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Abstract: Fractal interpolation function (FIF) is a fixed point of the Read–Bajraktarević operator
defined on a suitable function space and is constructed via an iterated function system (IFS). In this
paper, we considered the generalized affine FIF generated through the IFS defined by the functions
Wn(x, y) =

(
an(x) + en, αn(x)y + ψn(x)

)
, n = 1, . . . ,N. We studied the shift of the fractal interpolation

curve, by computing the error estimate in response to a small perturbation on αn(x). In addition, we
gave a sufficient condition on the perturbed IFS so that it satisfies the continuity condition. As an
application, we computed an upper bound of the maximum range of the perturbed FIF.
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and Lipschitz functions
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1. Introduction

Fractal interpolation provides a framework for interpolating sets of data that may exhibit some self-
similarity at different scales. While classical interpolation techniques, such as polynomial interpolation
and spline interpolation generate smooth interpolants, fractal interpolation is able to model irregular
sets of data. The concept of the fractal interpolation functions (FIFs) was first introduced by Barnsley
[1–3]. Since then, this theory has become a powerful and useful tool in applied science and engineering,
especially when dealing with real-world signals such as financial series, time series, climate data and
bioelectric recordings.

The iterated function systems (IFSs in short ) are useful to construct some fractal sets [4–8]).
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Specifically, IFS employs contractive functions over a complete metric space (X, d), where the
existence and uniqueness of the fixed point are guaranteed by Banach’s theorem. This is done using
the Hutchinson operator, which also is a contraction mapping overH(X), whereH(X) is the space of
all compact subsets of X ( see, for instance, [4, 9–14] for some extension of Hutchinson’s framework).
Recently, the existence of FIFs through different well-known results given by the fixed point theory
have been studied by many researchers [15–20]. Moreover, the wide range of FIFs constructed and
studied proved many important properties including calculus, dimensionality, stability, smoothness
and disturbance error [17, 20–26].

Let N ≥ 2. In this paper, we consider the generalized affine FIF defined byLn(x) = anx + en

Fn(x, y) = αn(x)y + ψn(x),
n ∈ J := {1, . . .N},

where, for each n, αn is a Lipschitz function, ψn is a continuous function and an and en are real
numbers. When the functions {αn}n are constants (they are called vertical scaling factors), this system
is extensively studied by many authors [21–23, 27–31]. In this case, the set of vertical scaling factors
has a decisive influence on the properties and shape of the corresponding FIF. In particular, the
smoothness of FIFs can be described through the vertical scaling factor [30–32] and, therefore by
choosing the appropriate vertical scale factor, they can fit the real rough curve precisely. Moreover, all
aforementioned works are dealing with different choices of functions ψn and highlighted some choice
of these functions. In the section 2 we recall some preliminaries concerning IFS and FIF, and in
Section 3, we examine the change of the fractal interpolation curve in response to a minor perturbation
on αn(x). We compute a sufficient condition so that the new (perturbed) IFS satisfies the continuity
condition. Additionally, we discuss how these changes influence FIFs by computing the error estimate.
In Section 4, we consider the case when Fn(x, y) are defined as follows

Fn(x, y) = αn(x)y + f (Ln(x)) − αn(x)b(x),

where the functions αn : I −→ R are Lipschitz functions and b, f are continuous functions on [x0, xN]
such that b(x0) = f (x0) and b(xN) = f (xN). The FIF interpolates the function f at the nodes of the
partition : x0 < x1 < x2 · · · < xN [33–35]. We will compute in this case an appropriate upper bound of
the maximum range of the perturbed FIF.

2. Preliminaries

2.1. Iterated function systems

Let (X, d) be a complete metric space. A mapping g : X −→ X is called a contraction if there exists
c ∈ [0, 1) such that d (g(x1), g(x2)) ≤ c d(x1, x2) for all x1, x2 ∈ X. We define on H(X), the space of
compact subsets of X, the Hausdorff metric dH as

dH(K1,K2) = max{d(K1,K2), d(K2,K1)}, K1,K2 ∈ H(X),

where d(K1,K2) = supx∈K1
infy∈K2 d(x, y), then (H(X), dH) is complete space [5] and compact whenever

X is compact. Now, we consider I = {X , wn ; n ∈ J} to be an IFS, where wn : X −→ X is a continuous
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mapping for each n ∈ J. We define also the Hutchinson operator W : H(X) −→ H(X) as

W(A) =
N⋃

n=1

wn(A) , ∀ A ∈ H(X).

It is well know that any IFS admits at least one attractor, that is, a set G ∈ H(X) such that W(G) = G
[2]. In addition [2, 5], the Hutchinson operator is a contraction mapping on (H(X), dH) whenever I is
hyperbolic; that is, for each n ∈ J, wn is a contraction.

2.2. FIF

Let N∗ be the set of positive integers and I = [x0, xN] be a real compact interval. We consider the set
of data ∆ =

{
(xn, yn) ∈ I × R ; n ∈ J0 := {0, 1, . . . ,N}

}
, where N ∈ N∗, x0 < x1 < · · · < xN , yi ∈ [a, b],

with −∞ < a < b < ∞. Now we consider, for n ∈ J, the set In = [xn−1, xn] and we define the contractive
homeomorphism Ln : I −→ In such that

Ln(x0) = xn−1, Ln(xN) = xn

|Ln(x) − Ln(x′)| ≤ l|x − x′|, ∀ x, x′ ∈ I,
(2.1)

for some l ∈ [0, 1). We define also N continuous mappings Fn : K := I × [a, b] −→ R, such that

Fn(x0, y0) = yn−1, Fn(xN , yN) = yn (2.2)

|Fn(x, y) − Fn(x, y′)| ≤ |αn||y − y′|, ∀x ∈ I, y, y′ ∈ [a, b], (2.3)

where αn ∈ (−1, 1), n ∈ J. Now, we define the mapping Wn : K −→ In × R, as

Wn(x, y) =
(
Ln(x), Fn(x, y)

)
, ∀(x, y) ∈ K, n ∈ J.

Under the conditions (2.1), (2.2) and (2.3), the IFS
{
K,Wn : n ∈ J

}
has a unique attractor G.

Furthermore, G is the graph of continuous function f that passes through the points
{
(xn, yn)

}N
n=1 [2].

On the other hand, we define the complete metric space (G, ρ), where

G =
{
g : I −→ R, such that g is continuous, g(x0) = x0 and g(xN) = xN

}
and

ρ(g, h) = ∥g − h∥∞ := max
{
|g(x) − h(x)| : x ∈ I

}
, ∀g, h ∈ G.

Now, we define the Read-Bajraktarevic operator T , defined on (G, ρ) by

T
(
g(x)
)
= Fn

(
L−1

n (x), g
(
L−1

n (x)
))
, x ∈ In, n ∈ J,

then, using (2.3), we obtain ∥T ( f )−T (g)∥ ≤ α∥ f −g∥∞,where α := maxn |αn|. Hence, T is a contraction
mapping and possesses a unique fixed point f on G. From this, the FIF is the unique function satisfying
the following functional relation

f (x) = Fn

(
L−1

n (x), f
(
L−1

n (x)
))
, ∀x ∈ In, n ∈ J. (2.4)
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The most widely studied FIFs are defined by the following systemLn(x) = anx + en

Fn(x, y) = αny + ψn(x),
n ∈ J, (2.5)

where the real constants an and en are determined by condition (2.1), ψn are continuous functions such
that conditions (2.2) and (2.3) hold and −1 < αn < 1 are free parameters called vertical scaling factors.
Recently, many authors managed to construct more general FIFs that do not have to exhibit the strict
self similarity (see, for instance, [15]). In this work, we consider the IFS with variable parameters [32]
defined by :

Wn(x, y) =
(
anx + en, αn(x)y + ψn(x),

)
, ∀(x, y) ∈ K, n ∈ J,

where αn : I −→ R are Lipschitz functions such that ∥αn∥∞ := sup
{
αn(x); x ∈ I

}
< 1. In this case, the

FIF will be called generalized affine FIF and denoted by f α
∆,N where α := (α1, α2, . . . , αN) (or simply by

f if there is no ambiguity). Moreover, consider that generalized affine FIF provides a wide variety of
systems for different approximations problems. In Figure 1, we plot the FIF with constant parameters
: α1(x) = 0.4, α2(x) = 0.3, α3(x) = 0.5 and α4(x) = 0.2. Meanwhile in Figure 2, we plot the FIF with
variable parameters : α1(x) = 0.4 sin(5x) + 0.2, α2(x) = 0.3 cos(10x), α3(x) = 0.5 exp(−2x) + 0.3 and
α4(x) = 0.2 exp(x) sin(x) + 0.1. As we can see, the self-similarity in Figure 2 is weaker than that of the

Figure 1. FIF with constant
parameters.

Figure 2. FIF with variable
parameters.

affine fractal interpolation curve shown in Figure 1 [32].

3. Perturbation on FIFs

In this section we consider the FIFs generated through the following IFSLn(x) = anx + en

Fn(x, y) = αn(x)y + ψn(x),
n ∈ J, (3.1)

where an and en are determined by condition (2.1) and the functions ψn are continuous functions such
that conditions (2.2) and (2.3) hold. Assume that αn : I −→ R are Lipschitz functions, with Lipschitz
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constant Cn, such that α := maxn ∥αn∥∞ < 1. Now we define, for x ∈ I,Ln1n2...nk(x) := Ln1 ◦ Ln2 ◦ · · · ◦ Lnk(x)
Ln1n2...nk(I) := Ln1 ◦ Ln2 ◦ · · · ◦ Lnk(I),

where n j ∈ J, k ≥ 1, j ∈ {1, . . . , k}. Finally, let σ j denote the j-fold composition of σ with itself such
that

Lσ j(n1n2...nk)(x) = Ln j+1...nk(x), 1 ≤ j ≤ k − 1,

while Lσk(n1n2...nk)(x) = x. Using a successive iteration and induction (see [32, 36]), we have, for all
n j ∈ J, j = 1, . . . , k,

Ln1n2...nk(x) =
( k∏

j=1

an j

)
x +

k∑
r=1

( r−1∏
j=1

an j

)
enr , (3.2)

with the convention
∏0

j=1 S j(x) = 1 for any family of functions {S j} j. In this section we consider the
following perturbation of the IFS defined in (3.1),Ln(x) = anx + en

F̃n(x, y) = βn(x)y + ψn(x) + λn(x),
(3.3)

where βn and λn are continuous functions such that ∥βn∥∞ < 1. We define also

δn(x) := βn(x) − αn(x) and γn := λn(xN) − λn(x0).

We will say that the IFS satisfies the continuous condition if, for 1 ≤ n < N, we have

F̃n(xN , yN) = F̃n+1(x0, y0).

We assume, for all 1 ≤ n < N, that

λn+1(x0) =
( n∑

j=1

δ j(xN)
)
yN −

( n+1∑
j=2

δ j(xN)
)
y0 +
( n∑

j=1

γ j

)
+ λ1(x0). (3.4)

Notice that by using (3.2) and the fact that |an| < 1 for n ∈ J that

x = lim
k→∞

Ln1n2...nk(x) =
∞∑

r=1

( r−1∏
j=1

an j

)
enr ,

for all x ∈ I. Our main result in this section is the following.

Theorem 1. Let f and f̃ be the FIFs generated by the IFSs (3.1) and (3.3), respectively.

1. Under (3.4) the IFS defined by the system (3.3) satisfies the continuous condition.
2. For a given x ∈ I, let {n j}, n j ∈ J be sequence such that x =

∑∞
r=1

(∏r−1
j=1 an j

)
enr , then

f̃ (x) − f (x) =
∞∑

r=1

[ r−1∏
j=1

βn j

(
L j[x]

)
−

r−1∏
j=1

αn j

(
L j[x]

)]
ψnr

(
Lr[x]

)
AIMS Mathematics Volume 9, Issue 2, 2908–2924.
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+

∞∑
r=1

[ r−1∏
j=1

βn j

(
L j[x]

)]
λnr

(
Lr[x]

)
,

where Lr[x] =
∑∞

l=1

(∏l−1
j=1 anr+ j

)
enr+l .

Proof. 1. The continuous condition implies, for each n = 1, . . . ,N−1, that F̃n(xN , yN) = F̃n+1(x0, y0),
then

βn+1(x0)y0 + ψn+1(x0) + λn+1(x0) = βn(xN)yN + ψn(xN) + λn(xN).

Thus, we obtain δn+1(x0)y0 + λn+1(x0) = δn(xN)yN + λn(xN) and then

λn+1(x0) = δn(xN)yN − δn+1(x0)y0 + λn(xN)
= δn(xN)yN − δn+1(x0)y0 + γn + λn(x0)
=
(
δn(xN) + δn−1(xN)

)
yN −

(
δn+1(x0) + δn(x0)

)
y0 + γn + γn−1 + λn−1(x0)

...

=
( n∑

j=1

δ j(xN)
)
yN −

( n+1∑
j=2

δ j(x0)
)
y0 +
( n∑

j=1

γ j

)
+ λ1(x0).

2. Using (3.2), we have

f
(
Ln1n2···nk(x)

)
=
[ k∏

j=1

αn j

(
Lσ j(n1n2...nk)(x)

)]
f (x)

+

k∑
r=1

[ r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(x)

)]
ψnr

(
Lσr(n1n2...nk)(x)

)
and

f̃
(
Ln1n2···nk(x)

)
=
[ k∏

j=1

βn j

(
Lσ j(n1n2...nk)(x)

)]
f̃ (x) +

k∑
r=1

[ r−1∏
j=1

βn j

(
Lσ j(n1n2...nk)(x)

)]
·
[
ψnr

(
Lσr(n1n2...nk)(x)

)
+ λnr

(
Lσr(n1n2...nk)(x)

)]
.

Now remark that
⋂∞

k=1 Ln1n2...nk(I) consists of a single point in I for any sequence {nk} of integers
such that 1 ≤ nk ≤ N. Moreover, for any fixed x ∈ I, there exists a sequence {nk} satisfying

{x} =
∞⋂

k=1

Ln1n2...nk(I) = lim
k→∞

Ln1n2...nk(I).

This implies by using (3.2) that

x = lim
k→∞

Ln1n2...nk(x′) =
∞∑

r=1

( r−1∏
j=1

an j

)
enr ,
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where x′ is any point belonging to I . Therefore, there exists x′ ∈ I such that

f (x) = lim
k→∞

k∑
r=1

[ r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(x′)

)]
ψnr

(
Lσr(n1n2...nk)(x′)

)
.

=

∞∑
r=1

[ r−1∏
j=1

αn j

(
L j[x]

)]
ψnr

(
Lr[x]

)
.

Similarly, we have

f̃ (x) =
∞∑

r=1

[ r−1∏
j=1

βn j

(
L j[x]

)](
ψnr

(
Lr[x]

)
+ λnr

(
Lr[x]

))
,

then we obtain the desired result.
□

Example 1. We consider the Weierstrass function (see Figure 3) that can be seen as a classical fractal
function since it is continuous everywhere, yet differentiable nowhere. Therefore, while its graph
is connected, it looks jagged when viewed on arbitrarily small scales. There are many works on
fractal dimensions of their graphs, including box dimension, Hausdorff dimension, and other types of
dimensions [37, 38]. Let l ≥ 2 be an integer, 1/l < λ < 1 and ϕ : R −→ R is a Z-periodic real analytic
function. We define

f ϕλ,l(x) =
∞∑

k=0

λkϕ(lkx), x ∈ R. (3.5)

In fact, such a function is real analytic, or the Hausdorff dimension of its graph is equal to 2 + logl(λ)
[39].

Figure 3. Weierstrass function for different choice of variables λ and l with ϕ(x) = cos(2πx).

In this example, we consider the classical Weierstrass function f ; that is, when ϕ(x) = cos(2πx).
Let I = [0, 1], N = l = 3 and choose in definition (3.5) the special case λ = 1/2, then we obtain
f (0) = f (1) = 2. Now, consider

Wn(x, y) =
( x + n − 1

3
, αn(x)y + ϕ

( x + n − 1
3

))
, (x, y) ∈ I × R,

AIMS Mathematics Volume 9, Issue 2, 2908–2924.
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where αn(x) = 1
2 + (−1)1+⌊n/2⌋ sin(2πx)

4 , for n ∈ {1, 2, 3}, where ⌊n/2⌋ means the integer part of x. In this
case, we have that the Weierstrass function f is the FIF defined by {Wn}

3
n=1 [40]. Now, consider the

following perturbed system defined byLn(x) = x+n−1
3

F̃(x, y) = βn(x)y + ϕ
( x+n−1

3

)
+ λn(x),

(x, y) ∈ I × R, (3.6)

where βn(x) = (−1)1+⌊n/2⌋ sin(2πx)
4 for n ∈ {1, 2, 3}. In this case, we have δn(x) := δn = −

1
2 . Choose

λ1(x) = x and then, by (3.4), we have

λn+1(x0) = 2
( n∑

j=1

δ j

)
− 2
( n+1∑

j=2

δ j

)
+
( n∑

j=1

γ j

)
=

n∑
j=1

γ j.

Hence, if we take λ2(x) = λ3(x) = x + 1, the system defined in (3.6) satisfies the continuous condition.

In the following, we consider a special case of Theorem 1. For this, we define the following
perturbation of the IFS defined in (2.5):Ln(x) = anx + en

F̃n(x, y) = (αn + δn)y + ψn(x) + λn,
(3.7)

where δn and λn are constants such that |αn + δn| < 1. In this situation, we have γn = 0 and we obtain
the following result.

Theorem 2. Let f and f̃ be the functions generated by the IFSs (2.5) and (3.7), respectively. For a
given x ∈ I, let {n j}, n j ∈ J be sequence such that x =

∑∞
r=1

(∏r−1
j=1 an j

)
enr .

1. Assume for all 1 ≤ n < N that

λn+1 =
( n∑

j=1

δ j

)
yN −

( n+1∑
j=2

δ j

)
y0 + λ1,

then the IFS defined by the system (3.7) satisfies the continuous condition.
2. For a given x ∈ I, let {n j}, n j ∈ J be sequence such that x =

∑∞
r=1

(∏r−1
j=1 an j

)
enr , then

∣∣∣∣ f̃ (x) − f (x)
∣∣∣∣ ≤ ∞∑

r=1

∣∣∣(s + t)r−1 − tr−1
∣∣∣ψnr

( ∞∑
l=1

( l−1∏
j=1

anr+ j

)
enr+l

)
+

∞∑
r=1

( r−1∏
j=1

βn j

)
λnr ,

where t := maxn |αn| and s = maxn |βn − αn|.

Proof. The first assertion is a direct application of Theorem 1, and we will only prove the second one.
Using Theorem 1, we obtain

f̃ (x) − f (x) =
∞∑

r=1

[ r−1∏
j=1

βn j −

r−1∏
j=1

αn j

]
ψnr

( ∞∑
l=1

( l−1∏
j=1

anr+ j

)
enr+l

)
+

∞∑
r=1

( r−1∏
j=1

βn j

)
λnr . (3.8)
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Note that (3.8) can be found in [41, Theorem 3]. Moreover, using [32, Lemma 3.2], we have

∣∣∣∣ f̃ (x) − f (x)
∣∣∣∣ ≤ ∞∑

r=1

∣∣∣(s + t)r−1 − tr−1
∣∣∣ψnr

( ∞∑
l=1

( l−1∏
j=1

anr+ j

)
enr+l

)
+

∞∑
r=1

( r−1∏
j=1

βn j

)
λnr ,

where t := maxn |αn| and s = maxn |βn − αn|. □

Remark 1. Consider the IFS defined by (3.7) such that α := α1 = · · · = αN . Choose δ = 1−α
2 so that

we have α + δ < 1. Therefore, by a direct computation using (2.4), we obtain for all x ∈ I

| f̃ (x) − f (x)| ≤ max
n∈J

∣∣∣∣F̃n
(
L−1

n (x), f̃ ◦ L−1
n (x)
)
− Fn
(
L−1

n (x), f ◦ L−1
n (x)
)∣∣∣∣

= max
n∈J

∣∣∣∣(α + δ) f̃ (L−1
n (x)) + λn − α f (L−1

n (x))
∣∣∣∣

≤ α∥ f̃ − f ∥∞ + δ∥ f̃ − f ∥∞ + δ∥ f ∥∞ + λ∞,

where λ∞ := maxn∈J λn. It follows that

∥ f̃ − f ∥∞ ≤
δ∥ f ∥∞ + λ∞
1 − α − δ

≤
2

1 − α

(
∥ f ∥∞ + λ∞

)
.

Now, applying Theorem 2, we get

∣∣∣∣ f̃ (x) − f (x)
∣∣∣∣ ≤ ∞∑

r=1

(1 + α
2

)r−1
max

n
∥ψn∥∞ +

∞∑
r=1

(1 + α
2

)r−1
λ∞

≤
2

1 − α

(
max

n
∥ψn∥∞ + λ∞

)
.

Example 2. In this example, we consider a special case of Theorem 2 by choosing all the parameters
λn as equal for n ∈ J. This is done by choosing y0 = yN = 0. For this, let us consider the sets of data
points:

∆ :=
{
(0, 0), (1/3, 1), (2/3,−1), (1, 0)

}
,

and we consider the IFS defined by (2.5) where

Ln(x) =
x
3
+

n − 1
N

, ψ1(x) = x, ψ2(x) = 1 − 2x, ψ3(x) = x − 1 and α1 = α2 = α3 = −0.5.

Now, we consider the following perturbed systemLn(x) = x
3 +

n−1
N

F̃n(x, y) = (αn + δn)y + ψn(x) + λn.
(3.9)

We choose λ1 = 0 and we collect the different values of δn in the Table 1. Moreover, different perturbed
FIF are plotted in Figure 4. As we may see, we obtain smooth or non-smooth FIF depending on the
choice of δn. One can describe the self-similar structures of the graph of FIF by computing the box
dimension D ( also known as the Minkowski–Bouligand dimension or the box-counting dimension),
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which is a mathematical object used to describe the complexity of certain figures and proved to be an
appropriate and effective method for fractal dimension estimate. More precisely,

D = lim
ϵ→0

log Nϵ

log(1/ϵ)
, (3.10)

where Nϵ is the minimum number of ϵ × ϵ squares needed to cover the graph of f .

δ λ box dimension
Initial system δn = 0 λn = 0 1.369
First perturbation δn = 1.25 λn = 0 1.738

Second perturbation
δ1 = 0.65
δ2 = 0.6 λn = 0 1
δ3 = 0.85

Third perturbation
δ1 = 1
δ2 = 0.65 λn = 0 1.338
δ3 = −0.3

Table 1. The Box dimension, computed from (3.10), of the different perturbation systems.

Figure 4. The graphs of FIFs obtained from (3.9) with different δn and their corresponding
box dimension D.

As an application of Theorem 2, the following result concerning the Weierstrass function is
considered in Example 1.
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Corollary 1. Let f be the Weierstrass function defined in (3.5) with ϕ(0) = 0, then there exists an FIF
f̃ satisfying

∥ f̃ − f ∥∞ ≤
2∥ϕ∥∞
1 − λ

.

Proof. Let I = [0, 1] and the interpolating points x0 = 0 < x1 < · · · < xN = 1 such that xn − xn−1 = 1/N
(N = l). We consider the following system defined asLn(x) = x

N +
n−1
N

Fn(x, y) = αy + ϕ
( x+n−1

N

)
,

where α = λ. It is well known that the function f is an FIF [40]. Indeed, consider for n ∈ J the function

Wn(x, y) =
( x + n − 1

N
, αy + ϕ

( x + n − 1
N

))
, (x, y) ∈ [0, 1] × R.

It follows that

f
(
Ln(x)

)
= f
( x + n − 1

N

)
= ϕ
( x + n − 1

N
)
+ α

∞∑
k=0

αkϕ(Nkx) = ϕ
( x + n − 1

N
)
+ α f (x)

and, thus,

C f =

N⋃
n=1

Wn
(
C f
)
.

Now, we consider the following perturbed systemLn(x) = x
N +

n−1
N

Fn(x, y) = (α + δ)y + ϕ
( x+n−1

N

)
+ λn,

where δ = (1 − α)/2 and λ1 = 0, and we obtain

λn+1 =
n
2
(
1 − α

)
yN −

n
2
(
1 − α

)
y0 =

n
2
(
1 − α

)
[yN − y0].

Furthermore, using Remark 1, we get

∥ f̃ − f ∥∞ ≤
2

1 − α

(
∥ϕ∥∞ + λ∞

)
≤

2
1 − α

(
∥ϕ∥∞ +

N
2
(
1 − α

)(
yN − y0

))
.

Finally, we get the desired result since ϕ is a Z-periodic function with ϕ(0) = 0, which implies that
f (0) = f (1) and yN = y0.

□
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4. Upper bound of the maximum range of the perturbed FIF

Let f ∈ C(I), the normed space of real valued endowed with the uniform norm continuous function
on I. We will say that the function f is Hölder continuous with exponent β and Hölder constant c if

| f (x) − f (y)| ≤ c|x − y|θ, x, y ∈ I.

We denote by Hθ(I) the set of all Hölder continuous functions on I with exponent θ. We consider the
interpolation points P =

{
( n

N , yn) ∈ R2, n ∈ J
}

and we denote D =
{ n

N ∈ I, n ∈ J0
}
. We set

L0(D) = D, L(D) =
N⋃

n=1

Ln(D), and Lk(D) = L ◦ · · · ◦ L(D),

k times composition. In this section, we considerLn(x) = anx + en

Fn(x, y) = αn(x)y + f (Ln(x)) − αn(x)b(x),
(4.1)

where the real constants an and en are determined by condition (2.1), the functions αn : I −→ R are
Lipschitz functions, with Lipschitz constant Cn such that α := maxn ∥αn∥∞ < 1 and b ∈ C(I) such that
b(x0) = f (x0) and b(xN) = f (xN). The FIF generated by (4.1) will be denoted by f α, which interpolates
f at the nodes of the partition. Moreover, using (2.4), the function f α satisfies

f α(x) = f (x) + αn(L−1
n (x))

(
f α − b

)
(L−1

n (x)), for all x ∈ In, n ∈ J. (4.2)

We will denote by f̃ α the FIF generated by the perturbed system; that is

F̃n(x, y) = βn(x)y + f
(
Ln(x)

)
− αn(x)b(x) + λn(x). (4.3)

Lemma 1. Assume that β := maxn ∥βn∥∞ < 1. For all x ∈ In and n ∈ J, we have

∥ f̃ α − f ∥∞ ≤
α∥ f − b∥∞ + δ∥ f ∥∞ + ∥λ∥∞

1 − β

and
∥ f̃ α − f α∥∞ ≤

β∥ f α∥∞ + ∥λ∥∞
1 − β

,

where ∥λ∥∞ = maxn ∥λn∥∞, α = maxn ∥αn∥∞ and δ = maxn ∥δn∥∞.

Proof. Using (2.4), we obtain

f̃ α(x) = f (x) + βn(L−1
n (x)) f̃ α

(
L−1

n (x)
)
− αn
(
L−1

n (x)
)
b
(
L−1

n (x)
)
+ λn
(
L−1

n (x)
)

(4.4)

and
(1 − β)∥ f̃ α(x) − f (x)∥∞ ≤ α∥ f − b∥∞ + δ∥ f ∥∞ + ∥λ∥∞

as required. Moreover, from (4.4) and (4.2), f̃ α(x) = f α(x) + βn(L−1
n (x)) f̃ α

(
L−1

n (x)
)
+ λn
(
L−1

n (x)
)

and

∥ f̃ α − f α∥∞ ≤ β∥ f̃ α − f α∥∞ + β∥ f α∥∞ + ∥λ∥∞.

□
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Now, assume that f ∈ Hθ1(I) and b ∈ Hθ2(I) with Hölder constant H f , Hb respectively.

Lemma 2. Let f̃ α be the FIF generated by the system (4.3) and we assume that β = maxn ∥βn∥∞ < 1.

We denote α = maxn ∥αn∥∞, δ = maxn ∥δn∥∞ and A1 =
βΓ1 + H f + αHb + y0δ

1 − β
, then

∣∣∣ f̃ α(x) − yn−1

∣∣∣ ≤ A1, x ∈ In,∀n ∈ J.

Proof. We define, for k = 1, 2, . . . ,

Γk = max
{
| f̃ α(x) − y0|, x ∈ Lk−1(D)

}
and γk = max

n

{
| f̃ α(x) − yn−1|, x ∈ Lk−1(D) ∩ In

}
.

First, observe that

Γk ≤ max
n

{
| f̃ α(x) − yn−1|, x ∈ Lk−1(D) ∩ In

}
+max

n

{
|yn−1 − y0|

}
≤ Γ1 + γk. (4.5)

For x ∈ Lk(D) ∩ In, we have

f̃ α(x) = f (x) + βn(L−1
n (x)) f̃ α

(
L−1

n (x)
)
− αn
(
L−1

n (x)
)
b
(
L−1

n (x)
)
+ λn
(
L−1

n (x)
)

and then

f̃ α(x) − yn−1 = f (x) − yn−1 + βn(L−1
n (x))

[
f̃ α
(
L−1

n (x)
)
− y0

]
−

αn
(
L−1

n (x)
)[

b
(
L−1

n (x)
)
− y0

]
+ λn
(
L−1

n (x)
)
+ y0δn(L−1

n (x))

≤H f + βΓk−1 + αHb + y0δ.

We denote by A = H f + αHb + y0δ, which does not depend on k. It follows by using (4.5) that

γk+1 ≤ βΓk + A ≤ βγk + βΓ1 + A

≤ β
(
βΓk−1 + A

)
+ βΓ1 + A

≤ β2γk−1 + β
2Γ1 + βΓ1 + βA + A

...

≤

k∑
j=1

β jΓ1 +

k−1∑
j=0

β jA ≤
βΓ1 + A

1 − β
= A1.

For any x ∈ In, there exits a sequence {x j} j ∈ In ∩
(⋃

k Lk(D)
)

such that x j −→ x and lim j→∞ | f̃ α(x j) −

yn−1| = | f̃ α(x) − yn−1|, by continuity of the function f̃ α . Therefore, we get∣∣∣ f̃ α(x) − yn−1

∣∣∣ ≤ A1, x ∈ In.

□

Given a function S defined on I, we define the maximum range RS of S as

RS (I) = sup
s1,s2∈I

∣∣∣S (s1) − S (s2)
∣∣∣.
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Theorem 3. Let f α be the α-FIF the IFS (4.1) with interpolation points P and f̃ α as the perturbed FIF
defined by (4.3). Assume that β = maxn ∥βn∥∞ < 1, then

R f̃ α(I) ≤ min
{
N A1,

2
1 − β

(
α∥b∥∞ + ∥λ∥∞ + ∥ f ∥∞(1 + α + δ − β)

)}
where A1 =

βΓ1 + H f + αHb + y0δ

1 − β
, α = maxn ∥αn∥∞ and δ = maxn ∥δn∥∞.

Proof. From Lemma 2, we have
sup

In

∣∣∣ f̃ α(x) − yn−1

∣∣∣ ≤ A1,

Now, let s1, s2 ∈ I, then there exists n1 ≤ n2 ∈ J such that s1 ∈ In1 and s2 ∈ In2 . It follows that∣∣∣ f̃ α(s1) − f̃ α(s2)
∣∣∣ ≤ ∣∣∣ f̃ α(s1) − yn1−1

∣∣∣ + ∣∣∣yn1−1 − yn1

∣∣∣ + · · · + ∣∣∣yn2−1 − f̃ α(s2)
∣∣∣.

≤ N A1.

On the other hand, we may estimate the upper bound of the maximum range R f̃ α not depending on N.
Indeed, using Lemma 1 we get

R f̃ α ≤ 2∥ f̃ α∥∞ ≤ 2∥ f̃ α − f ∥∞ + 2∥ f ∥∞

≤ 2
α∥ f − b∥∞ + δ∥ f ∥∞ + ∥λ∥∞

1 − β
+ 2∥ f ∥∞

≤
2

1 − β
(
α∥b∥∞ + ∥λ∥∞ + ∥ f ∥∞(1 + α + δ − β)

)
as required. □

Remark 2. Let f α be the α-FIF the IFS (4.1) with interpolation points P such that α < 1, then

R f α(I) ≤ min
{
N A2,

2
1 − α

(
α∥b∥∞ + ∥ f ∥∞

)}
where A2 =

αΓ1 + H f + αHb

1 − α
.

Example 3. Let I = [0, 1] and f (x) = x − x2. Observe that for any x, y ∈ I, we have

| f (x) − f (y)| ≤ |x − y| + |x2 − y2| ≤ 3|x − y|,

then the function f is Hölder continuous with exponent one and Hölder constant H f = 3. In this
example, we consider the following perturbed systemLn(x) = x

N +
n−1
N

Fn(x, y) = (α + δ)y + f (Ln(x)) − αb(x) + λn,

where δ = (1 − α)/2, λ1 = 0 and b(x) = f (x)/3. Since f (0) = f (1) = 0, we obtain λn = 0 for all n ∈ J.
Therefore, using Lemma 1, we have

∥ f̃ α − f ∥∞ ≤
α∥ f − b∥∞ + δ∥ f ∥∞

1 − β
≤
α/3 + (1 − α)/4

1 − α
=

α + 3
12(1 − α)
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and
∥ f̃ α − f α∥∞ ≤

1 + α
1 − α

∥ f α∥∞.

In particular, if α = 1/4, we obtain

∥ f̃ α − f ∥∞ ≤
13
36

and ∥ f̃ α − f α∥∞ ≤
5
3
∥ f α∥∞.

Therefore, we have

R f̃ α(I) ≤
2

1 − β
(
α∥b∥∞ + ∥λ∥∞ + ∥ f ∥∞(1 + α + δ − β)

)
≤

1
1 − α

(
α/12 + 1/4

)
,

then R f̃ α(I) ≤ 13
36 for α = 1/4.

5. Conclusions

In this paper, a class of generalized affine FIFs with variable parameters, where ordinate scaling
is substituted by real-valued control function, is investigated. More precisely, we considered the FIF
generated through the IFS defined by the functions Wn(x, y) =

(
an(x)+en, αn(x)y+ψn(x)

)
, n = 1, . . . ,N.

We computed the error estimate in response to a small perturbation on αn(x) and we gave a sufficient
condition on the perturbed IFS so that it satisfies the continuity condition.
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