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1. Introduction

The purpose of fractional analysis is to extend derivatives with integer orders to non-integer orders.
In the literature, many dynamical systems are described by a fractional-order dynamical model,
generally according to the notion of fractional differentiation or integration. The study of fractional
order systems is more delicate than the study of their counterparts in classical derivatives.

Classical calculus is based on the differentiation and integration of integer order. However, the
concept of fractional calculus has enormous potential to change the way we see, model and control the
world around us. Several theoretical and experimental studies show that certain electrochemical [1–3],
thermal [4–6], viscoelastic [7–9] and mechanical systems [10–12] are governed by differential
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equations with non-integer derivatives. Therefore, the use of the classical models based on the
derivation with integer order is not appropriate. Thus, models based on differential equations with non-
integer derivatives have been developed, like physical models [13–16] and mechanical models [4, 9].

The origins of fractional calculus dates back to the late 17th century, when Newton and Leibniz
developed the foundations of differential and integral calculus, but it was only during the last three
decades that fractional calculus has had the most interest and applications [4, 8, 9].

In 1940, Ulam has introduced the stability question of the solutions of functional equations [17].
Then, Hyers gave the first answer to Ulam’s problem in Banach spaces in 1941 [18]. After Hyers’s
answer, many scientists were interested in the Ulam-Hyers stability (UHS) [19, 20], the Ulam-Hyers-
Rassias stability [21, 22] and for the case when α ∈ (1

2 , 1), see [23].
In the literature, there is no existing work which investigates the qualitative study like the EU and

UHS for a class of neutral fractional stochastic differential equations (CNFSDE). So, it is an interesting
challenge to cover this gap. In this sense, this paper generalizes the works in [19, 21] to the neutral
case. Different from the results in [19–21], the highlights of this paper are as follows:

(i) Investigate the existence, uniqueness (EU) and UHS of solution of CNFSDE by employing the
Banach fixed point theorem (BFT) and the techniques of stochastic calculus like the Cauchy-Schwartz
inequality and Itô’s isometry formula.

(ii) The neutral term and the fractional operator make our systems much more sophisticated.
(iii) A numerical example is presented, as an application of the theoretical obtained results.
The paper is organized as follows: Section 2 is devoted to the basic classical notions and results.

Section 3 is devoted to the fundamental results about the EU and UHS of CNFSDE. We present an
example in Section 4 to make our results much more applicable. We give a conclusion in Section 5 to
give perspective and present an idea for a future work.

2. Preliminaries

Let α > 0. Then,
{Ω,F,F := (F%)0≤%≤α,P},

is a complete probability space and W(%) is an d-dimensional Brownian motion.
Let

X% = L2(Ω,F%,P) (∀ % ∈ [0, α])

be the family of all F%-measurable and mean-square integrable functions h = (h1, ..., hd)T : Ω→ Rd.

Definition 2.1 ( [9]). Given 0 < $ < 1. The CFD is given by,

CD$g(s) =
1

Γ(1 −$)
d
ds

∫ s

0
(s − ω)−$

(
g(ω) − g(a)

)
dω. (2.1)

Definition 2.2 ( [9]). The MLF is defined by:

E$(s) =

+∞∑
q=0

sq

Γ(q$ + 1)
,

where $ > 0 and s ∈ C.
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Consider the following CNFSDE with respect to the Caputo derivative:

CD$2ζ(%) −C D$1h
(
%, ζ(%)

)
= f (%, ζ(%)) + g (%, ζ(%))

dW(%)
d%

, (0 ≤ % ≤ α), (2.2)

with initial condition ζ(0) = ω, 0 < $1 <
1
2 , 1

2 + $1 < $2 < 1 and f , g, h : [0, α] × Rd −→ Rd are
measurable.

The associated integral equation of CNFSDE (2.2) is given by:

ζ(%) = ω −
%$2−$1

Γ($2 −$1 + 1)
h(0, ω) +

1
Γ($2 −$1)

∫ %

0
(% − ν)$2−$1−1 h

(
ν, ζ(ν)

)
dν

+
1

Γ($2)

∫ %

0
(% − ν)$2−1 f

(
ν, ζ(ν)

)
dν

+
1

Γ($2)

∫ %

0
(% − ν)$2−1 g

(
ν, ζ(ν)

)
dW(ν). (2.3)

Consider the following assumptions:
H1: There is L > 0 satisfying

‖h(%, ζ1) − h(%, ζ2)‖ + ‖ f (%, ζ1) − f (%, ζ2)‖ + ‖g(%, ζ1) − g(%, ζ2)‖ ≤ L‖ζ1 − ζ2‖, (2.4)

for all
(%, ζ1, ζ2) ∈ [0, α] × Rd × Rd.

H2: h(·, 0), f (·, 0) and g(·, 0) verify

‖g(·, 0)‖∞ = ess sup
ν∈[0,α]

‖g(ν, 0)‖ < ∞, (2.5)

∫ α

0
‖h(ν, 0)‖2 dν < ∞,

and ∫ α

0
‖ f (ν, 0)‖2 dν < ∞.

3. Main results

Let G2([0, α],Rd) be the set of all processes ζ which are F -adapted and measurable such that

‖ζ‖G2 = sup
0≤µ≤α

‖ζ(µ)]|ms < ∞.

Thus (G2([0, α],Rd), ‖ · ‖G2) is a Banach space.
Now, we give the definition of UHS.

Definition 3.1. Equation (2.2) is Ulam-Hyers stable with respect to ε (UHS with respect to ε) if there
is a constant V > 0 such that, for each ε > 0 and for each solution z of
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E

∣∣∣∣∣∣
∣∣∣∣∣∣z(%) − z(0) +

%$2−$1

Γ($2 −$1 + 1)
h(0, z(0))

−
1

Γ($2 −$1)

∫ %

0
(% − µ)$2−$1−1 h

(
µ, z(µ)

)
dµ

−
1

Γ($2)

∫ %

0
(% − µ)$2−1 f

(
µ, z(µ)

)
dµ

−
1

Γ($2)

∫ %

0
(% − µ)$2−1 g

(
µ, z(µ)

)
dW(µ)

∣∣∣∣∣∣
∣∣∣∣∣∣2

≤ ε, ∀% ∈ [0, α], (3.1)

there is a solution ζ ∈ G2([0, α],Rd) of (2.2), with ζ(0) = z(0), which satisfies

E‖z(%) − ζ(%)‖2 ≤ Vε, (∀ % ∈ [0, α]).

Lemma 3.2 ( [22]). Let d : G2([0, α],Rd) × G2([0, α],Rd)→ R+ be the function such that

d2(ζ1, ζ2) = inf
{
Λ ∈ [0,+∞),

E‖ζ1(%) − ζ2(%)‖2

h1(%)
≤ Λh2(%),∀% ∈ [0, α]

}
,

where h1, h2 ∈ C([0, α],R∗+). Then, (G2([0, α],Rd), d) is a complete metric space.

Theorem 3.3 ( [24]). Suppose that (T, d) is a complete metric space and Q : T → T is a contraction
(with ν ∈ [0, 1)). Also, let ϑ ∈ T, σ > 0 and d

(
ϑ,Q(ϑ)

)
≤ σ. Then, there exists a unique y ∈ T that

satisfies y = Q(y). Moreover, we have
d(ϑ, y) ≤

σ

1 − ν
. (3.2)

Theorem 3.4. Suppose that the hypothesesH1 andH2 hold true. Then Eq (2.2) is Ulam-Hyers stable
with respect to ε.

Proof. We consider the operatorA : G2([0, α],Rd)→ G2([0, α],Rd) defined by

(Aζ)(%) = z(0) −
%$2−$1

Γ($2 −$1 + 1)
h(0, z(0)) +

1
Γ($2 −$1)

∫ %

0
(% − ν)$2−$1−1 h

(
ν, ζ(ν)

)
dν

+
1

Γ($2)

∫ %

0
(% − ν)$2−1 f

(
ν, ζ(ν)

)
dν

+
1

Γ($2)

∫ %

0
(% − ν)$2−1 g

(
ν, ζ(ν)

)
dW(ν), ∀% ∈ [0, α]. (3.3)

We will divide our proof into two steps:
Step 1: First, we will prove thatA is well defined. Let ζ ∈ G2([0, α],Rd), we have

‖Aζ(%)‖2ms ≤ 5‖z(0)‖2ms +
5

Γ($2 −$1 + 1)2α
2($2−$1)‖h(0, z(0))‖2ms

+
5

Γ($2 −$1)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−$1−1 h

(
µ, ζ(µ)

)
dµ

∣∣∣∣∣∣∣∣∣∣2)
AIMS Mathematics Volume 9, Issue 2, 3253–3263.
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+
5

Γ($2)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 f

(
µ, ζ(µ)

)
dµ

∣∣∣∣∣∣∣∣∣∣2)
+

5
Γ($2)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 g

(
µ, ζ(µ)

)
dW(µ)

∣∣∣∣∣∣∣∣∣∣2) . (3.4)

Using the Cauchy-Schwartz inequality, we have

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−$1−1 h

(
µ, ζ(µ)

)
dµ

∣∣∣∣∣∣∣∣∣∣2)
≤

(∫ %

0
(% − µ)2($2−$1)−2 dµ

)
E

(∫ %

0

∣∣∣∣∣∣h(µ, ζ(µ)
)∣∣∣∣∣∣2 dµ

)
≤

%2($2−$1)−1

2($2 −$1) − 1
E

(∫ %

0

∣∣∣∣∣∣h(µ, ζ(µ)
)∣∣∣∣∣∣2 dµ

)
. (3.5)

Using hypothesisH1, we get ∣∣∣∣∣∣h(µ, ζ(µ)
)∣∣∣∣∣∣2 ≤ 2L2 ||ζ(µ)||2 + 2 ||h(µ, 0)||2 . (3.6)

Then, we have

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−$1−1 h

(
µ, ζ(µ)

)
dµ

∣∣∣∣∣∣∣∣∣∣2)
≤ 2L2 α2($2−$1)−1

2($2 −$1) − 1
sup
µ∈[0,α]

E
(
||ζ(µ)||2

)
+ 2

α2($2−$1)−1

2($2 −$1) − 1

∫ α

0
||h(µ, 0)||2 dµ < ∞. (3.7)

Similar to (3.7), we get

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 f

(
µ, ζ(µ)

)
dµ

∣∣∣∣∣∣∣∣∣∣2) < ∞.
According to Itô’s isometry formula, we obtain

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 g

(
µ, ζ(µ)

)
dW(µ)

∣∣∣∣∣∣∣∣∣∣2)
= E

(∫ %

0
(% − µ)2$2−2

∣∣∣∣∣∣g(µ, ζ(µ)
)∣∣∣∣∣∣2 dµ

)
. (3.8)

Hence, by using hypothesisH1, we find that

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 g

(
µ, ζ(µ)

)
dW(µ)

∣∣∣∣∣∣∣∣∣∣2)
≤ 2L2 α2$2−1

2$2 − 1
sup
µ∈[0,α]

E
(
||ζ(µ)||2

)
+ 2

α2$2−1

2$2 − 1
‖g(·, 0)‖2∞ < ∞. (3.9)

Therefore,A is well defined.
Step 2: Consider dη1,η2 : G2([0, α],Rd) × G2([0, α],Rd)→ R+ such that

d2
η1,η2

(ζ1, ζ2) = sup
%∈[0,α]

E‖ζ1(%) − ζ2(%)‖2

ψ(%)
,

AIMS Mathematics Volume 9, Issue 2, 3253–3263.
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where
ψ(%) = E2($2−$1)−1(η1%

2($2−$1)−1)E2$2−1(η2%
2$2−1).

We will prove thatA is contractive for some η1, η2 > 0.
Let ζ1, ζ2 ∈ G

2([0, α],Rd), we have ∀% ∈ [0, α]

(Aζ1)(%) − (Aζ2)(%)

=
1

Γ($2 −$1)

∫ %

0
(% − µ)$2−$1−1 [

h
(
µ, ζ1(µ)

)
− h

(
µ, ζ2(µ)

)]
dµ

+
1

Γ($2)

∫ %

0
(% − µ)$2−1 [

f
(
µ, ζ1(µ)

)
− f

(
µ, ζ2(µ)

)]
dµ

+
1

Γ($2)

∫ %

0
(% − µ)$2−1 [

g
(
µ, ζ1(µ)

)
− g

(
µ, ζ2(µ)

)]
dW(µ). (3.10)

Thus, we obtain

E‖(Aζ1)(%) − (Aζ2)(%)‖2

≤
3

Γ($2 −$1)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−$1−1 [

h
(
µ, ζ1(µ)

)
− h

(
µ, ζ2(µ)

)]
dµ

∣∣∣∣∣∣∣∣∣∣2)
+

3
Γ($2)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 [

f
(
µ, ζ1(µ)

)
− f

(
µ, ζ2(µ)

)]
dµ

∣∣∣∣∣∣∣∣∣∣2)
+

3
Γ($2)2E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 [

g
(
µ, ζ1(µ)

)
− g

(
µ, ζ2(µ)

)]
dW(µ)

∣∣∣∣∣∣∣∣∣∣2) . (3.11)

Now, by using the Cauchy-Schwartz inequality, we have

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−$1−1 [

h
(
µ, ζ1(µ)

)
− h

(
µ, ζ2(µ)

)]
dµ

∣∣∣∣∣∣∣∣∣∣2)
≤ L2

(∫ %

0
dµ

) ∫ %

0
(% − µ)2($2−$1)−2 E ||ζ1(µ) − ζ2(µ)||2 dµ

≤ L2α

∫ %

0
(% − µ)2($2−$1)−2 E ||ζ1(µ) − ζ2(µ)||2 dµ, (3.12)

and

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 [

f
(
µ, ζ1(µ)

)
− f

(
µ, ζ2(µ)

)]
dµ

∣∣∣∣∣∣∣∣∣∣2)
≤ L2α

∫ %

0
(% − µ)2$2−2 E ||ζ1(µ) − ζ2(µ)||2 dµ. (3.13)

By the Itô isometry formula, we obtain

E

(∣∣∣∣∣∣∣∣∣∣∫ %

0
(% − µ)$2−1 [

g
(
µ, ζ1(µ)

)
− g

(
µ, ζ2(µ)

)]
dW(µ)

∣∣∣∣∣∣∣∣∣∣2)
= E

(∫ %

0
(% − µ)2$2−2

∣∣∣∣∣∣g(µ, ζ1(µ)
)
− g

(
µ, ζ2(µ)

)∣∣∣∣∣∣2 dµ
)
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≤ L2
∫ %

0
(% − µ)2$2−2 E ||ζ1(µ) − ζ2(µ)||2 dµ. (3.14)

Then, we get

E‖(Aζ1)(%) − (Aζ2)(%)‖2

≤
3

Γ($2 −$1)2 L2α

∫ %

0
(% − µ)2($2−$1)−2 E ||ζ1(µ) − ζ2(µ)||2 dµ

+
3

Γ($2)2 L2 (α + 1)
∫ %

0
(% − µ)2$2−2 E ||ζ1(µ) − ζ2(µ)||2 dµ

≤
3

Γ($2 −$1)2 L2α

∫ %

0
(% − µ)2($2−$1)−2 E ||ζ1(µ) − ζ2(µ)||2

ψ(µ)
ψ(µ) dµ

+
3

Γ($2)2 L2 (α + 1)
∫ %

0
(% − µ)2$2−2 E ||ζ1(µ) − ζ2(µ)||2

ψ(µ)
ψ(µ) dµ

≤
3

Γ($2 −$1)2 L2αd2
η1,η2

(ζ1, ζ2)E2$2−1(η2%
2$2−1)

∫ %

0
(% − µ)2($2−$1)−2 E2($2−$1)−1(η1µ

2($2−$1)−1)dµ

+
3

Γ($2)2 L2 (α + 1) d2
η1,η2

(ζ1, ζ2)E2($2−$1)−1(η1%
2($2−$1)−1)

∫ %

0
(% − µ)2$2−2 E2$2−1(η2µ

2$2−1)dµ

≤
3

η1Γ($2 −$1)2 L2αd2
η1,η2

(ζ1, ζ2)Γ(2($2 −$1) − 1)ψ(%)

+
3

η2Γ($2)2 L2(α + 1)d2
η1,η2

(ζ1, ζ2)Γ(2$2 − 1)ψ(%). (3.15)

Then, we get

dη1,η2(Aζ1,Aζ2) ≤ kdη1,η2(ζ1, ζ2), (3.16)

where

k =

√
3L2αΓ(2($2 −$1) − 1)

η1Γ($2 −$1)2 +
3L2 (α + 1) Γ(2$2 − 1)

η2Γ($2)2 .

Thus, clearly, Sζ is a contractive mapping on G2([0, α],Rd) for some η1, η2 > 0.
Consider a function z that satisfies (3.1). We have

E‖z(%) − Sz(%)‖2

ψ(%)
≤ ε, (3.17)

for all % ∈ [0, α]. Then,
dη1,η2(z,Az) ≤

√
ε. (3.18)

In view of Theorem 3.3, there exists a unique solution
(
ζ(0) = z(0)

)
such that

dη1,η2(ζ, z) ≤
√
ε

1 − k
. (3.19)

Consequently, ∀% ∈ [0, α], we have

E‖ζ(%) − z(%)‖2 ≤
ψ(α)

(1 − k)2ε. (3.20)

Therefore, Eq (2.2) is UHS with respect to ε. �
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4. Numerical example

Now, we illustrate the interest of our results by providing a theoretical example. Consider Eq (2.2)
for

ζ(%) ∈ G2([0, α],R),

h
(
%, ζ(%)

)
= cos2 (

ζ(%)
)
,

f
(
%, ζ(%)

)
= sin2 (

ζ(%)
)
,

and

g
(
%, ζ(%)

)
= ζ(%).

Let (%, ζ1, ζ2) ∈ [0,∞) × Rd × Rd. Then,

‖h(%, ζ1) − h(%, ζ2)‖ ≤ 2‖ζ1 − ζ2‖, (4.1)

‖ f (%, ζ1) − f (%, ζ2)‖ ≤ 2‖ζ1 − ζ2‖, (4.2)

and

‖g(%, ζ1) − g(%, ζ2)‖ ≤ ‖ζ1 − ζ2‖. (4.3)

Consequently, the assumptionH1 holds true. Moreover, we have

‖g(·, 0)‖∞ = ess sup
%∈[0,α]

‖g(%, 0)‖ = 0, (4.4)

∫ α

0
‖h(%, 0)‖2d% ≤ α. (4.5)

and ∫ α

0
‖ f (%, 0)‖2d% = 0. (4.6)

Hence, assumptionH2 holds true. Then, applying Theorem 3.4, the equation is UHS with respect to ε.
For Eq (2.2), we conduct a simulation based on Euler-Maruyama scheme with a step size 10−6. Set

$1 = 0.15, $2 = 0.85 and the initial data ζ(0) = −2. Then, the simulations results of ζ and z with the
same initial data of Eq (2.2) are shown in Figure 1. We can see from Figure 1 that the solution trajectory
of the inequations (3.1) almost coincides with that of Eq (2.2). It follows that the distance between ζ(%)
and z(%) is less than a constant, which shows that Eq (2.2) is UHS according to Definition 3.1.

AIMS Mathematics Volume 9, Issue 2, 3253–3263.
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Figure 1. Trajectory simulation of ζ(%) and z(%) on the interval [0, 10] for $1 = 0.15 and
$2 = 0.85.

5. Conclusions

This article investigated the EU problem for CNFSDE, and obtained the UHS result. It has been
achieved that these results can be shown by using the BFT (Theorem 3.3) and some stochastic calculus
techniques like the Itô isometry formula. Finally, a numerical example has been presented to illustrate
the effectiveness of the theoretical results. In a future paper, it would be interesting to extend this work
to the neutral case with time delay effects.
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