) Detection results (C) Class activation map.
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80 cm to 120 cm during different stages of pear tree

flowering. The average detection precision reaches 91.4%,

with a recall rate of 89.8%. The detection speed is measured

at 80.9 ms. This ensures that intelligent blossom thinning

equipment can operate throughout the entire flowering

period of pear trees, adapting to the variable weather

conditions, and maintaining effective performance within

normal working distances.

(2) The Soft-NMS strategy and the improved SPPCSPCS

module introduced in this paper effectively reduce the

likelihood of false negatives and false positives when

dealing with dense tree-level inflorescences. This approach

maximally retains the global feature information of the input

inflorescence images, enabling intelligent blossom thinning

equipment to more accurately obtain the count of blossoms

and buds for each inflorescence on the entire tree.

Consequently, based on the varying inflorescence density,

the thinning axis rotation speed can be adjusted, providing

reliable data support for achieving differentiated and precise

blossom thinning.

(3) The YOLOv7-E model proposed in this paper achieves

effective detection of tree-level pear inflorescences at long

distances in complex scenarios. However, the model exhibits

a slightly larger size and demands high computational

resources. In the future, there is a need for the model to

evolve towards greater lightweight characteristics, enhancing

compatibility with edge devices. A potential avenue for

improvement is through Model Pruning, where certain

threshold-weighted and redundant channel weights are

removed. For instance, the introduction of Ghost modules,

which partition input channels into two parts and employ

shallow convolutions through the Ghost path, can reduce

computational load. Alternatively, inspiration can be drawn

from the depth-wise separable convolution concept in

MobileNetV3, decomposing the standard convolution into

depth-wise and point-wise convolutions to maintain

performance while reducing model size.
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