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Abstract: In modern engineering, the dynamics of many practical problems can be described by
hyperbolic distributed parameter systems. This paper is devoted to the adaptive prescribed performance
control for a class of typical uncertain hyperbolic distributed parameter systems, since uncertainties
are inevitable in practice. The systems in question simultaneously have unknown in-domain spatially
varying damping coefficient and unknown boundary constant damping coefficient. Moreover, dynamic
boundary condition is considered in the present paper. These characteristics make the control problem
in the paper essentially different from those in the related works. To solve the problem, using adaptive
technique based projection operator, backstepping method developed for ODEs and Lyapunov stability
theories, a powerful adaptive prescribed performance control scheme is proposed to successfully
guarantee that all states of the resulting closed-loop system are bounded, furthermore, the original
system state converges to an arbitrary prescribed small neighborhood of the origin. Compared with the
existing results, the developed control schemes can not only effectively handle the serious uncertainties,
but also overcome the technical difficulties in the infinite-dimensional backstepping control design
method caused by the dynamic boundary condition and guarantee prescribed performance.

Keywords: wave equations; prescribed performance control; parametric uncertainties; dynamic
boundary condition; adaptive technique
Mathematics Subject Classification: 93C20, 93D21

1. Introduction

Recently, boundary control for uncertain systems described by wave equations with dynamic
boundary has been extensively investigated (see e.g., [1–13] and references therein). However, most of
the uncertainties considered in these works come from external disturbances [3, 5–11] and constant
parametric uncertainties [1, 2, 4, 12, 13], few uncertainties are about unknown spatially varying or
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time-varying parameters, which are inevitable in practice. It is worth pointing out that [14–17]
studied the cases with unknown spatially varying parameters in the hyperbolic PDEs therein, but the
control schemes are developed for first-order hyperbolic PDEs with static boundary conditions and are
not applicable to the second-order hyperbolic PDEs with dynamic boundary conditions. Moreover,
in [1, 4, 12, 13], adaptive technique was utilized to compensate system uncertainties, but the control
objectives achieved are relatively conservative. Specifically, the control objectives are reduced that the
distributed states in the closed-loop system are ultimately uniformly bounded in the sense of certain
norm in [1], and the closed-loop systems are stable in the sense of certain norms in [4,12,13] (in these
works, the performance of the states of the systems cannot be derived from these norms). Therefore,
when a parameter involved in the wave equation is spatially varying and unknown, how to compensate
the serious parametric uncertainties and design a desired boundary controller to achieve delicate
objective with prescribed performance are challenging problems and worthy of thorough investigation.

In this paper, we consider the boundary control for the following wave equation with dynamic
boundary condition and multiple parametric uncertainties:

wtt(x, t) = a(x)wxx(x, t) + a′(x)wx(x, t) − b(x)wt(x, t),
wx(0, t) = qwt(0, t),
wtt(L, t) = λa(L)wx(L, t) − ηwt(L, t) + 1

M u(t),

(1.1)

where w : [0, L] × R+ → R is the system state; u : R+ → R is the control input of the system;
w(x, 0) = w0(x) and wt(x, 0) = w1(x) are the initial values of the system; a(x) is an increasing function
satisfying a(0) ≥ L2; L is a positive constant denoting the length of the wave equation domain; M
is a positive constant; b : [0, L] → R+ is an unknown spatially varying parameter, called in-domain
damping coefficient; η is an unknown positive constant, called boundary damping coefficient; q and λ
are unknown positive constants.

The objective of this paper is to design an adaptive boundary controller for system (1.1) with
dynamic boundary and rather essential uncertainties, to guarantee that all states of the resulting closed-
loop system are bounded, and the original system state ultimately converges to an arbitrary prescribed
small neighborhood of the origin, that is, |w(x, t)| ≤ ε, ∀t ≥ T for some T > 0, where ε is a positive
constant representing the prescribed accuracy. To achieve the objective, the following assumption is
imposed on the unknown parameters b(x), q, λ and η:

Assumption 1. There exist known constants b, b, q, q, λ, λ, η and η such that

0 < b ≤ b(x) ≤ b, ∀x ∈ [0, 1], 0 < q ≤ q ≤ q, λ ≤ λ ≤ λ, η ≤ η ≤ η.

Boundary control has received considerable attention for system (1.1) and its variants in recent
decades, since this class of systems has wide application background in engineering, such as
crane systems [18, 19], oilwell drillstring systems [1, 20, 21], sea cable problems [22, 23] and
cable elevators [24, 25]. It is worth stressing that compared with the systems concerned in the
above related literature, system (1.1) has two distinctive features: (i)(i)(i) Unknown in-domain damping
coefficient and unknown boundary damping coefficient are allowed, and particularly, the in-domain
damping coefficient is spatially varying. In fact, [1, 18, 19, 24] rule out any dampings in the
systems; [20, 21, 23, 25] require that both the in-domain and boundary damping coefficients are
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known constants; [22] only allows that the boundary damping coefficient is unknown and constant.
Remarkably, [26, 27] investigated the more general cases where the in-domain damping coefficients
are spatially varying, but the coefficients are required to be known. (ii)(ii)(ii) Dynamic boundary condition is
considered in the present paper. This makes that the control schemes proposed by infinite-dimensional
backstepping method in [14–17] (where unknown spatially varying parameters are allowed in the
systems therein) cannot be applied to solve the control problem in the paper, since the explicit
expression for the key kernel function in the infinite-dimensional backstepping method is rather
difficult to construct in the presence of dynamic boundary condition [28, 29]. Thus, one of the main
contributions of the paper is that the system under discussion allows serious unknowns and is more
practical than those in the existing related works.

This paper is devoted to developing an adaptive prescribed performance control scheme for
system (1.1) with dynamic boundary condition, unknown in-domain spatially varying damping
coefficient and unknown boundary constant damping coefficient. One key point in the control design
is to construct the ingenious updating laws which not only can effectively counteract the serious
unknowns but also are easily integrated with the control design for dynamic boundary condition.
Specifically, adaptive technique based projection operator and backstepping method developed for
ODEs (see e.g., [30–32]) are applied to compensate the multiple parametric uncertainties and
simultaneously to design the desired controller, since the dynamic boundary condition at the control
end can be written as a two-dimensional ODE system by letting X1(t) = w(L, t) and X2(t) = Ẋ1(t).
Based on this, an adaptive controller is successfully designed in two steps, which guarantees that
all states of the resulting closed-loop system are bounded, and furthermore the original system state
ultimately converges to an arbitrarily prescribed small neighborhood of the origin. Therefore, the other
main contributions of the paper is that a new adaptive control strategy, which is essentially different
from those in [1,4,12,13], is proposed to achieve delicate control objective with prescribed convergence
rate for uncertain systems described by wave equations with dynamic boundary condition.

The remainder of the paper proceeds as follows. In Section 2, the desired adaptive controller and
dynamic compensators are designed. Section 3 summarizes the main results of the paper. Section 4
gives a simulation example, and Section 5 addresses some concluding remarks. The paper ends with a
supplementary which gives several useful inequalities.
Notations. Throughout the paper, R denotes the set of all real numbers; R+ denotes the set of all
nonnegative real numbers; L2(0, L) denotes the space of all measurable functions on [0, L] with the
property that

∫ L

0
| f (x)|2dx < +∞; Hi(0, L) denotes the usual Sobolev space of functions in L2(0, L)

with derivatives up to ith order also in L2(0, L).

2. Adaptive controller design

This section is devoted to designing an appropriate adaptive controller for system (1.1). Particularly,
ingenious updating laws and delicate Lyapunov function are constructed not only to deal with multiple
parametric uncertainties but also to guarantee the stabilization with prescribed performance. Based on
this, an adaptive controller is designed for system (1.1) by the idea of backstepping method for ODEs,
since the boundary condition that the control u(t) involved in can be rewritten as a two-dimensional
ODE system.

Letting X1(t) = w(L, t) and X2(t) = Ẋ1(t). Then, system (1.1) can be rewritten as follows:
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


wtt(x, t) = a(x)wxx(x, t) + a′(x)wx(x, t) − b(x)wt(x, t),
wx(0, t) = qwt(0, t),
w(L, t) = X1(t),Ẋ1(t) = X2(t),
Ẋ2(t) = λa(L)wx(L, t) − ηX2(t) + 1

M u(t).

(2.1)

We now design the adaptive controller by two steps using the backstepping method for ODEs.
Step 1. Consider the control design for the following subsystem peeled from (2.1):

wtt(x, t) = a(x)wxx(x, t) + a′(x)wx(x, t) − b(x)wt(x, t),
wx(0, t) = qwt(0, t),
w(L, t) = X1(t),
Ẋ1(t) = X2(t) − X∗2(t) + X∗2(t),

(2.2)

where X∗2(t) is the control input of system (2.2).
Let

E1(t) =
1
2

∫ L

0

(
a(x)w2

x(x, t) + w2
t (x, t)

)
dx. (2.3)

Then, for system (2.2), we introduce the following energy function:

V1(t) = E1(t) + X2
1(t). (2.4)

By the first equation in (2.2) and integration by parts, it can be easily verified that

V̇1(t) =

∫ L

0

(
a(x)wx(x, t)wxt(x, t) + wt(x, t)wtt(x, t)

)
dx + 2X1(t)Ẋ1(t)

=

∫ L

0

(
a(x)wx(x, t)wxt(x, t) + wt(x, t)

(
a(x)wxx(x, t) + a′(x)wx(x, t) − b(x)wt(x, t)

))
dx

+2X1(t)Ẋ1(t)

=

∫ L

0

(
a(x)wx(x, t)wxt(x, t) +

(
a(x)wx(x, t)

)
xwt(x, t) − b(x)w2

t (x, t)
)
dx + 2X1(t)Ẋ1(t)

=
(
a(x)wx(x, t)wt(x, t)

)∣∣∣L
0
−

∫ L

0
b(x)w2

t (x, t)dx + 2X1(t)Ẋ1(t)

= a(L)wx(L, t)wt(L, t) − a(0)wx(0, t)wt(0, t) −
∫ L

0
b(x)w2

t (x, t)dx + 2X1(t)Ẋ1(t).

Noting that w(L, t) = X1(t), wx(0, t) = qwt(0, t) and Ẋ1(t) = X2(t)− X∗2(t) + X∗2(t) from (2.2), there holds

V̇1(t) =
(
X2(t) − X∗2(t) + X∗2(t)

)(
a(L)wx(L, t) + 2X1(t)

)
− qa(0)w2

t (0, t)

−

∫ L

0
b(x)w2

t (x, t)dx. (2.5)
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We choose

X∗2(t) = −k1
(
a(L)wx(L, t) + 2X1(t)

)
, (2.6)

where k1 is a positive design parameter to be determined later. Then, substituting (2.6) into (2.5), and
using Assumption 1, we arrive at

V̇1(t) ≤
(
X2(t) − X∗2(t)

)(
a(L)wx(L, t) + 2X1(t)

)
− k1

(
a(L)wx(L, t) + 2X1(t)

)2

−qa(0)w2
t (0, t) − b

∫ L

0
w2

t (x, t)dx. (2.7)

Step 2. To design an appropriate controller u(t) in this step, we define

E2(t) =

∫ L

0
(x − L)wx(x, t)wt(x, t)dx,

by which, (2.3), Young’s inequality and noting a(x) ≥ L2, we have

∣∣∣E2(t)
∣∣∣ ≤ 1

2

∫ L

0

(
L2w2

x(x, t) + w2
t (x, t)

)
dx ≤ E1(t). (2.8)

Then, for the following entire system:


wtt(x, t) = a(x)wxx(x, t) + a′(x)wx(x, t) − b(x)wt(x, t),
wx(0, t) = qwt(0, t),
w(L, t) = X1(t),Ẋ1(t) = X̆2(t) + X∗2(t),
˙̆X2(t) = λa(L)wx(L, t) − ηwt(L, t) + 1

M u(t) − Ẋ∗2(t),

(2.9)

its energy function is constructed as

V2(t) = E1(t) +
1
2

X2
1(t) +

1
2

X̆2
2(t) +

1
2γ1

λ̃2(t) +
1

2γ2
η̃2(t) + δE2(t), (2.10)

where X̆2(t) = X2(t) − X∗2(t); λ̃(t) = λ − λ̂(t) and η̃(t) = η − η̂(t) are the parameter estimate errors with
λ̂(t) and η̂(t) being the estimates of unknown parameters λ and η, respectively; γ1, γ2 and δ < 1 are
positive constants to be determined later.

Following similar arguments to the proof of (2.7), and by (2.6) and (2.9), we obtain

V̇2(t) =
(
a(x)wx(x, t)wt(x, t)

)∣∣∣L
0
−

∫ L

0
b(x)w2

t (x, t)dx + X1(t)Ẋ1(t) + X̆2(t)
(
λa(L)wx(L, t)

−ηwt(L, t) +
1
M

u(t) − Ẋ∗2(t)
)
−

1
γ1
λ̃(t) ˙̂λ(t) −

1
γ2
η̃(t) ˙̂η(t) + δĖ2(t)

=
(
X̆2(t) + X∗2(t)

)(
a(L)wx(L, t) + X1(t)

)
− qa(0)wt

2(0, t) −
∫ L

0
b(x)w2

t (x, t)dx

+X̆2(t)
(
λa(L)wx(L, t) − ηwt(L, t) +

1
M

u(t) + k1
(
a(L)wxt(L, t) + 2Ẋ1(t)

))
AIMS Mathematics Volume 9, Issue 2, 3019–3034.
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−
1
γ1
λ̃(t) ˙̂λ(t) −

1
γ2
η̃(t) ˙̂η(t) + δĖ2(t)

≤ X̆2(t)
(
a(L)wx(L, t) + X1(t)

)
− k1

(
a(L)wx(L, t) + X1(t)

)2
− k1X1(t)a(L)wx(L, t)

−k1X2
1(t) − qa(0)wt

2(0, t) − b
∫ L

0
w2

t (x, t)dx + X̆2(t)
(
λ̂(t)a(L)wx(L, t) − η̂(t)wt(L, t)

+
1
M

u(t) + k1
(
a(L)wxt(L, t) + 2Ẋ1(t)

))
+ λ̃(t)

(
a(L)wx(L, t)X̆2(t) −

1
γ1

˙̂λ(t)
)

−η̃(t)
(
wt(L, t)X̆2(t) +

1
γ2

˙̂η(t)
)

+ δĖ2(t). (2.11)

Then, by Young’s inequality, there holds
∣∣∣X̆2

(
a(L)wx(L, t) + X1(t)

)∣∣∣ ≤ c0
2

(
a(L)wx(L, t) + X1(t)

)2
+ 1

2c0
X̆2

2(t),
k1

∣∣∣X1(t)a(L)wx(L, t)
∣∣∣ ≤ k1

2

(
a(L)wx(L, t)+X1(t)

)2
,

(2.12)

where c0 is a positive constant to be determined later. Substituting (2.12) into (2.11) yields

V̇2(t) ≤ −
k1 − c0

2
(
a(L)wx(L, t) + X1(t)

)2
+

1
2c0

X̆2
2(t) − k1X2

1(t) − qa(0)wt
2(0, t)

−b
∫ L

0
w2

t (x, t)dx + X̆2(t)
(
λ̂(t)a(L)wx(L, t) − η̂(t)wt(L, t) +

1
M

u(t)

+k1
(
a(L)wxt(L, t) + 2Ẋ1(t)

))
+ λ̃(t)

(
a(L)wx(L, t)X̆2(t) −

1
γ1

˙̂λ(t)
)

−η̃(t)
(
wt(L, t)X̆2(t) +

1
γ2

˙̂η(t)
)

+ δĖ2(t). (2.13)

For the last term on the right-hand side of (2.13), by Assumption 1, integration by parts, Young’s
inequality and the increasing property of a(x), it can be derived similar to the proof of the equality
above (A3) in Lemma 2.1 in [10] that

Ė2(t) =
1
2

Lw2
t (0, t) −

1
2

∫ L

0
w2

t (x, t)dx +
1
2

La(0)w2
x(0, t) +

1
2

∫ L

0
(x − L)a′(x)w2

x(x, t)dx

−
1
2

∫ L

0
a(x)w2

x(x, t)dx −
∫ L

0
(x − L)b(x)wx(x, t)wt(x, t)dx

≤ −
1
2

∫ L

0
w2

t (x, t)dx −
1
2

∫ L

0

(
a(x) − (x − L)a′(x)

)
w2

x(x, t)dx +
1
2

L
(
1 + q2a(0)

)
w2

t (0, t)

+
c1b
2

∫ L

0
L2w2

x(x, t)dx +
b

2c1

∫ L

0
w2

t (x, t)dx

≤ −
1
2

(
1 −

b
c1

) ∫ L

0
w2

t (x, t)dx −
1 − c1b

2

∫ L

0
a(x)w2

x(x, t)dx +
1
2

L
(
1 + q2a(0)

)
w2

t (0, t),(2.14)

where 0 < c1 <
1
b
.

Substituting (2.14) into (2.13) results in

V̇2(t) ≤ −
k1 − c0

2
(
a(L)wx(L, t) + X1(t)

)2
+

1
2c0

X̆2
2(t) − k1X2

1(t) −
(
b +

δ

2
(
1 −

b
c1

)) ∫ L

0
w2

t (x, t)dx
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−
δ

2
(1 − c1b)

∫ L

0
a(x)w2

x(x, t)dx + X̆2(t)
(
λ̂(t)a(L)wx(L, t) − η̂(t)wt(L, t) +

1
M

u(t)

+k1

(
a(L)wxt(L, t) + 2Ẋ1(t)

))
+ λ̃(t)

(
a(L)wx(L, t)X̆2(t) −

1
γ1

˙̂λ(t)
)

−η̃(t)
(
wt(L, t)X̆2(t) +

1
γ2

˙̂η(t)
)
−

(
qa(0) −

δL
2

(
1 + q2a(0)

))
w2

t (0, t).

By choosing
0 < c0 ≤ k1,

0 < δ < σ =


min

{ 2qa(0)

L
(

1+q2a(0)
) , 2L3−3L2−1

(1+2L)L2

}
, b ≤ c1 <

1
b
,

min
{ 2bc1

b−c1
,

2qa(0)

L
(

1+q2a(0)
) , 2L3−3L2−1

(1+2L)L2

}
, b ≥ 1, or 0 < b < 1 and 0 < c1 < b,

(2.15)

there holds

V̇2(t) ≤
1

2c0
X̆2

2(t) − k1X2
1(t) −

(
b +

δ

2
(
1 −

b
c1

)) ∫ L

0
w2

t (x, t)dx −
δ

2
(1 − c1b)

∫ L

0
a(x)w2

x(x, t)dx

+X̆2(t)
(
λ̂(t)a(L)wx(L, t) − η̂(t)wt(L, t) +

1
M

u(t) + k1

(
a(L)wxt(L, t) + 2Ẋ1(t)

))
+λ̃(t)

(
a(L)wx(L, t)X̆2(t) −

1
γ1

˙̂λ(t)
)
− η̃(t)

(
wt(L, t)X̆2(t) +

1
γ2

˙̂η(t)
)
. (2.16)

To ensure the desired stability of the resulting closed-loop system, the adaptive controller and the
updating laws of λ̂(t) and η̂(t) are designed as follows:

u(t) = −k1M
(
a(L)wxt(L, t) + 2Ẋ1(t)

)
− k2MX̆2(t) − Ma(L)λ̂(t)wx(L, t) + Mη̂(t)wt(L, t)

= −k1M
(
a(L)wxt(L, t) + 2wt(L, t)

)
− k2M

(
wt(L, t) + k1

(
a(L)wx(L, t) + 2w(L, t)

))
−Ma(L)λ̂(t)wx(L, t) + Mη̂(t)wt(L, t), (2.17)

and  ˙̂λ(t) = Proj[λ, λ]
{
γ1a(L)wx(L, t)X̆2(t), λ̂(t)

}
, λ̂(0) ∈ [λ, λ],

˙̂η(t) = Proj[η, η]
{
− γ2wt(L, t)X̆2(t), η̂(t)

}
, η̂(0) ∈ [η, η],

(2.18)

where k2 is a design parameter satisfying k2 >
1

2c0
; γi (i = 1, 2) are positive constants to be determined

later, called adaptation gains; Proj[·, ·]
{
·, ·

}
is a projection operator defined as

Proj[θ, θ]{τ, θ̂} =


0, θ̂ = θ and τ < 0,
0, θ̂ = θ and τ > 0,
τ, else.

(2.19)

It is worth pointing out that the projection operator defined by (2.19) possesses some nice properties
presenting in the following Lemma, which will play an important role in the stability analysis in
Section 3, especially in guaranteeing the convergence of the system state.
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Lemma 1. [15, 30] For projection operator defined by (2.19), there hold

(i) For θ̂(0) ∈ [θ, θ], the solution of ˙̂θ = Proj[θ,θ]{τ, θ̂} remains in [θ, θ];

(ii) If θ ≤ θ̂ ≤ θ and θ ≤ θ ≤ θ, then −θ̃Proj[θ,θ]{τ, θ̂} ≤ −θ̃τ.

Substituting (2.17) and (2.18) into (2.16), and then using claims (i) and (ii) in Lemma 1, it
follows that

V̇2(t) ≤ −k1X2
1(t) −

(
k2 −

1
2c0

)
X̆2

2(t) −
(
b +

δ

2
(
1 −

b
c1

)) ∫ L

0
w2

t (x, t)dx

−
δ

2
(1 − c1b)

∫ L

0
a(x)w2

x(x, t)dx. (2.20)

This completes the design procedure of the desired adaptive controller.

3. Main results

In this section, we aim to analyze the stability of the closed-loop system resulting from (1.1), (2.17)
and (2.18), which is summarized in the following theorem.

Theorem 1. Consider system (1.1) under Assumption 1. If the positive design parameters ki’s and
γ j’s are chosen to satisfy k1 ≥ c0, k2 > 1

2c0
and 1

γ1
(λ − λ)2 + 1

γ2
(η − η)2 ≤ ε2

4(1+2L) with c0 being a
certain positive constant and ε being an arbitrary pre-specified positive constant. Then, the adaptive
controller described by (2.17) and (2.18) guarantees that for any initial values w0(x) ∈ H1(0, L),
w1(x) ∈ L2(0, L), λ̂(0) ∈ [λ, λ] and η̂(0) ∈ [η, η], the resulting closed-loop system state w(x, t) is
bounded on [0, L] × [0, +∞) while λ̂(t) and η̂(t) are bounded on [0, +∞), and furthermore,limt→∞ supx∈[0,L] |w(x, t)| ≤ ε, x ∈ [0, L],

λ̂(t) ∈ [λ, λ], η̂(t) ∈ [η, η], t ∈ [0,+∞).
(3.1)

Proof. By Assumption 1, claim (i) of Lemma 1, λ̂(0) ∈ [λ, λ] and η̂(0) ∈ [η, η], we can see that
λ̂(t) ∈ [λ, λ], η̂(t) ∈ [η, η] on [0, +∞), and hence the boundedness of λ̂(t) and η̂(t) on [0, +∞) as well
as the last relation in (3.1) are proved.

We next prove that for x ∈ [0, L] and an arbitrary pre-specified positive constant ε, the system state
w(x, t) satisfies limt→∞ supx∈[0,L] |w(x, t)| ≤ ε. By (2.20) and denoting l = min

{
2b+δ

(
1− b

c1

)
, δ(1−c1b)

}
,

there holds

V̇2(t) ≤ −lE1(t) − k1X2
1(t) −

(
k2 −

1
2c0

)
X̆2

2(t).

From (2.8), we have E1(t) + δE2(t) ≤ (1 + δ)E1(t). This, together with (2.10), results in

V̇2(t) ≤ −
l

1 + δ

(
E1(t) + δE2(t)

)
− k1X2

1(t) −
(
k2 −

1
2c0

)
X̆2

2(t)

≤ −%V2(t) +
%

2γ1
λ̃2(t) +

%

2γ2
η̃2(t),
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where % = min
{ l

1+δ
, 2k1, 2k2 −

1
c0

}
. From this, it can be deduced that

V2(t) ≤ V2(0)e−%t +
1

2γ1
(λ − λ)2 +

1
2γ2

(η − η)2. (3.2)

By (2.10), (3.2) and w(L, t) = X1(t), we have

|w(L, t)|2 ≤ 2V2(0)e−%t +
1
γ1

(λ − λ)2 +
1
γ2

(η − η)2.

Noting that there exists a sufficiently large T , such that for t ∈ [T,+∞), there holds

∣∣∣V2(0)e−%t
∣∣∣ ≤ ε2

8(1 + 2L)
, (3.3)

which, together with

1
γ1

(λ − λ)2 +
1
γ2

(η − η)2 ≤
ε2

4(1 + 2L)
, (3.4)

implies

lim sup
t→+∞

|w(L, t)|2 ≤
ε2

2(1 + 2L)
. (3.5)

On the other hand, by (2.8), there holds (1−δ)E1(t) ≤ E1(t)+δE2(t), which together with (3.2) yields

(1 − δ)E1(t) ≤ V2(t) ≤ V2(0)e−%t +
1

2γ1
(λ − λ)2 +

1
2γ2

(η − η)2.

Thus, by (3.3) and (3.4), we can prove that

lim sup
t→+∞

∫ L

0
a(x)w2

x(x, t)dx ≤
ε2

2(1 − δ)(1 + 2L)
. (3.6)

Then, by Agmon’s inequality (see Lemma A.1 in Supplementary), we get

|w(x, t)|2 ≤ |w(L, t)|2 + 2

√∫ L

0
w2(x, t)dx

√∫ L

0
w2

x(x, t)dx,

which, together with Poincaré’s inequality (see Lemma A.2 in Supplementary), Young’s inequality and
a(x) ≥ L2, results in

|w(x, t)|2 ≤ |w(L, t)|2 + 2

√∫ L

0
w2

x(x, t)dx

√
2Lw2(L, t) + 4L2

∫ L

0
w2

x(x, t)dx

≤ (1 + 2L)|w(L, t)|2 +

(
1 + 4L2)

L2

∫ L

0
a(x)w2

x(x, t)dx. (3.7)
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Substituting (3.5) and (3.6) into (3.7), we can deduce that

lim
t→∞

sup
x∈[0,L]

|w(x, t)|2 ≤
ε2

2
+

(1 + 4L2)ε2

2L2(1 − δ)(1 + 2L)
, x ∈ [0, L].

Then, noting from (2.15), there holds

δ <
2L3 − 3L2 − 1

(1 + 2L)L2 ,

from which, it follows that

lim
t→∞

sup
x∈[0,L]

|w(x, t)|2 ≤ ε2, x ∈ [0, L].

Thus, we achieve the first relation in (3.1). This completes the proof of the theorem.

Remark 1. From (3.2), we can see the necessity of introducing the term −2k1X1(t) in (2.6). Actually,
if −2k1X1(t) is replaced by −k1X1(t), the term −k1X1(t)a(L)wx(L, t) − k1X2

1(t) is no longer appears
in (2.11). Then, by (2.20), inequality (3.2) becomes V2(t) ≤ V2(0). By which, (2.10), Poincaré’s
inequality and Agmon’s inequality, we can see that only the boundedness of w(x, t), λ̂(t) and η̂(t) can
be derived. Thus, when −2k1X1(t) is changed into −k1X1(t), the key result limt→∞ supx∈[0,L] |w(x, t)| ≤ ε

of the paper, that is, the original system state ultimately converges to an arbitrary prescribed small
neighborhood of the origin can not be established.

Remark 2. It is worth pointing out that for unknown parameters b(x) and q, their updating laws
can be explicitly constructed, although it is enough to guarantee the main results of the paper stated
in Theorem 1 only by using their upper and lower bounds. In fact, when (2.4) is replaced by the
following one:

V1(t) = E1(t) + X2
1(t) +

1
2ϑ1

∫ L

0
b̃2(x, t)dx +

1
2ϑ2

q̃2(t),

where b̃(x, t) = b(x) − b̂(x, t) and q̃(t) = q − q̂(t) with b̂(x, t) and q̂(t) being the estimates of unknown
parameters b(x) and q, respectively, ϑ1 and ϑ2 are two positive constants to be determined later, then
by choosing b̂t(x, t) = Proj[b, b]

{
− ϑ1w2

t (x, t), b̂(x, t)
}
, b̂(x, 0) ∈ [b, b],

˙̂q(t) = Proj[q, q]
{
− ϑ2a(0)w2

t (0, t), q̂(t)
}
, q̂(0) ∈ [q, q],

and using claims (i), (ii) in Lemma 1, it follows that

V̇1(t) =
(
X2(t) − X∗2(t) + X∗2(t)

)(
a(L)wx(L, t) + 2X1(t)

)
−

∫ L

0
b̂(x, t)w2

t (x, t)dx

−

∫ L

0
b̃(x, t)

( 1
ϑ1

b̂t(x, t) + w2
t (x, t)

)
dx − a(0)q̂(t)w2

t (0, t) − q̃(t)
( 1
ϑ2

˙̂q(t) + a(0)w2
t (0, t)

)
≤

(
X2(t) − X∗2(t)

)(
a(L)wx(L, t) + 2X1(t)

)
− k1

(
a(L)wx(L, t) + 2X1(t)

)2

−

∫ L

0
b̂(x, t)w2

t (x, t)dx − a(0)q̂(t)w2
t (0, t).

Thus, by Assumption 1 and claim (i) in Lemma 1,we can see that (2.7) still holds, by which and a
similar argument as in deriving limt→∞ supx∈[0,L] |w(x, t)| ≤ ε, it follows that the main results as stated
in Theorem 1 also can be established by choosing 1

ϑ1
(b−b)2 + 1

ϑ2
(q−q)2 + 1

γ1
(λ−λ)2 + 1

γ2
(η−η)2 ≤ ε2

4(1+2L) .
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4. Simulation results

This section is devoted to validate the effectiveness of the theoretical results for system (1.1).
From references [18, 19], it can be seen that system (1.1) models a motorized platform moving along
an horizontal bench with a flexible cable attaching to the platform and holding a load mass, the
state/solution w(x, t) is the horizontal displacement at time t of the point whose curvilinear abscissa
is x denoting the arc length along the cable, and control u(t) is the force applied by the motor to the
platform, seeing [18, 19] for more detailed explanations.

To design the desired adaptive controller, the parameters of the system are given as follows: L =

50m, M = 20kg, a(x) = gx +
gm
ρ

with m = 1500kg, ρ = 5kg/m and g = 9.8m/s2. Obviously,
a(x) = 9.8x + 2940 is an increasing function satisfying a(0) = 2940 ≥ L2 = 2500. The initial
conditions w0(x) and w1(x) are respectively chosen as

w0(x) = w(x, 0) = 2.5 cos(100πx) − 1.05,

and

w1(x) = wt(x, 0) =

−12.75, 0 ≤ x ≤ L
2 ,

0, else.

The unknown parameters b(x), q, λ and η are supposed to be b(x) = x
15 + 2.15, q = 0.01, λ = 0.25 and

η = 7.5, respectively. Then, we assume that b = 0.1, b = 6, q = 0.001, q = 2, λ = 0.01, λ = 0.6, η = 5
and η = 9. Clearly, system (1.1) satisfies Assumption 1.

Choose the design parameters k1 = 0.25, k2 = 52, γ1 = 5.75 × 104 and γ2 = 2.0 × 106. Obviously,
k1 ≥ c0 > 0 and k2 >

1
2c0

by letting c0 = 0.2. Moreover, set ε = 0.1, it can be verified that 1
γ1

(λ −

λ)2 + 1
γ2

(η − η)2 = 0.1405 × 10−4 < ε2

4(1+2L) = 0.25 × 10−4. Then, by (2.17), (2.18) and choosing the
initial conditions λ̂(0) = 0.3 ∈ [0.01, 0.6] and η̂(0) = 5.75 ∈ [5, 9], the following adaptive controller is
designed for system (1.1):

u(t) = −5
(
3430wxt(L, t) + 2wt(L, t)

)
− 1040

(
wt(L, t) + 0.25

(
3430wx(L, t) + 2w(L, t)

))
−68600λ̂(t)wx(L, t) + 20η̂(t)wt(L, t),

with λ̂(t) and η̂(t) being given by ˙̂λ(t) = Proj[λ, λ]
{
1.97225 × 108wx(L, t)X̆2(t), λ̂(t)

}
,

˙̂η(t) = Proj[η, η]
{
− 2.0 × 106wt(L, t)X̆2(t), η̂(t)

}
,

X̆2(t) = wt(L, t) + 0.25
(
3430wx(L, t) + 2w(L, t)

)
.

By using the implicit backward Euler method and explicit central difference method (see e.g.,
Pages 407 and 415 of [34], respectively) with the grid sizes are taken as Nx = 100 and Nt = 50000 in
MATLAB software, four figures are obtained for the resulting closed-loop system signals. Specifically,
Figure 1 shows the trajectory of the original system state w(x, t) with u(t) = 0, from which we can see
that the value of w(x, t) becomes very large as time increases; Figure 2 shows the trajectory of the
original system state w(x, t), from which we can see that w(x, t) ultimately converges to an arbitrarily
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small neighborhood of the origin. Figures 3 and 4 show the trajectories of the estimates of unknown
parameters λ and η, respectively, from which we can see that λ̂(t) ∈ [0.01, 0.6] and η̂(t) ∈ [5, 9].
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Figure 1. Trajectory of w(x, t) with
u(t) = 0.
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Figure 2. Trajectory of w(x, t).
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Figure 3. Trajectory of λ̂(t).
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Figure 4. Trajectory of η̂(t).

5. Conclusions

In this paper, an adaptive prescribed performance control scheme has been developed for wave
equations with dynamic boundary condition and multiple parametric uncertainties. To deal with these
uncertainties, adaptive technique based projection operator is applied to construct the corresponding
compensation mechanisms, which are integrated with the control design for dynamic boundary.
Compared with the related literature, our design scheme can achieve the desired control objective,
while dealing with rather serious parametric uncertainties. Remark that in this paper, the lower and
upper bounds of the unknown parameters b(x), q, λ and η are required to be known, and time varying
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parametric uncertainties are excluded in the considered system, hence, one of the future work is to
consider the case with more essential uncertainties, such as b(x), q, λ and η with unknown bounds or
being unknown time varying parameters. Moreover, only one-dimensional wave equation is considered
and b(x) is required to be positive for x ∈ [0, L] in the system in question, another future work is to
study the case for PDE system described by multi-dimensional wave equation with b(x) being negative
for x ∈ [0, L] (i.e., anti-damping case). Besides these, we shall explore how to achieve a further result
that the original system state converges to zero for wave equations with serious uncertainties and how
to generalize the proposed control scheme for wave equation to other PDEs, such as KdV and DMBBM
equations presented in [35, 36].
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Supplementary

Useful inequalities

The following two lemmas provide several useful inequalities. The proofs of these two lemmas are
similar to those of Lemmas B.1 and B.2 in [33] and hence are omitted here.

Lemma A.1. (Agmon’s Inequality) For any w ∈ H1(0, L), the following inequalities hold:maxx∈[0,L] w2(x) ≤ w2(0) + 2
√∫ L

0
w2(x)dx

∫ L

0
w2

x(x)dx,

maxx∈[0,L] w2(x) ≤ w2(L) + 2
√∫ L

0
w2(x)dx

∫ L

0
w2

x(x)dx.

Lemma A.2. (Poincaré’s Inequality) For any w ∈ H1(0, L), the following inequalities hold:
∫ L

0
w2(x)dx ≤ 2Lw2(0) + 4L2

∫ L

0
w2

x(x)dx,∫ L

0
w2(x)dx ≤ 2Lw2(L) + 4L2

∫ L

0
w2

x(x)dx.
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