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Objective: To investigate the biomechanical properties of the retropharyngeal
reduction plate by comparing the traditional posterior pedicle screw-rod fixation
by finite element analysis.

Methods: Two three-dimensional finite element digital models of the
retropharyngeal reduction plate and posterior pedicle screw-rod fixation were
constructed and validated based on the DICOM (Digital Imaging and
Communications in Medicine) data from C1 to C4. The biomechanical finite
element analysis values of two internal fixations were measured and calculated
under different conditions, including flexion, extension, bending, and rotation.

Results: In addition to the backward extension, there was no significant
difference in the maximum von Mises stress between the retropharyngeal
reduction plate and posterior pedicle screw fixation under other movement
conditions. The retropharyngeal reduction plate has a more uniform
distribution under different conditions, such as flexion, extension, bending,
and rotation. The stress tolerance of the two internal fixations was basically
consistent in flexion, extension, left bending, and right bending.

Conclusion: The retropharyngeal reduction plate has a relatively good
biomechanical stability without obvious stress concentration under different
movement conditions. It shows potential as a fixation option for the treatment
of atlantoaxial dislocation.
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Introduction

Atlantoaxial dislocation (AAD) is one of the common diseases in the cranial–cervical
junction. In some cases, the mortality rate can reach 35% when severe atlantoaxial
dislocation injures the medulla oblongata (Meyer et al., 2019). Studies have shown that
AAD caused by traffic injuries accounts for 32.4% of traffic injury deaths, causing significant
socioeconomic burden (García-Pallero et al., 2019). A variety of reasons can cause
atlantoaxial joint instability, resulting in the loss of the normal alignment of the
atlantoaxial articular surface, and then compress the spinal cord, causing numbness,
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walking instability, paralysis, and even death (Goel, 2019). For
improving AAD treatment, some scholars have proposed many
classifications, including Fielding, TOI, and Yin (Yin et al., 2005; Xu
et al., 2013).

The main treatment for AAD includes conservative treatment
(traction and cervical brace) and surgery. Among them, surgery is
themost importantmeans of treatingAAD.At present, according to the
different types of AAD, the surgical treatment methods mainly include
anterior release andfixation, posterior reduction fixation, and combined
anterior release and posterior fixation (Govindasamy et al., 2020; Unni
et al., 2021). For most patients, posterior fixation fusion, with the
assistance of skull traction, can achieve good clinical efficacy in one stage
(Guo et al., 2020). However, due to the long-term dislocation of the
atlantoaxial joint in some patients, the contractures of anterior muscles
and ligaments and the anterior hyperosteogeny of the atlantoaxial joint
can lead to difficulty in reduction (Zhu et al., 2019). The anterior release
is necessary for these conditions in order to better achieve the reduction.
At present, the transoral release is the main approach, but it has a
relatively high risk of postoperative infection (Dong et al., 2021). In
addition, the transoral approach is not suitable for some patients with
oral lesions or limited mouth opening.

For those patients, we used the retropharyngeal approach for the
atlantoaxial joint release based on clinical experience (Ren et al., 2019).
At the same time, we innovatively designed the retropharyngeal
reduction plate system inspired by the transoral atlantoaxial
reduction plate (TARP). The previous cadaveric simulation
experiments showed that the retropharyngeal reduction plate was
suitable for placement on the atlantoaxial joint (Li et al., 2022).
However, compared with posterior atlantoaxial fixation, there is still
a lack of research on the biomechanical properties of the
retropharyngeal reduction plate system.

In recent years, the medical finite element analysis method has
been widely used in orthopedics (Li et al., 2020; Lewis et al., 2021).
By this method, clinicians can conduct preoperative digital
simulation of various internal fixation types to obtain the stress
and displacement values of different fixation models (Liu et al.,
2018). Finite element analysis can provide help for the diagnosis and
treatment of clinical orthopedics by selecting the best internal
fixation (Rehousek et al., 2018; Wang et al., 2018). Compared
with cadaveric experimentation, finite element analysis has
obvious advantages in evaluating the biomechanical properties of
internal fixation.

Therefore, the aim of this study was to evaluate the biomechanical
properties of the retropharyngeal reduction plate and posterior pedicle
screw fixation by finite element analysis. The biomechanical stress
distribution of the two fixations under different conditions was also
measured to provide the theoretical basis for the clinical application of
the retropharyngeal reduction plate in the future.

Materials and methods

Design of the retropharyngeal reduction
plate system

The retropharyngeal reduction plate system is characteristic of
T-type titanium plates, which includes the screws and different sizes
of plates (GB4Z180193509, WEGO ORTHO Co., Ltd.) (Li et al.,

2022). The specific plate angle (30°–35°) of horizontal and vertical
parts can be conducive to the placement onto the atlantoaxial joint.
The number of round holes (diameter: 4.5–5.0 mm), used for
inserting screws (diameter: 4.0–4.5 mm and length: 16–18 mm),
depends on the size of the plates. The length and width of the
plates range from 25 to 55 mm and 20 to 25 mm. In addition, the
specially designed oval holes (diameter: 5.0–5.5 mm), in the center
of the plates, are designed for facilitating reduction by inserting lag
screws into the axis. After the anterior release of the atlantoaxial
joint, the retropharyngeal reduction plate can achieve reduction by
inserting the lag screws to provide the atlantoaxial joint with forward
and downward tractions in one stage (Figures 1, 2).

The development of finite element models

Cadaveric specimens with atlantoaxial dislocation who had
undergone surgical treatment using the retropharyngeal
reduction plate were included in this study. The
retropharyngeal reduction plate was placed on the atlantoaxial
joint of cadaveric specimens. A 45-year-old female atlantoaxial
dislocation patient who had undergone the posterior pedicle
screw-rod fixation was enrolled in this study. The patient was
informed of the experimental procedures and gave written
informed consent for participation in this study. Spiral CT
scanning was performed from the base of the occipital bone to
the C7 vertebrae using 0.5-mm-thick slices. The scanning images
were collected and stored in DICOM format for three-
dimensional reconstructions using MIMICS 20.0 software
(Materialise, Leuven, Belgium). A rough geometric model of
cervical vertebrae was obtained by conducting commands,
including threshold segmentation and regional growth.

After three-dimensional reconstruction, the stereolithography
file was imported into 3-matic 10.0 (Materialise, Leuven, Belgium) to
further optimize the model for finite element analysis. For the
accuracy of finite element analysis, 3-matic 10.0 (Materialise,
Leuven, Belgium) was used to construct a geometric solid model
of the bone, cartilage, and intervertebral discs by a series of software
commands, including sanding, filling, and denoising processes.
After obtaining the model, the thin-walled characteristics and
curvature of the model were analyzed to understand the basic
structure of the atlantoaxial joint model. In order to ensure that
the model has no geometric defects, the repair of the atlantoaxial
joint model was managed using 3-matic 10.0 (Materialise, Leuven,
Belgium). The model consisted of C1–C4 cervical vertebrae and
three intervertebral discs (Figure 3). The mesh and material
properties were analyzed and assigned for further analysis using
HyperMesh 2018 (Altair Engineering, Inc., Troy, Michigan,
United States of America).

The finite element analysis of the two
fixation models

The finite element analysis was achieved using HyperWorks
2019 (United States of America, Altair). Based on the parameters of
Young’s modulus and Poisson’s ratio, the scientific assignment of
elements was obtained (Wang et al., 2019; Chen et al., 2020). The
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Young’s modulus and Poisson’s ratio values of different structures
are shown in Table 1. For achieving the simulation of the stress to the
cervical vertebra from the head due to gravity, 45 newtons (N) of

vertical downward pressure was imposed on the surface of the
occipital condyle. Approximately 1.5 Nm torque was imposed on
the models from different directions to simulate the load of cervical

FIGURE 1
Different sizes of T-type (holes: 6, 7, and 8; length: 25–55 mm;width: 20–25 mm) retropharyngeal reduction titanium plates and the screws (length:
16–18 mm; diameter: 4.0–4.5 mm).

FIGURE 2
Placement of the retropharyngeal reduction plate. (A) Atlantoaxial dislocation. (B) Fixation on the C1 vertebral body by inserting screws through
upper round holes. (C)Construction of the lag screw path through an odontoid process using a hand drill. (D) Lag screw insertion through the special oval
hole to achieve reduction. (E) Fixation on the basal part of the C2 vertebral body. (F) Placement of the retropharyngeal reduction plate on the
atlantoaxial joint.
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vertebrae under normal physiologic conditions (Bo et al., 2016). We
measured and calculated the stress of the two internal fixations
under different conditions, including flexion, extension, bending,
and rotation.

The mechanical properties of the two different internal fixations
were comprehensively analyzed, including the 1) maximum von Mises
stress of the fixation; 2) stress distribution of different fixations under six
conditions; and 3) stress distribution of the plate, screws, and rods.

Results

The establishment of the two
fixation models

The suitable retropharyngeal reduction plate was located at the
body of the atlantoaxial joint by inserting screws. The posterior
pedicle screw fixation model was obtained after assembling to
simulate the posterior surgery. The satisfying finite element
models of the two different fixations were obtained after
smoothing and remeshing finite element mesh generation
(Figure 3), respectively.

The validation of the two fixation models

The range of motion (ROM) values of the two fixation models
were compared with previous studies by (Figure 4) Zhang et al.
(2006) and Li et al. (2023), respectively. Under different movements,
the results are relatively consistent with previous studies. Hence, the
two fixation models were reliable for further finite element analysis.

The stress analysis of the two
fixation models

The maximum von Mises stress values of the retropharyngeal
reduction plate and posterior pedicle screw fixation were 217.2MPa
and 213MPa under forward flexion, respectively. However, the
maximum von Mises stress of the retropharyngeal reduction plate
was significantly lower than that of the posterior pedicle screw
fixation during the backward extension (156MPa vs. 266.3MPa). The
maximumvonMises stress values of the left bending and right bending of
the retropharyngeal reduction plate were 120.8MPa and 119.2MPa,
respectively. The maximum von Mises stress values of the left bending
and right bending of the posterior pedicle screw fixation were 242.7MPa
and 218.4MPa, respectively. Under rotation, the maximum von Mises
stress values of the retropharyngeal reduction plate were 147.7MPa (left)
and 144.5MPa (right), respectively. The maximum von Mises stress
values of the posterior pedicle screw fixation were 213.1MPa (left) and
190.5MPa (right) under rotation (Figure 5), respectively.

The stress distribution of the two internal
fixation models

The redness represents the maximum element stress, while the
minimum element stress is shown by the blueness. The more uniform
distribution of the retropharyngeal reduction plate was noticed under
different conditions, such as flexion, extension, bending, and rotation.
As shown in Figure 6, the stress was mainly distributed in the lower half

FIGURE 3
Three-dimensional finite element model of the retropharyngeal reduction plate (A) and the posterior pedicle screw-rod fixation (B).

TABLE 1 Material property of the atlantoaxial joint models.

Element Young’s modulus (MPa) Poisson’s ratio

Cancellous bone 450 0.23

Cortical bone 10,000 0.3

Endplate 500 0.4

Spinous process 3,500 0.25

Facet 10 0.4

Nucleus pulposus 1 0.49

Annulus fibrosus 110 0.3
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of the plate under different conditions, and there was no significant
stress concentration in the plate and screws. In the posterior pedicle
screw fixation, the junctions of the screw, bone, and rod have relatively
more stress in flexion, extension, bending, and rotation. The stress
tolerance of the two internal fixations was basically consistent in flexion,
extension, left bending, and right bending. In addition, the mean stress
of the two internal fixations was far below the maximum yield strength
(795–827MPa) and ultimate strength (860–896MPa) of titanium alloy.

Discussion

For some severe AAD patients with obvious neck pain, limb
weakness, and trunk and limb numbness, surgery is the appropriate
treatment with the purpose of achieving atlantoaxial reduction to
maintain the stability of the atlantoaxial joint and to achieve spinal
cord decompression to alleviate clinical symptoms (Song et al., 2017;
García-Pallero et al., 2019; Goel, 2019). At present, the posterior
atlantoaxial fusion is the effective surgical method for the treatment
of AAD. Since the 20th century, many scholars have proposed a

variety of internal fixation methods for AAD, including cable,
lamina hook, and screw-rod internal fixation (Ren et al., 2019;
Zhu et al., 2019). In addition, many alternative technologies have
emerged for different conditions of AAD patients, such as Magerl
screw, C1 lateral mass screw, and C2 lamina screw (Kenzaka, 2019).

With the in-depth study on the treatment of AAD, some
scholars found that simple posterior internal fixation and fusion
cannot achieve good clinical reduction for patients with irreducible
atlantoaxial dislocation due to the anterior bone fusion of the
atlanto-odontoid joint or scar contracture of surrounding
ligaments and muscles (Ren et al., 2019; Zou et al., 2020). In this
condition, the anterior release is necessary to achieve a better
atlantoaxial reduction before the atlantoaxial internal fixation.

For now, the anterior release can be achieved by the transoral,
endoscopic endonasal, or retropharyngeal approach (Zhu et al.,
2019). Wang et al. first used one-stage transoral release reduction
combined with posterior internal fixation and fusion, with a 71.9%
effectivity rate, in the treatment of irreducible AAD (Wang et al.,
2006). The transoral release is a common surgical approach for AAD
treatment with the advantage of directly exposing the ventral
structure of the craniocervical junction to help the release of the
atlantoaxial joint under direct vision. In addition, some scholars
have also proposed the concept of transoral release combined with
the fixation method in one stage and designed corresponding
internal fixation instruments, such as the Harms plate and TARP
(Yin et al., 2005; Zhu et al., 2019). However, there are some
inevitable limitations to the transoral approach, such as
postoperative infection, dysphagia, and laryngeal edema. The
transoral approach often requires tracheotomy before operation
and postoperative nasal feeding for a long time, which makes
postoperative nursing difficult (Amelot et al., 2018).

The retropharyngeal approach is relatively safe because of few
surrounding important blood vessels and nerves in this area. The
retropharyngeal approach not only can fully expose bilateral
atlantoaxial lateral mass joints but also has a low risk of
complications, including infection and laryngeal edema (Alshafai
and Gunness, 2019). However, there are few reports on internal
fixation based on the retropharyngeal approach. Inspired by the
TARP, we newly designed the retropharyngeal reduction plate
system based on clinical experience. The retropharyngeal
reduction plate system can achieve one-stage reduction and
fixation after the anterior release (Li et al., 2022). However, the

FIGURE 4
Validation of the two fixation models under a pure moment of 1.5 Nm. Flexion–extension (A), axial rotation (B), and lateral bending (C).

FIGURE 5
Maximum von Mises stress of the two different fixations under
different movements, including flexion, extension, bending,
and rotation.
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difference in internal fixation strength and stress distribution
between the retropharyngeal reduction plate and posterior
pedicle screw fixation under different movements is still unknown.

In recent years, the finite element analysis is widely used in
the application of orthopedic biomechanics (Taylor and
Prendergast, 2015; Bo et al., 2016; Wang et al., 2018). The
three-dimensional model is able to be reconstructed based on
the DICOM data using the three-dimensional modeling software
program. The various surgical conditions can be numerically
simulated by finite element analysis (Ansys, Abaqus, or
HyperMesh) (Li et al., 2020). Finally, the stress and
displacement values of the stress model are obtained, which
provides a reference basis for clinical diagnosis. Finite element
analysis can analyze the stress distribution of adjacent vertebral
bodies, intervertebral discs, and other structures. Chen et al.
constructed the complete three-dimensional cervical spine model
from C4 to C7 and simulated three different surgical methods,
namely, percutaneous full-endoscopic anterior cervical
discectomy (PEACD), posterior cervical foraminotomy (PCF),
and anterior cervical discectomy and fusion (ACDF) (Chen et al.,
2020). They also studied the range of motion, intervertebral disc
pressure, and facet joint contact force between surgical segments
and adjacent segments under different movement conditions
using finite element analysis software. The results showed that
the PCF and PEACDmethods are more suitable for the treatment
of cervical spondylotic radiculopathy compared to ACDF from
the perspective of biomechanics, and PCF may be better than
PEACD. In addition, the finite element analysis is also able to
simulate the clinical application of the new internal fixation
technique and analyze the stress distribution of internal
fixation under different conditions in order to evaluate the

clinical application value of the new internal fixation
technique (Lewis et al., 2021). Yu et al. designed two thoracic
interbody fusion cages according to the CT anatomical
parameters of 150 patients, and the stability of the two
interbody fusion cages was compared with the assistance of
three-dimensional finite element analysis (Yu et al., 2020). The
results showed that both kinds of interbody fusion cages had
good biomechanical stability, and the stability of the kidney-
shaped fusion cage was better than that of the box-shaped
fusion cage.

In this study, we designed the retropharyngeal reduction plate
based on a large number of previous clinical experiences to achieve
atlantoaxial reduction and fixation in one stage (Ren et al., 2019;
Guo et al., 2020; Zou et al., 2020). The previous cadaveric simulation
experiments proved that the retropharyngeal reduction plate could
be successfully fixed in front of the atlantoaxial joint through the
retropharyngeal approach (Li et al., 2022). Aiming to analyze the
fixation strength and stress distribution of the retropharyngeal
reduction plate, compared with the posterior pedicle screw
fixation, the three-dimensional finite element analysis was
conducted. The results also showed that the maximum stress of
the retropharyngeal reduction plate was significantly lower than that
of the posterior pedicle screw fixation (156 MPa vs. 266 MPa) under
the backward extension. Under other movement conditions, the
stress distribution of the retropharyngeal reduction plate is not
significantly different compared with that of the posterior pedicle
screw fixation. In addition, the stress was mainly distributed in the
lower half of the plate but with no obvious stress concentration in
the plate and screw.

This study still has several limitations. First, the finite element
modeling process relatively simplified the motion of the spine, and

FIGURE 6
Finite element analysis results of the retropharyngeal reduction plate and posterior pedicle screw-rod fixation under different movements, including
flexion, extension, bending, and rotation.
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the real motion state of the cervical spine may be more complex.
Second, finite element modeling is not able to fully simulate the
complex surrounding ligaments and muscles of the
atlantoaxial joint.

Conclusion

In conclusion, the retropharyngeal reduction plate showed good
biomechanical stability under different movement conditions, and
the stress distribution was more uniform without obvious stress
concentration. In the future, the application of the retropharyngeal
reduction plate in the clinic is expected to be regarded as one of the
treatment methods for AAD.
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