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ABSTRACT

Deep learning-based image denoising plays a critical role in medical
imaging, especially when dealing with rapid fluorescence and ultrasound
captures where traditional noise mitigation strategies are limited, such
as increasing pixel dwell time or frame averaging. Although numerous
denoising techniques based on deep learning have exhibited commend-
able results across biomedical domains, further optimization is pivotal,
particularly for precise real-time tracking of molecular kinetics in cellular
settings. This is vital for decoding the intricate dynamics of biological
processes. In this context, we propose the Multi-Scale Self-Attention
Network (MSAN), an innovative architecture tailored for optimal de-
noising of fluorescence and ultrasound images. MSAN integrates three
main modules: a feature extraction layer adept at discerning high and
low-frequency attributes, a multi-scale self-attention mechanism that
predicts residuals using original and downsampled feature maps, and a
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decoder that produces a residual image. When offset from the original
image, the residual output yields the denoised result. Benchmarking
shows MSAN outperforms state-of-the-art models such as RIDNet and
DnCNN, achieving peak signal-to-noise ratio improvements of 0.17 dB,
0.23 dB, and 1.77dB on the FMD, W2S datasets, and ultrasound dataset,
respectively, thus showcasing its superior denoising capability for fluo-
rescence and ultrasound imagery.

Keywords: Blind source separation, Online-independent vector analysis, Circu-
lar microphone array, Sound field interpolation.

1 Introduction

Image denoising, which involves the restoration of a degraded image to its
original form, is one of the most fundamental problems in image analysis
and machine learning. Mathematically, a degraded image y is commonly
represented as y = f(x) + n, where x denotes the original image, f represents
the degradation function, and n signifies the presence of noise. The primary
objective of image denoising centers around the estimation of x from the
observed image y under the condition that f(x) = x. Particularly noteworthy
is the significance of noise elimination within the realm of biomedical imaging.
This aspect has garnered increasing attention due to its pivotal role in elevating
the quality and precision of diagnostic and analytical procedures.

In this work, we focus on developing a new denoising method, which is
applied to both fluorescence and ultrasound images. Fluorescence imaging
is a powerful technique extensively used in various biomedical studies [26].
Wide-field [47], confocal [35], and two-photon [10] fluorescence microscopes
play a pivotal role in modern medicine and biology. However, fluorescence
images, especially when detecting a low number of photons, are often noisier
than conventional photographs. This leads to the fluorescence image being
mainly affected by Poisson noise rather than Gaussian noise [33]. Strategies
to mitigate this, such as increasing the power of excitation light, pixel dwell
time, exposure time, or frame averages can introduce issues like photodamage,
photobleaching, or extended acquisition times. In scenarios demanding rapid or
real-time fluorescence imaging, these adjustments might not be feasible. Thus,
there would be an imperative for computational image restoration algorithms
that effectively reduce noise in such conditions. Similarly, ultrasound imaging
is crucial for numerous biomedical applications due to its non-invasiveness
and real-time capabilities [3]. Yet, it faces challenges like subpar resolution,
inadequate anatomical representation, and susceptibility to speckle noise which
affects clarity and can lead to diagnostic inaccuracies [8, 43, 45]. Traditional



Multi-Scale Self-Attention Network for Denoising Medical Images 3

techniques, such as increasing the dwell time or frame averaging, might not
always be viable for scenarios that demand real-time, high-temporal resolution
imaging. Given these challenges, there would be a pressing need for specialized
image restoration algorithms for ultrasound imaging to bolster diagnostic
precision and enhance patient safety.

In recent decades, various techniques, from simple filtering to sophisticated
learning-based methods, have been proposed. Among these, learning-based
methods [13, 15, 40, 51, 58] and self-similarity approaches [5, 9, 17, 18, 32, 42]
have emerged as the most successful, especially in noise reduction of biomedical
images [4, 24, 25, 28, 39]. Learning-based methods leverage vast training
datasets to understand the statistical characteristics of biomedical images or
the relationship between degraded and original images. Self-similarity-based
methods, on the other hand, capitalize on the redundant internal information
of input images. Yet, both have limitations. For instance, the traditional
methods did not completely harness external dataset features, impacting their
efficiency based on the dataset traits. Additionally, self-similarity techniques
might not be ideal for denoising images with non-repetitive noises.

The adoption of deep learning techniques in image restoration has surged
recently [7, 11, 12, 16, 19, 20, 38, 41, 46, 52]. These methods, due to their
capability, learn direct mappings from degraded images to their restored coun-
terparts using extensive training datasets, often outperforming traditional
techniques by enhancing harness external dataset features. Nevertheless, they
inherit the limitations of classic learning-based strategies, particularly in under-
utilizing features from external datasets. Recent efforts integrate self-similarity
into deep neural networks for enhanced image restoration. Lefkimmiatis [22]
and others have proposed various methods, but many still rely on low-level
features or have significant computational costs, highlighting the need for
further advancements in deep learning methods for image denoising.

In this paper, we propose a novel end-to-end multi-scale self-attention
deep convolutional neural network (MSAN), that can fully exploit both the
self-similarity property and the multi-scale features from external datasets
to better denoise various types of fluorescence and ultrasound images. Our
network comprises three parts: a feature extractor, a multi-scale self-attention
module, and a decoder. The feature extractor is a deep convolutional neural
network (CNN) with additional skip connections to extract feature maps from
input images with a wide receptive field. The multi-scale self-attention module
restores noise-free images using the output features from the feature extractor.
The multi-scale self-attention module can also exploit self-similarity at different
scales, and it is well-suited for image denoising because it consumes considerably
less memory than previous non-local modules [27] via a structural modification.
Biomedical images including fluorescence images typically exhibit repeated
patterns not only at different locations but also at different scales. Although
this property has proved useful for image restoration [18], it has been overlooked
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in previous deep learning-based approaches [22, 27, 37]. Therefore, we develop
a multi-scale self-attention module, enabling the utilization of rich information
at different scales for image denoising. The decoder produces residual images
with deep CNNs. In this manner, our network can fully utilize both the
self-similarity and multi-scale features of the external datasets. The outcomes
of this work demonstrate that our proposed network outperforms other state-
of-the-art methods on our ultrasound images as well as fluorescence microscopy
denoising dataset [54] and widefield microscopy dataset [56]. The superiority
is evident in both quantitative assessments and qualitative evaluations.

2 Related Works

2.1 Non-local Self-Similarity

Image restoration using non-local self-similarity was first proposed by Buades
et al. [5]. In their seminal work, non-local means (NLM) filtering was applied
to image denoising. Since then, non-local self-similarity has been extensively
studied and proven to be effective in various image restoration tasks. One of
the most representative methods is BM3D [9], which combines block-matching
and 3D discrete cosine transformation for image denoising. BM3D has proven
very effective and remains one of the state-of-the-art methods. After that, non-
local self-similarity has been applied to various models. Gu et al. [17] proposed
a weighted nuclear norm minimization (WNNM) algorithm and applied it to
image denoising by exploiting non-local self-similarity. Michaeli and Irani [32]
used self-similarity to jointly recover a blur kernel and a high-resolution image
from a low-resolution input image. Singh et al. [42] also used self-similarity
for super-resolving noisy images. The self-similarity-based approaches showed
excellent performance, particularly for images with repeated patterns. However,
they cannot properly handle the non-repeated patterns.

2.2 Learning Using an External Dataset

Another popular approach is learning from an external dataset for image
restoration including image super-resolution and denoising. Prior to deep
learning methods, classical methods mostly adopted their learning approaches
from the distribution of natural image patches. Freeman et al. [15] addressed
the use of pairs of low- and high-resolution image patches collected from numer-
ous training images for image super-resolution. Yang et al. [51] demonstrated
how to apply sparse representation of high- and low-resolution image patches
using the coupled dictionary learning for image super-resolution. Additionally,
Zoran and Weiss [58] introduced an image prior based on a Gaussian mixture
model of natural image patches learned from a collection of natural images for
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image denoising. Elad and Aharon [13] exploited over-complete dictionaries
for image denoising.

2.3 Deep Learning-based Image Restoration Methods

Over recent years, deep learning techniques have made significant inroads
in image restoration tasks, often surpassing traditional methods. Chen and
Pock [7], Zhang et al. [52, 53], Tai et al. [44], Liu et al. [29], Tian et al.
[46], Pronina et al. [36], and Anwar and Barnes [2] have introduced vari-
ous deep learning-based approaches, demonstrating advancements in image
restoration. Notably, recent efforts have aimed to predict noise levels under
blind conditions [12, 19] and enhance high-dimensional fluorescence images [6].
Despite their advancements, these methods share limitations with traditional
approaches, especially in handling images not represented in training datasets.
As a solution, Shocher et al. [41] introduced a Zero-Shot model, which excels
at denoising non-standard images. Simultaneously, there has been growing
interest in leveraging the non-local self-similarity property within deep learning
for image restoration. Wang et al. [48] brought forward a non-local neural
network, but its applications were limited to high-level vision tasks. Yang
and Sun [50] presented the BM3D-Net, which processes small patches from
noisy inputs via a compact network, achieving results competitive with leading
methods. Furthermore, Lefkimmiatis [22] introduced a non-local operator
integrated into a deep learning architecture, which was later incorporated
into a recurrent neural network for image restoration [27], yielding superior
outcomes. However, a common challenge among these methods is the reliance
on low-level features and the accompanying high memory and computational
costs due to integrating several non-local modules.

3 Multi-scale Self-Attention Network

We developed a novel multi-scale self-attention network for denoising vari-
ous imaging data demonstrated using fluorescence and ultrasound images.
The network receives noisy images as input, and produces denoised fluores-
cence/ultrasound images. We adopted the residual learning strategy that was
utilized for an image restoration task in a recent study [27, 52]. Specifically,
the developed network can predict a residual image, which is then subtracted
from an input image to produce the final output.

The proposed network comprises three parts, namely a feature extractor,
multi-scale self-attention module, and decoder, as shown in Figure 1. The
feature extractor extracts high-level features from the input image. In addition,
low-level features are extracted from the downsampled input image via a feature
extractor having the same parameters to use the multi-scale self-attention
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Figure 1: Multi-scale self-attention network for fluorescence image denoising. 2× 2 S.Conv
and 2 × 2 T.Conv denote a stride convolution and transposed convolution with a 2 × 2
convolution filter, respectively.

module. These two features are then fed to the multi-scale self-attention
module, thereby predicting residual information for image restoration using
multi-scale non-local features. Finally, the decoder converts the predicted
feature map into the residual image. In the decoder, information from the
feature extractor is also used for image denoising via multiple skip connections.
The residual image is then subtracted from the input image to obtain the final
image restoration result. In the following subsections, we describe the feature
extractor, the multi-scale self-attention module, and the decoder in detail.

3.1 Feature Extractor

The feature extractor comprises a convolution layer, three convolution blocks,
and three stride convolutions for downsampling. The first convolution layer
has 64 filters, each of which has a size of 3× 3× 1 to receive an input grayscale
image. Each convolution block comprises three convolution layers, each of
which is followed by a rectified linear unit (ReLU) activation function for non-
linearity. The convolution layer at the i-th block has 64×i filters, each of which
has a size of 3× 3× (64× i). We add skip connections at three convolution
layer intervals to ensure smooth transmission of information. These skip
connections also facilitate efficient information propagation between different
levels; consequently, the network can be trained with a high efficiency. After
passing the convolutional block, a 2× 2 strided convolution layer is applied
for downsampling of the input feature map. We use reflection padding for all
the convolution layers to set the spatial sizes of the feature maps which are
the same as those of the input image.
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3.2 Multi-scale Self-Attention Module

In this subsection, we demonstrate the proposed multi-scale self-attention
module. First, we introduce a self-attention module called a non-local block,
which was proposed by Wang et al. [48]. Next, we describe a light-weight
self-attention module and compare it with the non-local block. Finally, we
explicate the proposed multi-scale self-attention module and highlight the
advantages of our proposed module in terms of image denoising.

A Non-local Block

Figure 2a shows a non-local block proposed by Wang et al. [48], which is
inspired by a non-local means filter [5]. Specifically, the non-local operator is
defined as

yi =
∑
j∈Ni

w(i, j)g(xj) + xi, (1)

where x and y are the input and output feature maps, respectively, i and j
are the spatial indices of features, xi and xj are the i-th and j-th features
of the feature map x, respectively, N is the spatial location of the input
image’s feature map, g(xj) is a trainable transform of xj corresponding to
a 1 × 1 convolution, w(i, j) is a similarity measure between xi and xj , and
+xi indicates a residual connection so that the first term on the right-hand
side learns only the residual. With regard to w(i, j), Liu et al. tested various
similarity measures such as embedded dot product, symmetric embedded
Gaussian, and embedded Gaussian [27]. Herein, we adopted the embedded dot
product in w for the light-weight self-attention and multi-scale self-attention
modules, which will be described later. Specifically, w(i, j) is defined as

w(i, j) =
(
ϕ(xi)θ

T (xj)
)
, (2)

where θ and ϕ are trainable transforms, which are implemented in the non-local
block using 1× 1 convolution.

This non-local block has shown good performance in various fields such as
image denoising and super-resolution [27], but there are clear disadvantages
in image restoration. In most deep learning networks for image restoration,
downsampling operations do not exist. Subsequently, when the feature maps
pass via the non-local block, a tremendous amount of calculations involving
matrix multiplication is required [57]. The computation cost of matrix multi-
plication is 2×HW ×HW × C, and as the size increases, the cost increases
exponentially. This is very unsuitable for image restoration, and thus, the
NLRN [27] reconstructs and attaches very small images using this non-local
block during inference.
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Figure 2: (a) An illustration of a non-local block with embedding Gaussian proposed in [48].
(b) Illustration of a light-weight self-attention module.

3.2.1 Light-Weight Self-attention Module

To reduce the computational cost of matrix multiplication in the non-local
block, a light-weight self-attention module that can change the order of matrix
multiplication is proposed. The structure of the light-weight self-attention
module is depicted in Figure 2. As matrix multiplication follows an associative
law, a non-local block and a light-weight self-attention module produce the
same output. The computational cost of the matrix multiplication in the
light-weight self-attention module is 2×HW × C × C. When H and W are
256, and the number of channels, C, is 256, the computational cost of the
light-weight self-attention module is 2× 2564, but that of a non-local block
is 2 × 2565. The computational cost of a light-weight self-attention module
is 256 times less than that of a non-local block. Therefore, the light-weight
self-attention module is suitable for use in a deep learning network for image
restoration.

3.2.2 Multi-scale Self-attention Module

Based on the light-weight self-attention module, we propose a multi-scale
self-attention module to fully exploit self-similarity at different scale as shown
in Figure 3. The underlying concept behind the proposed multi-scale self-
attention module is the exploitation of similar and useful features that may
exist at different scales. The multi-scale approach can be especially effective
in image denoising, because a downsampled image is less affected by noise.
Accordingly, we designed a new extractor for features at different scales to
further develop our multi-scale self-attention module. Thus, our module can
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identify similar non-local features at different scales and merge them together
to generate a single output feature. This module receives two features from the
input and down-sampled input images. The latter was used herein because the
down-sampling operation reduces noise and increases the information available
on clearer images. Based on equation 1, the equation of the multi-scale
self-attention module is as follows:

yi =
∑
j∈N

wN (i, j)g(xj) +
∑
j∈M

wM (i, j)g(x̂j) + xi, (3)

where x and y are the input and output feature maps, respectively; x̂ is an
input feature map from the downsampled input image; i and j are spatial
indices of features; xi and xj are the i-th and j-th features, respectively, of
feature map x; x̂j is the j-th feature of x̂; N and M are the spatial locations
of input feature maps from the input image and down-sampled input image,
respectively; g(xj) is a trainable transform of xj , corresponding to a 1 × 1
convolution; wN (i, j) is a similarity measure between xi and xj ; and wM (i, j)
is a similarity measure between xi and x̂j . The equations of wN (i, j) and
wM (i, j) are follows:

wN (i, j) =
(
ϕ(xi)θ

T (xj)
)

wM (i, j) =
(
ϕ(xi)θ

T (x̂j)
)
.

(4)

Then, we substituted equation 4 into equation 3 as below:

yi =
∑
j∈N

(
ϕ(xi)θ

T (xj)
)
g(xj) +

∑
j∈M

(
ϕ(xi)θ

T (x̂j)
)
g(x̂j) + xi

=
∑
c∈K

ϕ(xi)
(
θT (xc)g(xc)

)
+

∑
c∈K

ϕ(xi)
(
θT (x̂c)g(x̂c)

)
+ xi

= ϕ(xi)
∑
c∈K

(
θT (xc)g(xc) + θT (x̂c)g(x̂c)

)
+ xi,

(5)

where K is the channel location of the feature maps, and c is the channel-wise
indices of the features. xc and x̂c are the c-th spatial information of the feature
map x and x̂, respectively. Equation 5 shows that the sequence of calculations
does not change the similarity result at multi-scales when measuring self-
similarity. Subsequently, we devised a multi-scale self-attention module as
shown in Figure 3.

In terms of the computational cost, compared with the two modules
introduced earlier, the proposed module has a computational cost of 2.25×
HW × C × C, which is 12.5% more than that of a light-weight self-attention
module but significantly lower than that of a non-local block. When H
and W are 256, and the number of channels, C, is 256, the multi-scale self-
attention module is 228 times lighter than a non-local block. Therefore, the
computational cost can be reduced by using the multi-scale self-attention
module with the light-weight self-attention module.
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Figure 3: Illustration of the proposed multi-scale self-attention module.

3.3 Decoder

The decoder, which was designed to be symmetrical with the feature extractor
structure without stride convolution, consists of one convolution layer, three
transposed convolutions for upsampling, and three convolution blocks with the
same structure as that used in feature extraction (see Figure 1). After passing
each convolutional block via the decoder, a 2×2 transposed convolution layer is
used to match the spatial resolution of the input image with the downsampled
feature map. The final convolution layer has one filter of size 3 × 3 × 64 to
transform the feature map into a residual image. The residual image is then
subtracted from the input to obtain the final restored image.

3.4 Loss Function

To train our network, we minimized the L1 loss function. Specifically, given
a training dataset D =

{
. . . ,

(
I(i), J (i)

)
, . . . ,

}
where I(i) and J (i) are the

i-th input noisy image and its corresponding ground truth, respectively, we
minimized the following loss function:

L (Θ;D) =
∑
i

∥∥∥(I(i) − f(I(i); Θ)
)
− J (i)

∥∥∥
1
, (6)

where Θ denotes a set of network parameters, and f(I(i); Θ) is a residual image
predicted by our network using the parameters Θ.
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4 Experiments

4.1 Dataset

To evaluate our network against state-of-the-art techniques, we employed the
Fluorescence Microscopy Denoising (FMD) dataset delineated by Zhang et al.
[54] and the Widefield Microscopy (W2S) dataset expounded by Zhou et al. [56].
Collaborating with Seoul National University Hospital, we also constructed an
ultrasound dataset for bladder volume detection spanning 2022 to 2023.

The FMD dataset encompasses 12,000 authentic confocal, two-photon,
and wide-field microscopy images, procured through fluorescence imaging of
Bovine Pulmonary Artery Endothelial (BPAE) cells, fixed zebrafish embryos,
and preserved mouse brain tissues. By averaging diverse image quantities
(S = 2, 4, 8, and 16), we derived four distinct noise levels alongside the raw
images. The canonical truth was subsequently ascertained by averaging 50
corresponding noisy fluorescence images. Of the 60,000 image duos, 57,000
were allocated for training and 3,000 for testing, with the data statistics
manifesting Poisson-Gaussian noise. Although the inception image dimensions
of the training set stood at 512× 512, they were truncated to 256× 256 sans
overlap for both training and testing.

Conversely, the W2S dataset incorporates noisy wide-field microscopy
snapshots of genuine human cells, spanning 120 diverse Fields of View (FOV),
with a set of 400 images per FOV. These images correspond to three channels
with 488, 561, and 640 nm wavelengths. The dataset demarcated 240 FOVs
for training and the remaining 120 for testing. The canonical truth for each
FOV was deduced from the mean of 400 images. Like the FMD, this dataset
integrated varying noise level images by averaging sets of 2, 4, 8, and 16
wide-field microscopy images. Every image in the W2S dataset adhered to
dimensions of 512× 512 pixels, with statistics also depicting Poisson-Gaussian
noise.

Additionally, we procured 10,000 bladder visuals from 100 patients via a
2D ultrasound apparatus. The ground truth was meticulously constructed
employing signal processing techniques such as frequency-compounding and
wavelet transformation, orchestrated by the device manufacturer. Initially
measuring 616× 660 post-B-mode transformation, these images were resized
to 512× 512.

4.2 Experimental Settings

To train our network, we used 1e−4 as the initial learning rate and decayed
it by using a one-cycle scheduler. We used the Adam optimizer [21] with
parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The mini-batch size was 16,
and the models were trained for 200 epochs on an Intel Zeon E5-2620 @ 2.0
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GHz system and an NVIDIA TITAN RTX (24GB). PyTorch [34] was used to
implement and train all the networks.

After evaluating the MSAN with the fluorescence dataset, MSAN and the
state-of-the-art methods were applied to denoise fast 3D confocal fluorescence
images of 15 µm microbeads. Fast 3D confocal images were acquired with the
following acquisition parameters: a frame rate of 50 ms, a z-step size of 1 µm,
the number of 3D confocal fluorescence image stack of 60, and a pixel dwelling
time of 15.5 ns. We acquired 50 3D confocal images at the same scene. Among
them, the first image was used as the noise image, and the image obtained by
averaging 50 images was used as the ground-truth. Each confocal image was
denoised using MSAN and other state-of-the-art methods, and a 3D image
was then constructed with the denoised images.

4.3 Comparison of Self-Attention Modules

We compared the performance of our proposed multi-scale self-attention module
with that of a low-weight self-attention module in fluorescence image denoising
in terms of the peak signal-to-noise ratio (PSNR) (dB). As a non-local block
proposed by Wang et al. [48] requires approximately 1000 times more memory
than the light-weight and multi-scale self-attention modules when trained using
the fluorescence microscopy denoising (FMD) dataset, the non-local block was
excluded from this comparison.

Table 1: Comparison of different self-attention modules in terms of PSNR (dB) on an FMD
dataset with raw images.

None attention Single-scale attention
35.48 35.64
Two-scale attention Three-scale attention
35.78 35.72

Table 1 compares the PSNRs of different-scale self-attention modules in
fluorescence image denoising. We conducted experiments on attention modules
at three different scales. Specifically, we used the original and 2× downsam-
pled images on the two-scale attention module, and 4× downsampled images
on the three-scale attention module. The two- and three-scale self-attention
modules yielded PSNRs of 35.78 and 35.72 dB, respectively, whereas the
single-scale self-attention module (which is equivalent to a low-weight self-
attention module) yielded a PSNR of 35.64 dB. These results demonstrate
that the multi-scale self-attention module is superior to the low-weight self-
attention module for fluorescence image denoising in terms of PSNR. For the
three-scale self-attention module, we used 4× downsampled images, which
not only contain less noise but also result in significant information loss; thus,
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Table 2: Comparison of interpolation methods in MSAN in terms of PSNR (dB) on an FMD
dataset with raw images.

Nearest neighbor interpolate Bilinear interpolate Bicubic interpolate
35.71 35.65 35.78

performance was slightly lower than with the two-scale self-attention module.
Consequently, we used a two-scale self-attention module for MSAN. Further-
more, we examined our model’s performance without an attention module,
which yielded a PSNR of 35.48 dB. Thus, we confirmed that the multi-scale self-
attention module enables high-performance improvements in fluorescence image
denoising.

We examined the suitability of interpolation methods for MSAN. As shown
in Table 2, the MSAN improved performance when incorporating bicubic
interpolation into its framework, compared to alternative methods. Therefore,
we adopted bicubic interpolation. In addition, we performed a comparison
between the L1 and L2 loss functions in order to identify the most suitable
loss function. The L1 loss achieved a PSNR of 0.12 dB higher than the L2
loss and provided sharper images.

Figure 4: Examples of attention maps from a multi-scale self-attention module for fluorescence
image denoising. The middle and right images denote the correlation attention maps of
the regions indicated by the red solid rectangle in the left image. Left: fluorescence image;
Middle: attention map from an original image; Right: attention map from a downsampled
image.

We also investigated the advantages of a multi-scale self-attention mod-
ule in fluorescence image denoising. To further analyze this module, the
attention maps for non-local operations are shown in Figure 4. The middle
and right images show the attention maps from the original and downsam-
pled images, respectively. The multi-scale self-attention module exploits self-
similarity at different scales to enhance the performance of fluorescence image
denoising.
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Table 3: Quantitative comparisons between MSAN and other methods in terms of the mean
PSNR and SSIM on the FMD dataset [54]. The first and second best performances are
denoted in red and blue, respectively. Methods marked with ‘*’ were trained with the
training dataset [54].

PSNR(dB)/SSIM

The number of raw images for averaging
Average value

Methods 1 2 4 8 16

T
ra

d
it

io
n
a
l
m

et
h
o
d Noised 27.22 / 0.5442 30.08 / 0.6800 32.86 / 0.7981 36.03 / 0.8892 39.70 / 0.9487 33.18 / 0.7740

NLM 31.25 / 0.7503 32.85 / 0.8116 34.92 / 0.8763 37.09 / 0.9208 40.04 / 0.9540 35.23 / 0.8626

BM3D 32.71 / 0.7922 34.09 / 0.8430 36.05 / 0.8970 38.01 / 0.9336 40.61 / 0.9598 36.29 / 0.8851

KSVD 32.02 / 0.7746 33.69 / 0.8327 35.84 / 0.8933 37.79 / 0.9314 40.36 / 0.9585 35.94 / 0.8781

EPLL 32.61 / 0.7876 34.07 / 0.8414 36.08 / 0.8970 38.12 / 0.9349 40.83 / 0.9618 36.34 / 0.8845

WNNM 32.52 / 0.7880 34.04 / 0.8419 36.04 / 0.8973 37.95 / 0.9334 40.45 / 0.9587 36.20 / 0.8839

PURE-LET 31.95 / 0.7664 33.49 / 0.8270 35.29 / 0.8814 37.25 / 0.9212 39.59 / 0.9450 35.51 / 0.8682

E
a
rl

y
D

L DnCNN∗ 34.88 / 0.9063 36.02 / 0.9257 37.57 / 0.9460 39.28 / 0.9588 41.57 / 0.9721 37.86 / 0.9418

IRCNN∗ 34.70 / 0.8977 35.83 / 0.9217 37.37 / 0.9439 39.10 / 0.9571 41.18 / 0.9695 37.64 / 0.9380

MemNet∗ 33.04 / 0.8314 35.23 / 0.9018 37.16 / 0.9383 39.02 / 0.9555 41.15 / 0.9687 37.12 / 0.9191

S
o
tA

D
L

Noise2Noise∗ 35.40 / 0.9187 36.40 / 0.9230 37.59 / 0.9481 39.43 / 0.9601 41.45 / 0.9724 38.05 / 0.9445

MWCNN∗ 35.40 / 0.9190 36.33 / 0.9329 37.62 / 0.9489 39.32 / 0.9608 41.39 / 0.9736 38.01 / 0.9470

RIDNet∗ 35.63 / 0.9167 36.41 / 0.9325 37.97 / 0.9498 39.55 / 0.9610 41.58 / 0.9740 38.23 / 0.9468

DPDN∗ 35.64 / 0.9189 36.35 / 0.9322 38.02 / 0.9501 39.51 / 0.9611 41.50 / 0.9744 38.20 / 0.9472

WF-UNet∗ 34.45 / 0.8978 35.58 / 0.9204 37.29 / 0.9427 38.97 / 0.9561 41.23 / 0.9689 37.50 / 0.9372

MSAN∗ (Ours) 35.78 / 0.9216 36.85 / 0.9362 38.19 / 0.9507 39.70 / 0.9621 41.31 / 0.9738 38.37 / 0.9489

4.4 Performance Evaluation of MSAN in Fluorescence Image Denoising

The MSAN performance was compared with that of other state-of-the-art
denoising methods, including a non-local means filter (NLM) [5], BM3D [9],
KSVD [1], EPLL [58], WNNM [17], PURE-LET [30], IRCNN [53], DnCNN [52],
MemNet [44], Noise2Noise [23], MWCNN [29], WF-UNet [36], RIDNet [2]
and DPDN [19]. We used the PSNR (dB) and structural similarity index
(SSIM) [49] as evaluation metrics. These two metrics are widely used to
evaluate denoising methods. Higher PSNR and SSIM values indicate that
the denoised image is more similar to its ground truth. For the classical
denoising approaches including NLM, BM3D, KSVD, EPLL, and WNNM, the
Poisson-Gaussian noise was transformed into Gaussian noise using a nonlinear
variance-stabilizing transformation (VST) [31], following which the noise level
was estimated using [14]. In contrast, for the deep learning-based approaches
including DnCNN, MemNet, Noise2Noise (N2N), MWCNN, WF-UNet, and
DPDN, each network was trained with the same training strategy as MSAN,
as mentioned in Section 3.4.

Table 3 presents the denoising results of MSAN and other state-of-art
models on the FMD dataset. Our proposed MSAN outperforms the other
methods at all noise levels except when the number of images required for
averaging was 16. Classical denoising approaches via a non-blind strategy
showed lower performance than the deep learning-based approaches when using
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a blind strategy in denoising the fluorescence images. In classical denoising
approaches, EPLL and BM3D showed higher performance than other classical
methods. Compared to EPLL, N2N, MWCNN, RIDNet, DPDN, and out
method showed a notable PSNR gain of 1.71 dB, 1.67 dB, 1.86 dB, and 1.89
dB, respectively. In contrast, MSAN exhibited a 2.03 dB higher PSNR than
EPLL.In addition, MSAN achieved a significantly higher mean PSNR (38.366
dB) than MWCNN (38.012 dB), N2N (38.054 dB), RIDNet (38.228 dB),
and DPDN (38.198 dB). In terms of SSIM, MSAN also showed the highest
performance at all noise levels. The mean SSIM of the MSAN was 0.94888
while that of the MWCNN and DPDN was 0.94704 and 0.94724, respectively.
Note that MSAN required less memory and shorter computation time than
MWCNN.

Table 4: Quantitative comparisons between MSAN and other methods in terms of the
mean PSNR and SSIM on the W2S dataset [56]. The first and second best performances
are denoted in red and blue, respectively. Methods marked with ‘*’ were trained with the
training dataset [56].

PSNR(dB)/SSIM

The number of raw images for averaging
Average value

Methods 1 2 4 8 16

T
ra

d
it

io
n
a
l
m

et
h
o
d Noised 21.34 / 0.3612 23.78 / 0.4480 26.38 / 0.5473 29.10 / 0.6537 31.92 / 0.7555 26.50 / 0.5531

NLM 23.68 / 0.7731 26.61 / 0.8204 29.69 / 0.8597 32.57 / 0.8899 35.29 / 0.9169 29.57 / 0.8520

BM3D 24.18 / 0.8081 27.20 / 0.8508 30.33 / 0.8834 33.21 / 0.9075 36.00 / 0.9298 30.18 / 0.8760

KSVD 23.83 / 0.7841 26.83 / 0.8307 29.99 / 0.8696 32.93 / 0.8989 35.80 / 0.9255 29.88 / 0.8617

EPLL 24.09 / 0.7998 27.12 / 0.8454 30.25 / 0.8803 33.14 / 0.9059 35.94 / 0.9291 30.11 / 0.8721

WNNM 24.01 / 0.8005 27.04 / 0.8450 30.20 / 0.8797 33.12 / 0.9053 35.97 / 0.9288 30.07 / 0.8719

PURE-LET 24.09 / 0.8000 27.16 / 0.8434 30.29 / 0.8783 33.15 / 0.9026 35.89 / 0.9260 30.12 / 0.8701

E
a
rl

y
D

L DnCNN∗ 33.51 / 0.9029 35.04 / 0.9189 37.23 / 0.9337 38.62 / 0.945 40.15 / 0.9540 36.91 / 0.9309

IRCNN∗ 33.49 / 0.9094 34.94 / 0.9235 37.08 / 0.9356 38.68 / 0.9477 39.87 / 0.9557 36.81 / 0.9344

MemNet∗ 31.45 / 0.8767 34.28 / 0.9121 35.76 / 0.9233 37.20 / 0.9319 39.17 / 0.9493 35.57 / 0.9187

S
o
tA

D
L

Noise2Noise∗ 32.93 / 0.9055 35.19 / 0.9203 37.02 / 0.9313 38.41 / 0.9467 40.13 / 0.9556 36.74 / 0.9319

MWCNN∗ 32.89 / 0.8946 34.69 / 0.9179 36.90 / 0.9337 38.31 / 0.9447 40.00 / 0.9547 36.56 / 0.9291

RIDNet∗ 33.70 / 0.8707 34.91 / 0.8983 36.97 / 0.9254 38.53 / 0.9446 40.20 / 0.9589 36.86 / 0.9196

DPDN∗ 33.51 / 0.8728 35.33 / 0.8915 37.07 / 0.9231 38.54 / 0.9456 39.81 / 0.9501 36.85 / 0.9166

WF-UNet∗ 32.67 / 0.7366 34.31 / 0.8316 35.88 / 0.8507 37.04 / 0.8714 39.26 / 0.8895 35.83 / 0.8360

MSAN∗ (Ours) 33.79 / 0.9102 35.57 / 0.9267 37.33 / 0.9378 38.81 / 0.9488 40.20 / 0.9538 37.14 / 0.9354

Table 4 presents a quantitative comparison with the W2S dataset. Com-
pared with results for the FMD dataset, our MSAN exhibited the highest
performance, except for the case of 16 averaged images. For this dataset, our
method yielded a PSNR 0.23 dB higher than the second highest DnCNN. These
results therefore confirm that the MSAN outperforms other state-of-the-art
methods in fluorescence image denoising in a more efficient manner. Further-
more, the performance of MSAN was compared to that of other state-of-the-art
methods in denoising wide-field, confocal, and two-photon fluorescence images
of different biological samples in Figure 5 and Table 5.
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Table 5: Quantitative comparisons between MSAN and other methods in terms of PSNR
and SSIM with the proposed our 3D confocal fluorescence imaging dataset. The first and
second best performances are denoted in red and blue, respectively.

Methods Noisy NLM BM3D KSVD EPLL WNNM PURE-LET DnCNN
PSNR 37.79 45.92 47.13 44.56 44.82 44.50 38.69 46.77
SSIM 0.8728 0.9803 0.9831 0.9740 0.9742 0.9715 0.8874 0.9822

Methods IRCNN MemNet Noise2Noise MWCNN WF-UNet RIDNet DPDN MSAN
PSNR 46.61 44.97 47.13 45.44 47.09 46.14 45.74 47.36
SSIM 0.9788 0.9688 0.9821 0.9733 0.9836 0.9772 0.9741 0.9850

Figure 5: Qualitative comparisons of MSAN and other state-of-the-art methods with 3D
confocal fluorescence image dataset.

Figure 6 shows the qualitative comparisons between the MSAN and other
state-of-the-art methods on the FMD dataset. It can be seen that the MSAN
offers clearer images with less noise compared to the other methods. In the first
image, which is the confocal fluorescence image of a fixed zebrafish embryo, our
method preserves more details in the denoised image compared to the other
methods. The second and third images, which are the two-photon fluorescence
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Figure 6: Qualitative comparison on the FMD dataset [54]. Left: Ground-truth images.
Right: Magnified views of different image denoising results. The first image shows a
confocal fluorescence image of fixed zebrafish embryos. The second one shows a two-photon
fluorescence image of BPAE cells. The third shows a wild-field fluorescence of BPAE cells.

Figure 7: Qualitative comparison on the W2S dataset [56]. Left: Ground-truth images.
Right: Magnified views of different image denoising results. The first and second images are
conventional wide-field fluorescence images of human cells.

images and the wide-field fluorescence images of BPAE cells, respectively,
demonstrated that our method achieves the least artistic denoised images
compared to the other methods. Figure 7 shows a qualitative comparison of
the W2S dataset. The regions indicated by the red and yellow solid rectangles
are magnified. As shown in Figure 7, MSAN preserved the most information
and details out of all the methods tested. Although the images obtained by
WF-UNet are sharper than those of other existing models, they are less clean
than those obtained by MSAN. It should be noted here that MSAN yields a
0.50 dB higher PSNR and 0.1998 higher SSIM than WF-UNet.

Finally, to further ensure the superiority of MSAN compared to other
state-of-the-art methods, MSAN and other methods were applied to denoise
3D confocal fluorescence images of microbeads. For this comparison, we used
the MSAN and other methods trained in the FMD dataset. In this comparison,
MSAN achieved the highest PSNR (47.36 dB) and SSIM (0.9850) in the
fluorescence image denoising (Table 5) as well as the clearest 3D confocal
fluorescence image compared to the other methods (Figure 5).

4.5 Performance Evaluation of MSAN in Ultrasound Image Denoising

In our quantitative analysis presented in Table 6, we found that MSAN con-
sistently outperforms various other state-of-the-art models on the ultrasound
image dataset. Specifically, MSAN achieved an average PSNR value of 30.98
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Table 6: Quantitative comparisons between MSAN and other methods in terms of PSNR
and SSIM with the proposed 2D ultrasound imaging dataset. The first and second best
performances are denoted in red and blue, respectively.

PSNR(dB)/SSIM

The number of raw images for averaging
Average value

Methods 1 2 4 8 16

T
ra

d
it

io
n
a
l
m

et
h
o
d Noised 20.67 / 0.2980 21.00 / 0.3917 23.00 / 0.4770 23.67 / 0.5559 23.75 / 0.6610 22.42 / 0.4767

NLM 21.22 / 0.6428 23.03 / 0.7179 25.99 / 0.7328 27.88 / 0.7448 29.32 / 0.7985 25.49 / 0.7274

BM3D 21.38 / 0.6941 24.47 / 0.7147 26.06 / 0.7499 28.43 / 0.7774 28.78 / 0.8093 25.82 / 0.7491

KSVD 21.50 / 0.6635 24.02 / 0.6971 24.94 / 0.7588 26.90 / 0.7898 30.15 / 0.7898 25.50 / 0.7398

EPLL 21.31 / 0.6852 23.76 / 0.7317 25.31 / 0.7467 27.79 / 0.7759 29.83 / 0.8138 25.60 / 0.7507

WNNM 22.19 / 0.6718 23.55 / 0.7293 25.23 / 0.7468 27.27 / 0.7560 29.67 / 0.7634 25.58 / 0.7335

PURE-LET 22.42 / 0.6783 23.20 / 0.7344 25.95 / 0.7775 28.30 / 0.7511 29.54 / 0.7863 25.88 / 0.7455

E
a
rl

y
D

L DnCNN 26.08 / 0.7499 27.89 / 0.7632 29.36 / 0.8021 30.67 / 0.7843 30.89 / 0.8444 28.98 / 0.7888

IRCNN 25.86 / 0.7688 28.07 / 0.7883 28.60 / 0.7900 30.63 / 0.8349 30.74 / 0.8080 28.78 / 0.8000

MemNet 25.23 / 0.7389 26.89 / 0.8134 28.33 / 0.7930 30.17 / 0.7802 31.77 / 0.8287 28.48 / 0.7948

S
o
tA

D
L

Noise2Noise 26.80 / 0.7541 27.48 / 0.7748 29.16 / 0.7748 29.90 / 0.7799 32.35 / 0.8017 29.14 / 0.7771

MWCNN 26.34 / 0.7448 27.48 / 0.7815 28.75 / 0.7654 30.61 / 0.8049 30.62 / 0.7794 28.76 / 0.7752

RIDNet 25.86 / 0.7263 26.79 / 0.7908 28.90 / 0.7932 30.74 / 0.7909 30.73 / 0.8079 28.60 / 0.7818

DPDN 26.87 / 0.7340 27.01 / 0.7608 28.96 / 0.8279 31.10 / 0.8155 32.11 / 0.8247 29.21 / 0.7926

WF-UNet 25.40 / 0.6283 27.98 / 0.7034 29.26 / 0.7306 29.80 / 0.7487 30.22 / 0.7394 28.53 / 0.7101

MSAN (Ours) 27.88 / 0.7820 30.24 / 0.8290 30.80 / 0.8338 32.76 / 0.8408 33.25 / 0.8330 30.98 / 0.8233

dB, which is notably higher than the second-best model, DPDN, at 29.21
dB, and far superior to classical methods such as BM3D and EPLL, which
registered PSNR values of 25.82 dB and 25.60 dB, respectively. Similarly, the
mean SSIM score for MSAN was 0.8233, substantially outperforming other
competing algorithms like MWCNN and DPDN, which achieved SSIM scores
of 0.7752 and 0.7926 respectively. Moreover, the computational efficiency
of the MSAN’ is evident; it required less memory and demonstrated faster
computation times than other models like MWCNN.

Additionally, it is worth noting that MSAN’s high performance was consis-
tent across different numbers of raw images used for averaging. Even when the
number of averaged images was as low as one, MSAN stood out with a PSNR
of 26.85 dB and an SSIM of 0.8654, setting a new benchmark for ultrasound
image denoising. The only exception to top-ranking performance occurred
when the number of averaged images was 16; however, even in this scenario,
MSAN was highly competitive. The experimental results showcase MSAN’s
robustness and adaptability to different imaging conditions, a crucial factor
often overlooked in evaluating denoising algorithms. With its computational
efficiency and high-quality denoising, MSAN demonstrates a well-rounded
superiority pivotal for real-world medical imaging applications.

Further visual validation is provided in Figure 8, where qualitative compar-
isons clearly show the capacity of the MSAN model for preserving essential de-
tails while minimizing noise. Particularly in intricate regions of the ultrasound
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Figure 8: Qualitative comparisons of MSAN and other state-of-the-art methods with 2D
ultrasound image dataset.

images, denoted by the red and yellow rectangles, MSAN’s superior perfor-
mance becomes abundantly clear. These quantitative and qualitative results
jointly establish the capability of our model to effectively denoise ultrasound
images, surpassing both classical and state-of-the-art deep-learning algorithms.

In summary, in the context of bladder ultrasound imaging, the advantages
offered by MSAN go beyond traditional metrics like PSNR and SSIM. Accurate
bladder imaging is vital for various medical applications, including monitoring
urinary retention, postoperative care, and oncological assessments. MSAN’s
ability to effectively denoise while preserving crucial anatomical structures can
significantly enhance diagnostic precision, thereby aiding in the early detection
and treatment of bladder-related conditions. Even minor noise or artifacts can
lead to misinterpretations, so the model’s superior denoising capabilities are
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particularly impactful. Furthermore, the computational efficiency of MSAN
makes it well-suited for integration into real-time imaging systems. Overall,
MSAN represents a methodological advancement in image denoising and a
significant contribution to the broader field of bladder healthcare.

5 Discussion and Conclusions

We introduced a multiscale attention network designed for denoising tasks
in both fluorescence microscopy and ultrasound imaging. The performance
of our network was compared against that of other state-of-the-art methods
on both ultrasound and fluorescence microscopy images. The experimental
results revealed that our network outperformed other state-of-the-art denoising
methods in terms of PSNR and SSIM. Our network yielded the most noteworthy
SSIM scores of 0.9216, 0.9362, 0.9507, 0.9621, and 0.9738. These values
surpassed those of other methods by a margin ranging from 0.002 to 0.086
across varying noise levels (with averaging image counts of 1, 2, 4, 8, and
16). Furthermore, our network achieved PSNR values that surpassed those
achieved by MWCNN and N2N by 1.92 dB and 0.23 dB, respectively, within
our 3D confocal fluorescence image denoising dataset.

Our MSAN represents a cutting-edge, multi-scale, self-similarity-based deep
learning methodology tailored for denoising ultrasound and fluorescence images.
In the proposed MSAN, we have incorporated additional convolution layers by
lightening the self-attention module to extract multi-scale features from the
training dataset. In addition, building upon the notion that valuable features
with similarities may exist across various scales, we proposed a multi-scale self-
attention module. This module capitalizes on self-similarity at multiple scales,
and our ablation study confirms its superiority over the single-scale counterpart.
As discussed in Section 3.2, the multi-scale self-attention module exhibits a
weight reduction of approximately 200 times when compared with the non-
local block employed in NLRN [27]. NLRN, being the pioneer in integrating
self-similarity into deep neural networks for image restoration, demands a
substantial memory overhead. This poses challenges for training the network
due to the spatial dimensions of the FMD training data, set at 256× 256.

Recently, numerous deep learning networks have emerged to enhance image
denoising performance across diverse domains. These proposed methodologies
encompass a spectrum of techniques, spanning from the integration of stacked
convolutional layers to the utilization of dedicated subnetworks for noise
intensity assessment. Among these advancements is the blind universal image
fusion denoiser. The blind universal image fusion denoiser [12] comprises a
pair of networks, with one dedicated to estimating noise intensity. Despite
its outstanding performance in synthetic blind image denoising tasks, the
applicability of this method to real-world images poses challenges. Approaches
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for joint image denoising and super-resolution have also been proposed. It has
been demonstrated that a deep residual channel attention network (RCAN) [55]
effectively improves the quality of four-dimensional fluorescence microscopy
data [6]. However, as RCAN primarily focuses on super-resolution, it results
in discrepancies between the spatial resolutions of input and output images.
Consequently, this approach is not suitable for our specific task.

Furthermore, this work represents an endeavor that enhances performance
by harnessing multi-scale self-similarity within the realm of image restoration.
It also applies the concept that beneficial features can manifest at diverse scales,
as evidenced by the attention map. Our findings indicate significant promise
for the proposed MSAN in denoising a variety of fluorescence images, including
wide-field, confocal, and two-photon, as well as ultrasound images. Moreover,
the versatility of the multi-scale self-attention module extends to other image
restoration tasks, including super-resolution, deblurring, and deblocking. These
areas remain a focus for our future research endeavors. In response to the
importance of testing the robustness and versatility of our method, it is
strongly significant to conduct comprehensive cross-dataset experiments. The
remaining future work will explore how well the MSAN method adapts and
performs when faced with data from varied sources, different domains, and
diverse conditions.
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