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A multiscale method proposed elsewhere for reconstructing plausible 3D
configurations of the chromatin in cell nuclei is recalled, based on the
integration of contact data from Hi-C experiments and additional information
coming from ChIP-seq, RNA-seq and ChIA-PET experiments. Provided that the
additional data come from independent experiments, this kind of approach is
supposed to leverage them to complement possibly noisy, biased ormissing Hi-C
records. When the different data sources are mutually concurrent, the resulting
solutions are corroborated; otherwise, their validity would be weakened. Here, a
problem of reliability arises, entailing an appropriate choice of the relative weights
to be assigned to the different informational contributions. A series of
experiments is presented that help to quantify the advantages and the
limitations offered by this strategy. Whereas the advantages in accuracy are
not always significant, the case of missing Hi-C data demonstrates the
effectiveness of additional information in reconstructing the highly packed
segments of the structure.
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1 Introduction

By their very nature, Hi-C data (Lieberman-Aiden et al., 2009) contain information on
the 3D structure of the chromatin in euchariotic cells during interphase. In each Hi-C
experiment, the counts of each specific pair of genomic loci found in contact in a uniform
population of cells are first debiased (Yaffe and Tanay, 2011; Imakaev et al., 2012) and then
gathered in a contact frequency matrix. Even though the experiment includes millions of
cells and the chromatin in their nuclei can assume different configurations, the cumulated
number of contacts between all the pairs of loci is anyway indicative of the most frequent
structures compatible with the data. Two kinds of approaches can then be followed when
attempting to draw geometric information from Hi-C matrices. One tends to reconstruct a
fiducial chromatin configuration, a sort of average structure; the other prefers to gather a
population of plausible configurations, compatible with the data available. In any case, the
problem is severely ill-posed, and small fluctuations in the data can lead to a large variability
in the solution.

All the strategies to reconstruct the chromatin configurations need to provide a data
model, that is, some relationship between the contacts and the geometry of the chromatin
chain, and a solutionmodel, that is, a mathematical entity reproducing the spatial properties
of the chromatin. Some of these properties are known independently of the data, and can be
used to constrain the solution once somehow included in an estimation algorithm, also
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accounting for the fit between the experimental and the model-
generated data. As far as the data model is concerned, most popular
strategies assume an explicit relationship between the number of
contacts of any two loci and the Euclidean distance between them,
thus transforming the chromatin configuration estimation into a
classical distance-to-geometry problem. By the solution model, the
chromatin chain can be represented mathematically as a purely
geometric entity (piecewise linear curves, bead chain, etc.) or a
physical entity, restrained by its material properties, for example, a
polymer. Topological-geometric or physical properties of the
solution can thus be assumed as possible constraints for the
solution. Finally, the estimation algorithm translates the data
model and the constraints into suitable mathematical relations to
be solved for the 3D chromatin configuration. Many solutions have
been proposed in the literature; for the early attempts, please refer to
the bibliography in (Caudai et al., 2019a). Other recent approaches
include Gong et al. (2023), who propose a nonlinear dimensionality
reduction based on a divide-and-conquer approach. Vadnais et al.
(2022) propose ParticleChromo3D, a particle swarm optimization
approach to find the global best candidate solution. ShRec3D,
proposed by Kapilevich et al. (2019), also starts by estimating a
distance matrix, then combines a graph shortest path algorithm for
the calculation of unknown distances and a genetic algorithm to
optimise the output model. Oluwadare et al. (2018) propose 3D-
max, a method where the conversion factor from contacts to
distances is determined automatically through a maximum
likelihood approach. Zhu et al. (2018) propose a manifold
learning based framework that does not assume any specific
relationship between Hi-C interaction frequencies and spatial
distances, but defines a neighboring affinity represented by the
probability that two genomic loci are neighbors, given by the
HiC contact matrix. This method does not search for a
consensus model, but uses an embedding approach to model an
ensemble of chromatin conformations based on neighboring
affinities and biophysical feasibility derived by a 3D polymer
solution model.

Some of these solutions are still based on a contact-to-distance
transformation. In our view, this is the most critical aspect
concerning many reconstruction algorithms presented in the
literature. Indeed, relating contact numbers to distances
inevitably lead to geometric inconsistencies (Caudai et al., 2015b)
and does not make biological sense either, since, whereas it is
legitimate to assume that two loci with high contact frequency
are close to each other, this does not mean that pairs of loci that
touch sporadically are really distant. To address the inversion from
frequencies to distances it is necessary to check whether the
distances respect the fundamental conditions of geometric
consistency, e.g., the triangular inequality. Very few papers deal
with this issue. Duggal et al. Duggal et al. (2013), propose a filtering
technique to select subsets of interactions obedient to metric
constraints, which however has a very high computational cost.
Non-violation of these conditions is a necessary but not sufficient
condition for geometric coherence. If the geometric consistency
conditions are severely violated, the set of distances cannot be used
as a target to obtain sensible geometric conformations of chromatin.
Moreover, the contacts of DNA segments inside the nucleus have
both casual and functional characters and there could be physical or
biochemical barriers that prevent contact; many factors and

mechanisms are involved in fiber contact management by the
cell, some of which have not yet been precisely identified. These
are the reasons why we proposed a multiscale reconstruction
method, ChromStruct, where the data model assumes directly the
Hi-C contacts as cues to chromatin geometry (Caudai et al., 2015a;
Caudai et al., 2019a; Caudai et al., 2019b).

Hi-C, however, is not the only experimental procedure capable
of providing information about the chromatin fiber geometry. First
of all, what we know about the cellular machinery is that expressed
genes always correspond to DNA strands that are accessible to all the
macromolecules involved in gene expression (Phillips, 2008). This
means that the DNA chain in those regions must be characterized by
a few contacts between loci. Conversely, unexpressed genes are
normally contained in highly packed DNA strands, that is, in
regions characterized by many mutual contacts. This information
can be provided by RNA-seq experiments (Wang et al., 2009), which
detect the DNA loci that have been transcribed. Other experiments,
ChIP-seq and ChIA-PET (Li et al., 2009; Muhammad et al., 2020),
analyze the interactions of proteins with DNA. In particular, these
experiments locate the sites where transcription factors, other DNA
binding proteins such as CTCF (Phillips and Corces, 2009) or finer
molecular details such as histonic acetylation and methylation
(Bannister and Kouzarides, 2011) concur to regulate the function
of the genome. For our purposes, all these features are relevant in
that they provide geometric information. The presence of CTCF can
mark compact genomic regions, since these proteins are often (not
always) associated with the formation of chromatin loops, and thus
with regions characterized by high curvatures. The histonic
methylation H3K27ME3, similarly, can mark compact genomic
regions, since a high degree of this modification is associated
with DNA regions that are rich in repressed genes. The
availability of these data, thus, can immediately be useful to
check whether a specific configuration, no matter how obtained,
matches the expectations derived from independent data.

The same information can also be used to help a reconstruction
algorithm to bemore accurate. For example, Abbas et al. (2019) propose
GEM-FISH, a divide-and-conquer based improvement of GEM (Zhu
et al., 2018) integrating the information derived from FISH
experiments. This possibility, however, should somehow be
examined critically. Indeed, chromatin compactness is already
represented in Hi-C information, so any additional data could just
be redundant. Data redundancy can contribute to make an algorithm
more robust but, in the case where gene expression, CTCF and
methylation are added to Hi-C, this should be verified
experimentally: a robust algorithm is not necessarily accurate. An
advantage can probably be obtained in those regions, such as the
chromosome centromeres, where the Hi-C data are normally missing.
In our case, genomic resolution is fundamental to foresee how our
additional data can help the reconstruction. Typically, depending on the
restriction enzyme used in the Hi-C experiment, the maximum
resolution at which the Hi-C matrices can be obtained is a few
kilobase-pairs, whereas RNA-seq, ChIP-seq and ChIA-PET
experiments can offer resolutions of a few base-pairs. So, the latter
can be useful to complement the information at very small scales, but
their effect is not so relevant at larger scales. An increase in accuracy can
thus be expected in the finest details, whereas the chromatin properties
observed at coarser scales, as happens with multiscale reconstruction
algorithms, would only be dominated by Hi-C.
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To check the validity of these considerations, we developed a
new version (4.3) of ChromStruct, accepting additional inputs from
CTCF binding sites, H3K27ME3 methylation sites and active genes
regions1. A preliminary experimentation, reported in (Caudai et al.,
2021b), demonstrated that histonemethylation and CTCF-mediated
coupling data can improve the 3D reconstruction by ChromStruct at
the finest scale. To rely on those results, however, some aspects of the
experimental procedure should be first validated. As mentioned, we
use ChromStruct to generate a population of plausible chromatin
configurations, thus mimicking a real Hi-C experiment performed
on a population of cells whose nuclei do not show a single chromatin
configuration, but all of them contribute to the final Hi-C matrix.
We evaluate the data fit of our solutions by comparing the input Hi-
C matrix with the one obtained by cumulating the contacts found in
our estimated configurations. Now, there are two aspects in building
this estimated Hi-C matrix that should be taken care of. First,
checking whether two loci are in contact entails finding a
distance threshold below which the two loci are considered in
contact; second, deciding how many realizations of the
chromatin configuration are statistically sufficient to say that our
reconstructed matrix actually approximates the input Hi-C data.
None of these necessary precautions was considered to find the
results in (Caudai et al., 2021b). In this paper, we report our
empirical strategy to validate those results. Furthermore, the
conjecture that adding concurrent information to Hi-C would be
particularly useful when some data are missing was never verified
experimentally. Some of the experiments reported here deal with
this problem. Section 2 briefly describes the algorithm we use,
Section 3 shows the results obtained and Section 4 concludes
the paper.

2 Methods

Besides being ill-posed, the problem presented above is also very
large if applied directly to an entire chromosome or, evenmore so, to
the entire genome. Finding efficient procedures to solve it is thus
essential. The first observation that led us to develop our method is
the fractal structure characteristic of the mammalian genomes: at all
observable scales, the chromatin structure seem to be made of
isolated compact regions separated by looser segments. At 100-
kbp scales, these compact regions are the so-called topological
association domains (TADs, Dixon et al., 2012), and similar
structures are found at both smaller and larger scales. Since these
structures are characterized by many internal interactions and very
few contacts with the rest of the genome, their individual
configurations are mainly determined by the corresponding
diagonal blocks in the Hi-C contact matrix. Trieu et al. (2019)
exploited this feature by proposing a hierarchical algorithm to
reconstruct 3D chromosome structures starting from high-
resolution data (5 kb) and using low-resolution models to fit the
partial high-resolution reconstructions. This algorithm is also based
on a frequency-distance conversion. Conceiving our algorithm

(Caudai et al., 2015a), we also exploited the existence of these
TAD-like structures. We decompose the problem by extracting
these substructures from the whole smallest-scale sequence and
reconstructing separately their configurations, modeled as bead
chains. We thus need to solve a number of relatively simple
problems rather than a much larger and complicate one. All the
configurations estimated at the smallest scale are then modeled as
single beads in a coarser scale chain (each bead has now the genomic
size of the corresponding substructure), and used to model the entire
structure at a larger scale. This new model is in turn decomposed as
above, on the basis of the appropriately binned Hi-C matrix, and the
single reconstructed domains are used repeatedly to build models at
still larger scales until no more decomposition is possible, that is,
until the binned matrix is only composed of one large block plus
possibly other blocks not exceeding a fixed minimum size. Note that,
from the second scale level on, the genomic size of the individual
fragments is no more fixed, since each block corresponds to a
specific TAD-like structure, whose size is not constant. Once the
largest scale model is reconstructed, the particular model we use to
represent our beads (see below) allows us to replace them with the
corresponding chains at finer scales to finally obtain the whole
configuration at the original genomic resolution. Despite the need
for this final reconstruction, that is, another iteration throughout all
the scale levels, this way of partitioning the problem is far less costly
that treating all the data together. In synthesis, our solution model is
a modified-bead chain, where, at each scale, each bead corresponds
to an isolated domain and its structure permits its position and
orientation in space to be tuned to reconstruct the whole chain at
that scale. The essential geometry of the solution model is
demonstrated in Figure 1. The model let the beads partially
interpenetrate each other through function (Eq. 7) below, and
each bead is given an approximated physical size. At the smallest
scale, we only know the genomic size of each bead, and its physical
size is estimated from the number of internal contacts in the
corresponding matrix block: the more internal contacts, the
smaller the bead. At the successive scales, each bead models a
spatial configuration of beads endowed with proper sizes and
mutual distances: its approximate size is estimated through the
eigenvalue of the first principal component of the spatial distribution
of the corresponding smaller-scale beads. The details are presented
in (Caudai et al., 2019a). The approximate bead size is used to
evaluate a reference ‘minimum’ distance between any two beads,
denoted by Dmin

i,j in the equations below, and to avoid excessive
interpenetration between them. Having approximate physical sizes
also allows us to enforce automatically curvature constraints along
the chain and to have a final solution equipped with physical
dimensions, as opposed to the methods that do not consider
dimensions or derive them a posteriori, for example, using
FISH distances or by fitting the reconstructed chain into the
nucleus size.

The core of our method is thus the reconstruction of each
isolated structure. As mentioned, we assume directly the Hi-C
contacts as input data, by finding the pairs of beads with number
of contacts larger than a threshold and favoring them to be in close
proximity, and leaving all the other beads only subject to the
requirement of being connected with the whole chain and non
interfering with each other. The requirement of contact between
pairs is enforced flexibly by a cost function of the form

1 The released versions of ChromStruct are available at https://github.com/

ZoeTeti78/ChromStruct/tree/main
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ΦHiC C( ) � ∑
i,j∈L

ni,jD
min
i,j di,j − 1[ ]2, (1)

where C represents the structure to be reconstructed, that is, the
spatial coordinates and 3D rotations of all the beads, i and j are the
indices of a generic pair of beads in the set L of all the pairs assumed
in contact, and ni,j and di,j are, respectively, the number of contacts
and the physical distance between beads i and j, both normalized by
Dmin

i,j , obtained as the sum of the approximate radii of beads i and j.
As can be noted, function (Eq. 1) penalizes quadratically the
configurations where the normalized distances di,j are much
larger than 1, and the strength of the penalization per pair is also
weighted by the corresponding number of contacts: the more the
contacts, the stronger the penalization assigned. Normalized
distances smaller than 1 denote partially interpenetrating beads.
From (Eq. 1), this condition is not strictly prohibited:
interpenetration is permitted, but is only slightly penalized.
ΦHiC(C) does not prevent two consecutive beads from
interpenetrating significantly: this will be obtained by enforcing
topological constraints.

As anticipated, here we try to validate the idea that the
information about the strictly and loosely packed regions of
DNA can help the reconstruction by complementing, Hi-C
information. The CTCF data are used to modify the Hi-C data
fit (Eq. 1): they are translated into a binary matrix of the same size as
the input matrix, with entries equal to 1 in the detected CTCF
binding sites and zero elsewhere. This matrix is then multiplied by a
scalar factor and added to the Hi-C matrix to favor bead proximity
in binding sites. Consequently, the combined Hi-C and CTCF data
fit function becomes

ΦHiC−TF C( ) � ∑
i,j∈L′

ni,j + TFi,j( )Dmin
i,j di,j − 1[ ]2, (2)

where TF is the matrix described above and the symbolL′ replacesL
to mean that some additional bead pairs are possibly included in the

set L, which would not belong to it on the basis of the Hi-C data
alone. Note that by letting ni,j′ � ni,j + TFi,j Eq. 2 assumes exactly the
form (Eq. 1). Considering the typical Hi-C contact frequencies
found in the experiments reported by Caudai et al. (2021b), the
scalar multiplier assigned to CTCF was fixed by trial and
error to 100.

As far as the ChIP-seq and RNA-seq data are concerned, we
experimented with two terms, ΦChIP and ΦRNA, to promote strict
and loose packing, respectively:

ΦChIP C( ) � max
i,j∈LChIP

Dmin
i,j di,j( ) −Dmin[ ]2

, (3)

ΦRNA C( ) � min
i,j∈LRNA

Dmin
i,j di,j( ) −Dmax[ ]2

, (4)

where LChIP is either the set of all pairs in the chain, if the
corresponding block is interested by the histone modification
H3K27ME3, or the empty set otherwise; LRNA is either the set of
all pairs, if the block is included in or includes expressed genes, or the
empty set otherwise; Dmin and Dmax are, respectively,

Dmin � Dc
ρ6/5

6π
, (5)

Dmax � Dc
ρ6/5

3π
, (6)

where Dc is the diameter of the chromatin filament (30 nm, see
Hansen et al., 2018) and ρ is the genomic size in kbp of each chain
element. Note that ρ has a unique meaning only at the smallest scale,
since the blocks at larger scales have not constant sizes. On the other
hand, as noted in the Introduction, including ChIP-seq and RNA-
seq data is only significant at the smallest scale. For each
configuration C, factors (Eqs. 3, 4), when present, add some
positive contribution to the cost ΦHiC, thus penalizing more or
less the packing of the chain. Indeed, the penalization from ΦChIP is
minimum when the maximum distance between two beads is close

FIGURE 1
After Caudai et al. (2019b). (A) An illustrative example of the bead chain at some scale represented as a single, modified bead at the immediately
coarser scale. The modified bead is characterized by the two endpoints of the reconstructed chain, its centroid and its physical size, represented by the
semi-transparent large sphere. This allows us to adequately place and rotate each bead when reconstructing the chain at the coarser scale. (B) A chain at
the immediately coarser scale made of four beads, properly placed and rotated. (C) Geometric relationships between two consecutive beads. The
two beads determine, respectively, planes P1 and P2, and the two centroids C1 and C2 with the common endpoint E12≡E21 determine plane P12. Angles
ζ � P̂1P12 and ξ � P̂1P2 are used to establish the 3D rotations of the two beads. Angles α1 and α2 are fixed when modeling the beads at the immediately
finer scale.
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to Dmin, assumed as the minimum possible size of a single bead; in
turn, the minimum penalization from ΦRNA is reached when the
minimum distance between two beads is close to the maximum
possible size, Dmax, of a bead.

The term enforcing non-interpenetration (Caudai et al., 2019a),

Ψ C( ) � ∑
i,j∈C

1
2di,j

1 − cDmin
i,j di,j − 1[ ]{ }b

1 + cDmin
i,j |di,j − 1|{ }b

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (7)

depends on the two parameters b, an odd integer, and c, a positive
constant with the dimensions of a reciprocal of a distance. For each
pair (i, j) and for di,j ≫ 1, Ψ(C) goes rapidly to zero, that is, the
relative positions of far apart bead pairs are not penalized; for di,j in a
range around 1, the corresponding term in Ψ behaves as 1/(2di,j),
whereas for di,j sufficiently less than 1 the correponding term in Ψ
behaves as 1/di,j, that is, distances between elements that are
significantly smaller than Dmin

i,j are strongly penalized, so the two
beads are only partially permitted to interpenetrate. Parameter c
tunes the width of the interval of di,j around 1 where the reciprocal
positions of two beads are penalized moderately; the smaller c, the
larger that interval. Parameter b, in turn, tunes the slope of the two
transitions that delimit the moderate-penalization interval; the
larger b, the steepest the transitions. The influence of the generic
pair (i, j) on Ψ is visualized in Figure 2 for some values of b and c.

Globally, the cost function we try to optimize to reconstruct the
3D structure of each subchain is thus the following:

Ξ C( ) � ΦHiC−TF C( ) + μ1ΦChIP C( ) + μ2ΦRNA C( ) + λΨ C( ), (8)
where the positive parameters μ1, μ2 and λ are used to tune the
mutual influences of the different components of the cost function.
For the time being, as made with the multiplying factor contained in
TF, we are estimating μ1 and μ2 by trial and error. The results
presented here are obtained with both fixed at 1. Searching for
optimal values is deferred to the future. Unlike μ1 and μ2, which are
only active at the finest scale, parameter λ works at all the scales, and
its value cannot be kept fixed. We tune it on a predefined ratio

between the weights of the data and the prior parts of the cost
function. This implies a new evaluation of λ at each change of scale.
The procedure is detailed in (Caudai et al., 2019a). The
minimization strategy is based on an approximated simulated
annealing where the chain evolution is obtained through
quaternion operators. The Hi-C matrices derive from
experiments with millions of different cells, so it is expected that
many different configurations are compatible with the data. For this
reason, the objective landscape is characterized by many near-
optimal solutions. This is useful to our aim to find a population
of different configurations and justifies our approximation of the
annealing scheme. To assess the results, we evaluate the contact
matrix resulting from the reconstructed configurations: for each
reconstructed chain, the bead pairs that are closer than a certain
threshold are considered to be in contact, and the appropriate entries
of the estimated matrix are incremented by one. Cumulating the
results of this procedure for all the configurations, we simulate an
actual Hi-C experiment. The matrix thus obtained can then be
compared to the original Hi-C matrix, for example, by using a
measure of correlation.

3 Results

In (Caudai et al., 2021b), an early set of experiments was
presented to validate the effectiveness of function Ξ(C) for
reconstructing the structure of the chromatin chain and to check
the actual improvement obtained by leveraging ChIP-seq, RNA-seq
and CTCF data. As expected, using the additional information only
proved to be advantageous at the finest scale. Indeed, the
experimental results just demonstrated a slight advantage in
terms of closeness between the estimated and the input contact
matrices, and not for all the diagonal blocks tested. In any case, very
small differences were found between the results obtained at the
finest scale from the complete Hi-C data and the same data
complemented by the additional information.

Before starting a new experimental phase, those results were
further investigated and validated. The estimated matrices presented
in (Caudai et al., 2021b) were all generated using a number of
configurations fixed arbitrarily to 100. An issue of stability arises
immediately: it must be decided whether 100 configurations per
matrix are statistically sufficient to model the real data.

To answer this question, we chose two blocks from the same data
used in that paper2. Both are taken from chromosome 12. To check
whether the particular configuration affects the result, one of them
(block 1776, from 113,255 to 113,335 kbp) is highly packed, that is,
with many contacts (383) in the corresponding matrix, and the other
(block 1781, from 113560 to 113,645 kbp) is one of the loosest, with
very few contacts (just 66). Using ChromStruct 4.3, we generated
3,500 configurations for each block. From these configurations, we

FIGURE 2
Contribution of the generic pair (i, j) to the topological constraint
function Ψ(C).

2 The HI-C data used for those experiments, at a genomic resolution of

5 kbp, refer to human CD34 hematopoietic progenitor cells GM12878

(Dunham et al., 2012), and the data on CTCF-mediated coupling, obtained

through ChIA-PET experiments, were downloaded from GEO, accession

number GSM1872886 (Tang et al., 2015).
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generated 7 contact matrix distributions, obtained with increasing
numbers of configurations (50, 100, 150, 200, 250, 300 and 350).
Each distribution is drawn from 20 contact matrices, each built
randomly from within a population of, respectively, 500, 1,000,
1,500, 2,000, 2,500, 3,000 and 3,500 configurations. For example, the
distribution of contact matrices built by 100 configurations was
obtained by 20 combinations of 100 over 1,000 different
configurations. The matrices thus obtained were compared
among themselves and to the original Hi-C blocks using the
Spearman correlation as the similarity measure. In both the cases
of presence and absence of additional data, and with no significant
differences between the two blocks, the variance of the results did
not decrease when using no less than 100 different configurations

(see Figure 3). This means that our results obtained using
100 configurations are actually stable.

Comparing the synthetic contact matrices to the original ones,
we noticed that the results obtained for the very sparse block are less
similar to the original than the ones obtained for the other block,
probably because the data in the former case contain less specific
information and the solution relies more on the generic prior Ψ
(see Figure 4).

The results in (Caudai et al., 2021b) are thus validated for the case
where the complete Hi-C data are complemented with CTCF binding
sites, H3K27ME3 methylation sites and active genes locations. As
observed, since the Hi-C contact data already contain all the
geometric information needed to estimate the compatible

FIGURE 3
Standard deviations of the Spearman correlations between the estimated contact matrices and the experimental Hi-Cmatrix for blocks 1781 (loose)
and 1776 (packed), as functions of the number of configurations per matrix.

FIGURE 4
Mean values of the Spearman correlations between the estimated contact matrices and the experimental Hi-C matrix for blocks 1781 and 1776, as
functions of the number of configurations per matrix.
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configurations, possible inaccuracies apart, the presence of the
additional data are often redundant, so no significant
improvement can be expected. However, as anticipated in the
Introduction, the situation can change if the Hi-C data are
missing for significant genomic extensions. Besides validating our
previous results, the aim of this paper is to check whether a significant
advantage can be obtained in the case of missing Hi-C data. To this
purpose, a series of simulations has been performed, based on the
known CTCF binding sites. If the Hi-C data are missing in a
neighborhood of two genomically distant but physically close loci,
ChromStruct would only be able to enforce chain continuity and the
available topological constraints there, thus potentially failing to
reconstruct that neighborhood correctly. If a CTCF site is present
in its vicinity, however, its knowledge can be leveraged to recover the
missing information. Our simulations first consisted in selecting all
the Hi-C blocks containing CTCF sites in the portion of chromosome
12 ranging from 111.5 to 115 Mbp. Then, the entire rows and
columns of each block, in a neighborhood of two loci around the
CTCF site, were artificially removed. Table 1 synthesizes the results of
these experiments. The estimated contact matrices were obtained
from 100 output configurations. It can be seen that in most cases the
use of the CTCF information where there is a neighborhood of
missing data allows the reliability of the reconstruction to be
increased; in some cases, the result obtained using the CTCF sites
almost reaches the one obtained using the whole Hi-C data.

Using gene expression data in this case produced results that, so
far, are not easy to interpret. Our first experiments on single blocks at
the smallest scale show results that are not significantly different from
those obtained using Hi-C and CTCF, with sometimes better
sometimes worse correlations with the original matrix. At the
smallest scales, however, expressed genes often extend beyond the
boundaries of the isolated DNA segments, so some more convincing
result could be obtained by analyzing the outputs at larger scales.
A new series of experiments is scheduled to verify this conjecture.
As far as methylation is concerned, it seems that its co-occurrence
with the presence of CTCF binding sites is quite rare (Damaschke
et al., 2020; Nanavaty et al., 2020). In fact, none of the blocks we
extracted for our experiments includes bothCTCF andH3K27ME3 sites,
so at present we cannot assess their possible joint effect. Extending our
inquiry on other parts of the human genome could give us this
possibility in the future. Finally, the choice of the hyperparameter in
TF, as well as of μ1, μ2 and λ, still deserves amore exhaustive assessment.

4 Discussion

This paper reports some experimental results obtained by the
chromatin structure reconstruction code ChromStruct 4.3, open-
source software with an easy-to-use graphical user interface (Caudai
et al., 2021b), to check whether the use of gene expression,
transcription factors and histone modification data can improve
the solution with respect to the Hi-C data originally assumed as the
only input. The multiscale approach adopted allows data at different
genomic resolutions to be processed, and also additional
information specific to selected scales to be leveraged. This is the
case with the additional data considered here, which are relevant at
the smallest scales typically made available by the Hi-C experiments.
Possible differences with respect to the exclusive use of Hi-C data
were thus expected in the fine details of the chromatin chain, and not
in its global structure. Some preliminary experiments confirmed this
feature, highlighting, however, that adding data is not always
advantageous. The experiments reported here aim at further
validating this result and exploring cases where the use of those
extra-Hi-C data can actually improve the final result.

Our experimental strategy consisted in selecting cells for which
Hi-C data as well as RNA-Seq, ChIP-seq and ChIA-PET data are
available, then selecting parts of a single chromosome to run the
experiments. Since the additional data are expected to affect
significantly the finest details of the reconstructed chain, we did
not run ChromStruct up to the estimation of the entire chromosome
but to just reconstruct the TAD-like blocks in which the entire chain
is split to implement the multiscale strategy. The results are
evaluated by comparing the original Hi-C matrix blocks to the
ones obtained by cumulating the contacts detected in a population of
reconstructed sub-chains generated by ChromStruct.

The results obtained validated the conclusions by Caudai et al.
(2021b) and confirmed that the use of additional data can even
degrade the quality of the reconstructions in several cases. Indeed,
when clean and complete Hi-C data are available, they contain all
the needed geometrical information to estimate the chromatin
structure, and adding gene expression or other structural cues
only increases redundancy. This is not the case in the presence
of particularly noisy or missing Hi-C data, when the additional data
available can provide an important complement to the geometrical
information. Our experimental results obtained after removing
artificially the Hi-C data in neighborhoods of CTCF binding sites

TABLE 1 Spearman correlations between the original and estimated Hi-C blocks containing CTCF sites, obtained from full data, artificially truncated data
and artificially truncated data plus CTCF data.

Block (kbp) CTCF site (kbp) CTCF site (kbp) ECMa full data ECMa missing data ECMa missing data + CTCF data

111754–111854 111784 111824 0.43 0.31 0.31

111845–111915 111875 111880 0.47 0.31 0.37

111980–112065 112005 112025 0.47 0.42 0.41

112815–112865 112850 0.43 0.15 0.21

113440–113505 113500 0.54 0.41 0.48

113560–113645 113600 0.37 0.31 0.35

113885–113948 113895 113905 0.36 0.18 0.34

aECM, stands for Estimated Contact Matrix (made from 100 configurations).
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demonstrate that using the data fit function (Eq. 2), which includes
CTCF data, rather than the pure Hi-C version (Eq. 1) can effectively
recover the missing information. Of course, this cannot be taken as a
general result even though it has been verified in several blocks from
the part of chromosome under study. Genomic data are sometimes
incomplete, sometimes contain bias, and when coming from
different experiments could not be in perfect agreement.
Sometimes, Hi-C results may disagree with RNA-seq, CHiP-seq
and CTCF. Our cost function is structured to accommodate and
strengthen concordant information, integrate and complete
complementary information, and manage discordant information
so as to reduce its influence on the result. Data coming from
independent experiments are certainly an added value and an
opportunity to carry out important checks on the reliability of
the data available. Any estimation algorithm capable to take this
wealth into account promises to provide solutions whose validity
can be checked against multiple criteria. Our present objective is not
to draw biological conclusions. Rather, we want to provide the
computational biology community with a tool that allows data of
different nature to be integrated in the estimation of the chromatin
structure. The software is of public access, see footnote 1, and is
sufficiently easy to use, especially by virtue of its graphic interface,
which allows the user to load the data files, choose the output format
and set most of the parameters relevant to the entire process, from
the basic model geometry to the fine algorithmic tuning, with no
need to act on the source code.

The ChromStruct strategy to split the chromatin chain into
near-isolated blocks to implement a multiscale estimation is also an
advantage from the point of view of its computational cost. The
choice of making a complete run to generate a single individual of
the population of data-compatible configurations and the
approximated annealing scheme used to sample the solution
space for each block, however, is not guaranteed to provide the
most efficient solution to the reconstruction problem. A deeper
algorithmic consideration could then lead us to find more efficient
solutions without changing the basic strategy. This research
direction for the future could also include the introduction of
machine learning or deep learning techniques (Caudai et al., 2021a).
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