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Abstract: Traders and investors find predicting stock market values an intriguing subject to study
in stock exchange markets. Accurate projections lead to high financial revenues and protect investors
from market risks. This research proposes a unique filtering-combination approach to increase forecast
accuracy. The first step is to filter the original series of stock market prices into two new series,
consisting of a nonlinear trend series in the long run and a stochastic component of a series, using
the Hodrick-Prescott filter. Next, all possible filtered combination models are considered to get the
forecasts of each filtered series with linear and nonlinear time series forecasting models. Then, the
forecast results of each filtered series are combined to extract the final forecasts. The proposed filtering-
combination technique is applied to Pakistan’s daily stock market price index data from January 2,
2013 to February 17, 2023. To assess the proposed forecasting methodology’s performance in terms of
model consistency, efficiency and accuracy, we analyze models in different data set ratios and calculate
four mean errors, correlation coefficients and directional mean accuracy. Last, the authors recommend
testing the proposed filtering-combination approach for additional complicated financial time series
data in the future to achieve highly accurate, efficient and consistent forecasts.
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1. Introduction

Ancient civilizations used merchants to trade goods across the seas. In the late Middle Ages,
merchants gathered in city centers to exchange goods worldwide. Antwerp, Belgium became a hub
for global traders in the 1400s. Wealthy merchants lent money to small traders, who released interest-
based bonds [1]. The Dutch East India Company established the first modern Amsterdam stock
exchange in 1602. Stock markets are crucial for boosting economies, controlling inflation and driving
global economic growth [2, 3]. The primary objective of investors is to earn higher returns on their
investment in the stock market and reduce the risk of losses as minimally as possible [4–7]. Moreover,
the prediction of the stock price is a complex task due to the high volatility of stock market data, and
investors are reluctant to invest due to this complexity.

To tackle the above mentioned problems, many researchers have used various time series, machine
learning and hybrid models to forecast stock prices and returns to assess investors’ state financial
decisions to earn higher returns and reduce losses to the minimum extent possible [8–11]. For
example, the researchers in reference [12] conducted a study on the effectiveness of an autoregressive
integrated moving average (ARIMA) model for 56 Indian stocks in various sectors. The results
reveal that the accuracy of the ARIMA model in predicting stock prices is greater than 85% across
all sectors, indicating that ARIMA provides strong prediction accuracy on different ranges of data
for historical periods. Single-time series models were limited to the conventional approach of index
projections. Although the structure of stock market data is very complicated, it is nonlinear and
nonstationary, which leads to the failure of conventional time series methods [13]. On the other hand,
the authors of [14] employed the GARCH-MIDAS model to examine the impact of the economic
policy uncertainty index and macroeconomic variables on Pakistan stock market volatility. The
results reveal that the index has predictive power, that oil prices are the strongest predictor, and that
all macroeconomic variables provide important information for anticipating stock market volatility.
However, long-run interest rates are ineffectual. In contrast, machine learning models have caught the
attention of researchers when forecasting stock market prices. These models can deal with nonlinear
time series data and the handling capacity of complex economic data, which became helpful in solving
these complexities in financial and stock data [15–18]. For example, the researchers in [19] used the
ANN with learning algorithms including standard backward propagation, backward propagation with
Bayesian regularization and scaled conjugate gradient as the prediction models for foreign currency and
compared the results with the ARIMA model. It was found that ANN outperformed the ARIMA model.
On the other hand, to improve predictive stock prices, the researchers have assembled features from two
or more models to create novel models, commonly referred to as hybrid models [20–24]. For instance,
the researchers in [25] selected technical indicators, including the opening, lowest, highest and closing
prices of stock trading data by applying an integrated selection method, then analyzed these indicators
on a hybrid LSTM-GRU and got highly accurate one-step-ahead forecasts of the closing stock price
compared to other methods. In another study [26], the researchers proposed a labeling approach to
label data at certain points in time based on N-Period Min-Max (NPMM) to overcome the sensitivity
of short-term price changes. The proposed method also builds a trading system by implementing
XGBoost to verify and automate the trading of the labeling method based on the evaluation of 92 listed
companies on NASDAQ. Later on, they found the proposed NPMM efficient method of labeling in
stock price prediction compared to other used models.

AIMS Mathematics Volume 9, Issue 2, 3264–3288.



3266

Some authors have studied the comparison between different filters for forecasting financial time
series. For example, a study [46] examined whether the use of Hamilton’s regression filter significantly
alters the cyclical components of unemployment in Greece compared to the Hodrick-Prescott double
filter (HPDF). However, we discovered that the trend and cycle components of Hamilton’s filter
regression resulted in much higher cycle volatilities than the HPDF when using quarterly data for
unemployment in Greece in a macroeconomic model decomposition. The HPDF, combined with
its limitations at the end of the time series, was utilized for dynamic forecasting in the sample
and autoregressive forecasting, which gives steady forecasts for a wide variety of non-stationary
operations. The findings revealed that the HPDF’s dynamic forecasting outperforms Hamilton’s in all
assessment measures. On the other hand, the researchers in [47] proposed a boosted HP filter that uses
machine learning for smarter trend estimation and elimination. It uses limit theory to recover common
trends in macroeconomic data and current modeling methodology. The boosted filter provides a new
mechanism for estimating multiple structural breaks and is data-determined for modern economic
research environments. The methodology was illustrated using real data examples and showed the
best results. Similarly, the researchers in [49] suggested iterating the HP filter to create an intelligent
smoothing tool called the boosted HP filter. This filter is based on L2-boosting in machine learning.
According to the limit theory, the bHP filter can asymptotically recover trend mechanisms involving
integrated processes, deterministic drifts and structural breaks, covering the most common trends that
appear in the proposed modeling methodology. The algorithm was automated with a stopping criterion,
providing a data-determined method for data-rich environments. The methodology is demonstrated
with simulations and three real data examples, highlighting the differences between simple HP filtering,
the bHP filter and an alternative autoregressive approach.

Contrary to the above-stated techniques and models, another way to forecast time series data
accurately and efficiently in the literature is through decomposition methods [27,28]. In these methods,
the original time series data is divided into many subseries using different filtering or decomposition
techniques [29, 30]. For instance, the researchers [31] proposed a hybrid approach based on three
components: Novel features, noise filtering and ML-based prediction, and applied a Hodrick-Prescott
filter technique in its fully modified form for smoothing historical stock price data by decomposing
and discarding the seasonal component of the time series data, achieving 70.88 % forecasting accuracy
in comparison to other used techniques. Sometimes, stock prices follow a specific trend that leads
to overfitting and erroneous forecasting. To do this, in [32] proposed a new version of empirical
mode decomposition (EMD) to remove the trend component in stock price forecasting, and a complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) wavelet model was used
in [33] to check the contagion effects among stock markets in America, Asia and Europe. In this
approach, the variations are broken down into several intrinsic mode functions (IMFs) in time series
data to get a monotone residue component. In another work, the authors in [34] proposed a novel
improved hybrid method based on Akima-EMD-LSTM for forecasting the stock price of the KE-
100 index complex time series of Pakistan stock exchange data. In the first phase, they decomposed
the original data into sub-components, or IMFs, and modeled the LSTM network based on the highly
correlated sub-components. The Akima spline interpolation technique was also used to tackle the noisy
component of the data. Later, they found the proposed Akima-EMD-LSTM network outperformed
other models, in the forecasting of stock prices.

In this paper, we proposes a new filtering-combination technique for forecasting the daily stock
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index prices. The technique is simple to implement and enhances the accuracy of predictions. It
combines the Hodrick-Prescott filter with standard linear and nonlinear time series models, including
two linear models, autoregressive and autoregressive moving averages and two nonlinear models,
nonlinear autoregressive and autoregressive neural network models. Therefore, first, the original
closing stock price time series data is filtered into two new time series using the Hodrick-Prescott
filter. These represent a nonlinear trend and stochastic components. Then, two linear and nonlinear
time series and all possible combination models are used to forecast the filtered time series, separately
dealing with linear and nonlinear problems to achieve accurate and efficient forecasts. To this end, the
main contribution of this work is the proposed filtering-combination methodology, which combines the
Hodrick-Prescott filter with traditional time series models to improve the accuracy of the day-ahead
daily closing stock price. Additionally, within the proposed forecasting technique, the paper compares
the performance of sixteen different combinations of linear and nonlinear time series models using
the Hodrick-Prescott filter. Furthermore, the proposed methodology is evaluated in terms of model
consistency, efficiency and accuracy across different ratios of the dataset. Mean errors, correlation
coefficients and directional mean accuracy are computed. Thus, the results of the final proposed
best combination model obtained highly accurate, efficient and consistent gains in forecasts for the
used data. In the end, the final combination model yields the highest directional mean accuracy and
the lowest mean error, which is relatively better than the standard baseline models. In summary,
the authors recommended that the proposed filtering-combination technique of forecasting could be
considered for other complex economical time series datasets to extract highly accurate, efficient and
consistent forecasts.

The rest of the paper is organized in the following sections: Section 2 explores the proposed filtering
and combination technique for forecasting; Section 3 describes the case study results and provides a
discussion of the proposed forecasting technique, the other benchmark models and the direction for the
policy marker using the proposed final best model. Finally, Section 4 presents conclusions and future
work directions.

2. The proposed filtering-combination forecasting technique

This section explains the proposed filtering-combination technique of forecasting for daily closing
stock price forecasts. In general, the time series of stock prices has nonlinear and complex structures.
For this purpose, the daily closing stock price series (pd) is decomposed into two major subseries: The
long-run trend component (`d) and a stochastic component (cd) using the Hodrick-Prescott filter. The
mathematical representation of the decomposed components is given by:

pd = `d + cd. (2.1)

Hence, the Hodrick-Prescott Filter is described in the following section.

2.1. Hodrick-Prescott filter

The Hodrick-Prescott filter (HPF) produces a smoothed-curve representation of a time series that is
more complicated owing to long-term fluctuations than short-term fluctuations. The sensitivity of the
trend to short-term changes is adjusted by altering a multiplier, β. Let the time series data be pd (d = 1,
2,..., D). The series pd is composed of a trend component (`d) and an stochastic component (cd).
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We are now put into a long-term trend component that may be calculated by minimizing
the expression:

min(`d)ΣD
d=1

(
(pd − `d)2 + βΣD−1

d=2 [(`d+1 − `d) − (`d − `d−1)]2
)
. (2.2)

The first term in the above formula is a loss function, while the second is a penalty term βmultiplied
by the sum of squares of the trend component’s second difference, which penalizes variance in the trend
component’s growth rate. However, the lower values for the smoothing parameter β make the trend
more volatile since it includes a large portion of the spectrum of high frequencies. The expression (2.3)
is minimized with pd = `d if β = 0. On the other hand, the expression (2.3) is minimized for β → ∞,
and the predicted trend converges to the linear trend of the least squares, becoming a straight line. In
our case, we set the β = 6.25 value provided by Ravn and Uhlig [52].

Figure 1 displays the filtered new subseries to visualize the performance of the previously applied
HP filter. The figure comprises three planes. The first plane shows the daily time series of closing
stock prices (pd), the second plane represents the nonlinear trend (`d) subseries and finally the third
plane shows the stochastic subseries (cd). The figure demonstrates that the HPF has efficiently filtered
the stock index prices (pd). The nonlinear trend series accurately captures the daily closing stock prices
of the time series.
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Figure 1. Pakistan Stock Exchange (KSE-100) Index: The daily closing stock price (pd)
at the top panel; the nonlinear trend series (`) at the center; and a stochastic series of daily
closing stock price(cd) for the period of January 2, 2013, to February 17, 2023.
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2.2. Modeling to filtered components

We forecast the filtered series using four different time series models, including two linear and two
nonlinear time series models, after filtering the components from the daily closing prices using the HPF
method. The two linear models, autoregressive and autoregressive moving averages, and two nonlinear
models, nonlinear autoregressive and autoregressive neural network models, are included. Here is a
brief description of the models under consideration.

2.2.1. Autoregressive model

A linear and parametric autoregressive (AR) model, which uses a linear combination of the previous
observations of pd time series and represents the short-term dynamics of this series, is referred to as:

pd = α + ϑ1pt-1 + ϑ2pt-2 + .... + ϑnpd−n + εd. (2.3)

In the above formula, α is an intercept term, and ϑj(j = 1, 2, · · · , n) n) is the slope parameter of the
underlying AR process, and εd is the disturbance term. However, the present study uses the maximum
likelihood method to estimate the parameters of the AR model. The model includes lags 1–3, based on
their significant results in the correlogram (autocorrelation and partial autocorrelation functions) for
the series.

2.2.2. Autoregressive moving average model

The autoregressive moving average (ARMA) model integrates not only the target variable’s previous
values but also vital information in the form of moving averages (the error lags). In our scenario, the
study variable pd is explained by the prior terms, as are the delayed residual values. Mathematically,

pd = α + ϑ1pd-1 + ϑ2pd-2 + · · · + ϑnpd−n + εd + ζ1εd−1 + ζ2εd−2 + .... + ζmεd−m. (2.4)

In the last equation, α denotes intercept, ϑj(j = 1, 2, · · · , n) and ζk(k = 1, 2, ·,m) are the parameters
of AR and MA process, respectively, and εd is a Gaussian white noise series with mean zero
and variance σ2

ε. Hence, the unknown population parameters are estimated through the maximum
likelihood method. The ARMA model order selection, which is the number of past values and the past
error term value, is established by examining the correlograms. In the MA part, the first two lags are
significant, while in the AR part, only lags 1–4 are significant for closing prices time series (pd).

2.2.3. Nonparametric autoregressive model

The additive nonparametric counterpart of the AR process leads to the additive model (NPAR),
where the association between pd and its previous terms do not have any specific parametric form,
letting, probably, for any sort of nonlinearity which is stated as:

pd = q1(pd-1) + q2(pd-2) + . . . + qn(p d-n) + εd, (2.5)

where qj(j = 1, 2, · · · , n) are showing smoothing functions and describe the association between pd and
its previous values. Hence, in this work, the functions qi are represented by cubic regression splines
and lags 1–3 are used for NPAR modeling.
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2.2.4. Autoregressive neural network

An autoregressive neural network (ANN) is a type of machine learning model that predicts future
values of a time series by analyzing its past observations. The model uses a mathematical function
that factors in the previous values of the time series, represented by pd−1, pd−2, ..., pd−n, where n is the
time delay parameter. The ANN model is trained using the backpropagation method and the steepest
descent approach to minimize the difference between the predicted and actual values.

The forecasting process in an ANN model involves two steps. First, the order of autoregression is
determined, which refers to the number of previous values needed to predict the current value of the
time series. Second, the NN is trained using a training set that considers the order of autoregression.
The number of input nodes is determined by the order of autoregression and the inputs are the previous,
lagged observations in univariate time series forecasting. The predicted values are the output of the
NN model.

The number of hidden nodes is often determined by trial and error or experimentation since there
is no theoretical basis for selecting them. It is important to select the number of iterations carefully to
avoid overfitting. In this work, an ANN (4,2) design is used, which can be represented as pd = f(pd-1).
Here, pd-1 = (pd-1, pd-2, pd-3, pd-4) is a vector containing past values of the time series of the closing
stock prices (pd), and f is a neural network with 4 hidden nodes in a signal layer.

2.3. Accuracy measures

The proposed approach is evaluated using the metrics listed in Table 1. This table contains the
formula used to calculate each metric. The metrics presented in the table are Root Mean Square
Percentage Error (RMSPE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and Coefficient Correlation (CC) [35–37]. Here, D is the number
of observations in the data set, (pd), and (p̂d), is the nth estimated and observed data point.

Table 1. Accuracy evaluation metrics.
S.No Error Formula

1 RMSPE
√

1
D

∑D
d=1

(
|pd−p̂d |

|pd |

)2
× 100

2 RMSE
√

1
D

∑D
d=1(pd − p̂d)2

3 MAE 1
D

∑D
d=1

(
|pd − p̂d|

)
4 MAPE 1

D

∑D
d=1

(
|pd−p̂d |

|pd |

)
× 100

5 CC Corr
(
pd, p̂d

)
The MDA is used to evaluate the ability of direction prediction, which is defined as follows:

MDA =
1
D

D∑
d=1

αd, (2.6)
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αd =

1,
(
pd − pd−1

)
×

(
p̂d − pd−1

)
≥ 0,

0, otherwise.
(2.7)

Normally, the smaller the RMSPE, MAPE, MAE and RMSE, the greater the CC and MDA, which
represents a higher prediction accuracy and a better performance of direction prediction.

In addition to the performance indicators listed above, Diebold and Mariano’s (DM) test was used
to determine the significance of changes in the model’s prediction performance [38]. The DM test
is a popular statistical method for comparing predictions from two models in the literature [39–41].
For instance, consider the two forecasts obtained from the two different time series models, such as
p̂1d (model 1) and p̂2d (model 2). However, ξ1d = pd − p̂1d and ξ2d = pd − p̂2d are the corresponding
forecast errors. The loss associated with forecast error {ξid}

2
i=1 by `(ξid). For example, time d absolute

loss would be `(ξid) = |ξid|. The loss differential between Forecasts 1 and 2 for time d is then ωd =

`(ξ1d) − `(ξ2d). The null hypothesis of equal forecast accuracy for two forecasts is E[ωd] = 0. The DM
test requires that the loss differential be covariance stationary, that is,

E[ωd] = α, ∀ d, (2.8)
cov(ωd − ωd−d) = ρ(d), ∀ d, (2.9)

var(ωd) = σω, 0 < σω < ∞, (2.10)

with these assumptions, the DM test of the same forecast accuracy is

DM =
ω̄

σ̂ω̄

d
−→ N(0, 1).

In the above equation, ω̄ = 1
D

∑D
d=1 ωd is the sample mean loss differential and σ̂ω̄ is a consistent

standard error estimate of ωd.
In this study, we denote each combined model with Hodrick-Prescott filter method by HPFcd

`d
, where

the `d at the top right is associated with a nonlinear trend subseries, and the cd at bottom right is
associated to the residual subseries. In the forecasting models, we assign a code to each model: “1” for
the AR, “2” for the ARIMA, “3” for the NPAR and “4” for the ANN. For example, HPF1

2 represents the
estimate of the long-term trend (`d) with the AR and the residual series (cd) estimated using ARIMA.
Hence, the individual forecast models are combined to obtain the final one-day-ahead closing stock
price forecast. The final equation is as follows:

p̂d+1 =
(

ˆ`d+1 + ĉd+1

)
. (2.11)

To finish this part, Figure 2 depicts the design of the proposed filtering-combination forecasting
technique.
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Figure 1. The proposed filtering combination forecasting approach is depicted as a flowchart.
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Figure 2. The proposed filtering combination forecasting approach is depicted as a flowchart.

3. Case study results and discussion

The Pakistan Stock Exchange (PSX) is one of the largest stock markets in Pakistan for trading
stocks, making investments, and earning a profit. It is highly preferred by investors due to its fame.
PSX was established in 2016 by merging three prominent stock exchanges in Pakistan: Karachi, Lahore
and Islamabad. The Financial Times Stock Exchange classified PSX as a secondary merging market,
which was later reclassified as an emerging market by Morgan Stanley Capital International. Both
local and foreign investors actively participate in the daily trading of stocks. PSX exhibits similar
behavior to other stock markets in terms of bullish and bearish trends, depending on the situation. As
of April 5, 2023, PSX had 545 listed companies with a market capitalization of Rs. 6,142.331 billion.
The Securities Exchange Commission of Pakistan and Pakistan Stock Exchange Limited regulate these
listed companies under strict rules and regulations. In the PSX, 37 listed sectors contribute to the
capitalization of the market, including indexes, future bonds, etc. Some sectors are based on non-
contributory funds.
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PSX generates complex data due to political instability, terrorism, hoarding of dollars and money
laundering. This creates confusion for investors when making decisions about holding and selling
shares. To tackle this issue and help investors and policymakers with short-term strategy, a research
study proposed a filtering-combination technique for accurately forecasting stock prices. Hence, to
validate the consistency of the proposed filtering-combination technique, historical data was obtained
from the Yahoo Finance website (https://finance.yahoo.com), which was visited on February 17,
2023. The data ranges from January 2, 2013, to February 17, 2023, covering the daily closing stock
price for 2538 days, excluding off-working days. The whole dataset was divided into three different
training and testing ratios: 70% training, 30% testing; 80% training, 20% testing; and 90% training,
10% testing. In every subset, the first part was considered for the training set to train the model and
optimize parameters, and the second part consisted of a testing dataset used to evaluate the performance
of the established forecasting approach. The details about these subset datasets are listed in Table 2.

Table 2. The details about different scenarios of training and testing sample sets.

Data Scenario Number of observation Date
Training 70% 1269 2 January 2013 to 21 December 2017
Testing 30% 1269 22 December 2017 to 17 February 2023
Training 80% 1904 2 January 2013 to 25 June 2020
Testing 20% 635 26 June 2020 to 17 February 2023
Training 90% 2285 2 January 2013 to 22 December 2021
Testing 10% 254 23 December 2021 to 17 February 2023

To confirm the nonstationarity and nonlinearity of the time series of closing stock prices, we
performed the Augmented Dickey-Fuller and the Teraesvirta tests [42, 43]. The results are listed in
Table 3. Before discussing this table, it’s important to note that the series should be stationary before
modeling and forecasting decomposed subseries. A stationary process does not change over time in
terms of its mean, variance and autocorrelation structure. If the underlying series is temporal, it should
be transformed into a stationary series. Various techniques are used to achieve stationarity, such as
natural logarithms, series derivatives and Box-Cox transformations [44, 45]. In this work, the daily
closing stock price time series is divided into two new subseries, namely a nonlinear trend series and a
stochastic series, and is plotted in Figure 3. It can be observed from Figure 3 that the nonlinear long-run
trend series has a curved trend, which shows that the series is nonstationary, hence the need to make
it stationary. In contrast, the stochastic series has no trend component. To check the unit root issue
of the filtered subseries statistically, we used the Augmented Dickey-Fuller test. The results (statistic
values) are listed in Table 3, which suggests that the long-run trend series is nonstationary at the
level. As a result, when the first-order difference was taken, the nonlinear trend series converted to
a stationary one. Figure 3 depicts the first-order differencing series of long-run trend series, which
assures stationarity. On the other hand, the original time series of the closing stock prices and the long-
run nonlinear trend subseries have nonlinearity in the mean, while based on the Teraesvirta test results,
the stochastic (residual) subseries have no more nonlinearity. The first-order differencing series of
long-run trend series ensures linearity in the mean. Once we address both issues of nonstationarity and
nonlinearity, we can proceed further to modeling and forecasting one-day-ahead closing stock prices
using different combinations of linear and nonlinear time series models.
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Table 3. The results of the Teraesvirta test and the Augmented Dickey-Fuller test.

Nonlinearity outcomes Nonstationarity outcomes
Series Statistic Value P-Value At level At first difference Conclusion

Closing stock prices(pd) 97.2750 0.0100 -1.3240 -9.8100 I (1)
long-run trend (`d) 4.4045 0.1106 -2.4324 -10.6700 I (1)

Stochastic (cd) 51.2380 0.0100 -32.8480 -

Time

l_
d

9.8

10.0

10.2

10.4

10.6

10.8

Time

di
ff(

l_
d)

−0.02

−0.01

0.00

0.01

0 132 312 492 672 852 1044 1260 1476 1692 1908 2124 2340

 Time (Day)

Figure 3. Pakistan Stock Exchange (KSE-100) Index: The first panel is the nonlinear long-
term trend (`d) series, and the bottom panel shows the difference series of the long-term trend
series (diff(`d)).

In order to obtain the daily closing stock price for the Pakistan stock exchange for the day out of
sample forecasts via the proposed filtering-combination forecasting method explained in Section 2, we
need to follow these steps: In the first step, the HPF method was used to extract a nonlinear trend (`d)
component and a stochastic (cd) component. In the second step, the well-known two linear and two
nonlinear time series models, such as the AR, the ARMA, the NPAR and the ANN, were applied to
each component extracted in the first step. In the third step, the results of every subseries forecast
were combined to get the final results. Thus, overall, sixteen possible combination models fall within
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the proposed forecasting technique. However, to compare and evaluate the forecast accuracy of each
combined model for day-ahead closing stock prices, the accuracy metrics, including RMSPE, MAPE,
MAE, RMSE, CC and MDA, were computed. In addition, to verify the consistency of the best model
within the proposed filtering-combination technique, we divided the whole data set into three different
training and testing ratio samples, such as (70%, 30%), (80%, 20%) and (90%, 10%). Therefore, there
are three training and testing data sets, for a total of 48 (3 × 16) combination models. The day-ahead
performance metrics (RMSPE, MAPE, MAE, RMSE, CC and MDA) for these 48 models are listed
in Table 4. In general, the lower the accuracy mean errors (RMSPE, MAPE, MAE and RMSE) and
the higher the value of the coefficient of correlation and mean directional accuracy, the higher the
forecasting efficiency and accuracy model. Thus, within all sixteen combination models, the HPF2

3
combination model produced better forecasting accuracy for one-day-ahead daily closing stock prices
throughout all three subsets of training and testing datasets.

In the first scenario of 70% training and 30% testing, the best forecasting model is HPF2
3, which

obtained 120.8022, 0.2924, 0.4076, 0.0041, 161.9550, 0.9992 and 0.9302 for RMSPE, MAPE, MAE,
RMSE, CC and MDA, respectively. It can be observed that the RMSPE, MAPE, MAE and RMSE are
the lowest values compared to the rest, while the CC and MDA are the highest values among all other
combinations. In the same way, the model HPF3

3 produced the second-best result compared to all other
used combination models with 127.3876, 0.3077, 0.4076, 0.0041, 161.9550, 0.9992 and 0.9302 for
RMSPE, MAPE, MAE, RMSE, CC and MDA, accordingly. On the other hand, in the second scenario
of 80% training and 20% testing sample set, again, it is evident that the HPF2

3 combination model
outperformed all combination models with forecasting metric errors of 115.5138, 0.2622, 0.0034,
149.8806, 0.9980 and 0.9253, RMSPE, MAPE, MAE, RMSE, CC and MDA, respectively, while the
HPF3

3 and HPF1
3 models are declared the second and third best models, respectively. Finally, once

again, in the third scenario of 90% training and 10% testing, it is confirmed that from the results stated
in Table 4, the HPF2

3 model is the best combination model compared to the rest of the models, with
mean forecasting accuracy of 121.8376, 0.2866, 0.0036, 151.6476, 0.9958, 0.9429 RMSPE, MAPE,
MAE, RMSE, CC and MDA, respectively. Thus, within all possible sixteen combination models, the
HPF2

3 combination model is declared the best model, and the consistency of this (HPF2
3) model from

all three scenarios of training and testing sample data sets is also confirmed.
Furthermore, to verify the performance of the proposed best combination model (HPF2

3) stated in
Table 4 we have conducted the DM test. The results (p-values) of the DM test for each and every
scenario training and testing sample data set are listed in Table 5, it is evident in this table that the
proposed best combination model (HPF2

3) is statistically significant at 5% compared to the other fifteen
combination models in all training and testing scenarios. Although, the HPF3

3, HPF1
3 and HPF2

1 were
found good competitors to the final best (HPF2

3) model.
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Table 4. Pakistan Stock Exchange: One-day-ahead out-of-sample metrics error of closing
stock price forecast for all combination models.

The first scenario 70%, 30%
S.No Models RMSPE MAPE MAE RMSE CC MDA

1 HPF1
1 156.2373 0.3778 0.0053 209.6080 0.9987 0.8966

2 HPF1
2 156.8296 0.3789 0.0053 209.9340 0.9987 0.9047

3 HPF1
3 127.5402 0.3081 0.0043 170.2864 0.9991 0.9195

4 HPF1
4 161.2721 0.3901 0.0054 213.6699 0.9986 0.9141

5 HPF2
1 148.8171 0.3602 0.0051 202.2458 0.9988 0.9168

6 HPF2
2 149.9615 0.3626 0.0051 203.1089 0.9988 0.9128

7 HPF2
3 120.8022 0.2924 0.0041 161.9550 0.9992 0.9302

8 HPF2
4 168.5671 0.4076 0.0057 225.6628 0.9985 0.8993

9 HPF3
1 156.5730 0.3786 0.0053 209.6822 0.9987 0.8966

10 HPF3
2 157.1322 0.3796 0.0053 210.0071 0.9987 0.8980

11 HPF3
3 127.3876 0.3077 0.0043 170.2426 0.9991 0.9195

12 HPF3
4 162.1289 0.3923 0.0054 214.3426 0.9986 0.9128

13 HPF4
1 241.5573 0.5869 0.0105 425.4353 0.9946 0.8523

14 HPF4
2 242.3449 0.5885 0.0105 426.2372 0.9946 0.8497

15 HPF4
3 187.4053 0.4543 0.0090 369.9058 0.9960 0.9020

16 HPF4
4 261.4660 0.6346 0.0109 442.4052 0.9942 0.8309

The second scenario 80%, 20%
1 HPF1

1 151.5090 0.3437 0.0045 199.2405 0.9964 0.8788
2 HPF1

2 151.6872 0.3439 0.0045 199.5213 0.9964 0.8828
3 HPF1

3 122.9512 0.2792 0.0037 160.5389 0.9977 0.9091
4 HPF1

4 154.9424 0.3515 0.0046 201.5488 0.9963 0.8909
5 HPF2

1 141.9220 0.3219 0.0043 190.3518 0.9967 0.8929
6 HPF2

2 143.0074 0.3242 0.0044 191.4878 0.9967 0.8909
7 HPF2

3 115.5138 0.2622 0.0034 149.8806 0.9980 0.9253
8 HPF2

4 159.7229 0.3621 0.0048 210.7949 0.9960 0.8848
9 HPF3

1 151.9299 0.3447 0.0045 199.3006 0.9964 0.8747
10 HPF3

2 152.0373 0.3448 0.0045 199.5532 0.9964 0.8788
11 HPF3

3 122.9880 0.2793 0.0037 160.4473 0.9977 0.9071
12 HPF3

4 155.6473 0.3531 0.0046 202.1268 0.9963 0.8929
13 HPF4

1 232.6237 0.5272 0.0094 415.7154 0.9843 0.8364
14 HPF4

2 232.8815 0.5278 0.0094 416.4237 0.9843 0.8323
15 HPF4

3 178.2604 0.4032 0.0082 366.0674 0.9879 0.8929
16 HPF4

4 252.2533 0.5718 0.0098 436.0666 0.9828 0.8242
The third scenario 90%, 10%

1 HPF1
1 156.0030 0.3672 0.0047 199.1678 0.9927 0.8776

2 HPF1
2 155.1474 0.3651 0.0047 198.6827 0.9927 0.8816

3 HPF1
3 130.0234 0.3060 0.0038 162.9916 0.9951 0.9143

4 HPF1
4 158.6718 0.3734 0.0048 202.2724 0.9925 0.8898

5 HPF2
1 144.9313 0.3412 0.0045 189.5869 0.9934 0.8980

6 HPF2
2 145.2673 0.3419 0.0045 190.0539 0.9933 0.8939

7 HPF2
3 121.8376 0.2866 0.0036 151.6476 0.9958 0.9429

8 HPF2
4 161.9019 0.3813 0.0050 212.5678 0.9917 0.8776

9 HPF3
1 156.4563 0.3683 0.0047 199.1440 0.9927 0.8735

10 HPF3
2 155.4268 0.3658 0.0047 198.6606 0.9927 0.8735

11 HPF3
3 130.1624 0.3064 0.0038 163.0377 0.9951 0.9143

12 HPF3
4 159.5017 0.3754 0.0048 202.7243 0.9924 0.8857

13 HPF4
1 251.2031 0.5910 0.0123 528.4650 0.9491 0.8204

14 HPF4
2 251.0871 0.5907 0.0123 528.8418 0.9490 0.8245

15 HPF4
3 194.0790 0.4555 0.0113 488.9315 0.9567 0.8776

16 HPF4
4 271.9590 0.6396 0.0125 539.1469 0.9470 0.8449
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Table 5. Pakistan Stock Exchange: Results (p-values) of the DM test for all combination
models within the proposed filtering-combination technique.

The first scenario 70%, 30%
Models HPF1

1 HPF1
2 HPF1

3 HPF1
4 HPF2

1 HPF2
2 HPF2

3 HPF2
4 HPF3

1 HPF3
2 HPF3

3 HPF4
3 HPF4

1 HPF4
2 HPF4

3 HPF4
4

HPF1
1 0.000 0.700 0.000 0.872 0.023 0.042 0.000 0.993 0.571 0.701 0.000 0.904 0.992 0.992 0.950 0.996

HPF1
2 0.300 0.000 0.000 0.852 0.019 0.031 0.000 0.992 0.366 0.570 0.000 0.888 0.992 0.992 0.950 0.996

HPF1
3 1.000 1.000 0.000 1.000 1.000 1.000 0.013 1.000 1.000 1.000 0.456 1.000 0.996 0.996 0.972 0.998

HPF1
4 0.128 0.148 0.000 0.000 0.000 0.000 0.000 1.000 0.131 0.152 0.000 0.949 0.991 0.991 0.947 0.996

HPF2
1 0.977 0.981 0.000 1.000 0.000 0.893 0.000 1.000 0.979 0.983 0.000 1.000 0.993 0.993 0.956 0.997

HPF2
2 0.959 0.969 0.000 1.000 0.107 0.000 0.000 1.000 0.962 0.971 0.000 1.000 0.993 0.993 0.955 0.997

HPF2
3 1.000 1.000 0.987 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.987 1.000 0.997 0.997 0.975 0.999

HPF2
4 0.007 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.008 0.000 0.001 0.989 0.989 0.936 0.995

HPF3
1 0.429 0.634 0.000 0.869 0.021 0.039 0.000 0.993 0.000 0.698 0.000 0.904 0.992 0.992 0.950 0.996

HPF3
2 0.299 0.430 0.000 0.849 0.017 0.029 0.000 0.992 0.302 0.000 0.000 0.888 0.992 0.992 0.950 0.996

HPF3
3 1.000 1.000 0.544 1.000 1.000 1.000 0.013 1.000 1.000 1.000 0.000 1.000 0.996 0.996 0.972 0.998

HPF3
4 0.096 0.112 0.000 0.051 0.000 0.000 0.000 0.999 0.096 0.112 0.000 0.000 0.991 0.991 0.946 0.996

HPF4
1 0.008 0.008 0.004 0.009 0.007 0.007 0.004 0.011 0.008 0.008 0.004 0.009 0.000 0.937 0.000 1.000

HPF4
2 0.008 0.008 0.004 0.009 0.007 0.007 0.003 0.011 0.008 0.008 0.004 0.009 0.063 0.000 0.000 1.000

HPF4
3 0.050 0.050 0.028 0.053 0.045 0.045 0.025 0.064 0.050 0.050 0.028 0.054 1.000 1.000 0.000 1.000

HPF4
4 0.004 0.004 0.002 0.004 0.003 0.003 0.002 0.006 0.004 0.004 0.002 0.004 0.000 0.000 0.000 0.000

The second scenario 80%, 20%
HPF1

1 0.000 0.665 0.000 0.740 0.012 0.029 0.000 0.959 0.562 0.655 0.000 0.781 0.950 0.950 0.881 0.961
HPF1

2 0.335 0.000 0.000 0.717 0.009 0.020 0.000 0.957 0.384 0.533 0.000 0.762 0.950 0.950 0.880 0.960
HPF1

3 1.000 1.000 0.000 1.000 1.000 1.000 0.002 1.000 1.000 1.000 0.406 1.000 0.965 0.965 0.912 0.972
HPF1

4 0.260 0.283 0.000 0.000 0.000 0.000 0.000 0.992 0.260 0.280 0.000 0.939 0.949 0.949 0.879 0.960
HPF2

1 0.988 0.991 0.000 1.000 0.000 0.943 0.000 1.000 0.990 0.992 0.000 1.000 0.954 0.955 0.889 0.964
HPF2

2 0.972 0.980 0.000 1.000 0.057 0.000 0.000 1.000 0.975 0.982 0.000 1.000 0.954 0.954 0.888 0.964
HPF2

3 1.000 1.000 0.998 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.998 1.000 0.968 0.969 0.918 0.975
HPF2

4 0.041 0.043 0.000 0.008 0.000 0.000 0.000 0.000 0.040 0.041 0.000 0.011 0.944 0.945 0.869 0.956
HPF3

1 0.438 0.616 0.000 0.740 0.010 0.025 0.000 0.960 0.000 0.649 0.000 0.785 0.950 0.950 0.881 0.961
HPF3

2 0.345 0.467 0.000 0.720 0.008 0.018 0.000 0.959 0.351 0.000 0.000 0.767 0.950 0.950 0.880 0.960
HPF3

3 1.000 1.000 0.594 1.000 1.000 1.000 0.002 1.000 1.000 1.000 0.000 1.000 0.965 0.966 0.912 0.972
HPF3

4 0.219 0.238 0.000 0.062 0.000 0.000 0.000 0.989 0.215 0.233 0.000 0.000 0.949 0.949 0.878 0.960
HPF4

1 0.050 0.050 0.035 0.051 0.046 0.046 0.032 0.056 0.050 0.050 0.035 0.051 0.000 0.900 0.000 1.000
HPF4

2 0.050 0.050 0.035 0.051 0.045 0.046 0.032 0.055 0.050 0.050 0.035 0.051 0.100 0.000 0.000 1.000
HPF4

3 0.120 0.120 0.088 0.122 0.111 0.112 0.082 0.131 0.120 0.120 0.088 0.122 1.000 1.000 0.000 1.000
HPF4

4 0.040 0.040 0.028 0.040 0.036 0.036 0.025 0.044 0.040 0.040 0.028 0.040 0.001 0.001 0.000 0.000
The third scenario 90%, 10%

HPF1
1 0.000 0.244 0.000 0.724 0.035 0.044 0.000 0.923 0.481 0.279 0.000 0.749 0.927 0.927 0.886 0.940

HPF1
2 0.756 0.000 0.000 0.754 0.043 0.050 0.000 0.930 0.709 0.482 0.000 0.777 0.927 0.927 0.886 0.940

HPF1
3 1.000 1.000 0.000 1.000 0.994 0.995 0.010 1.000 1.000 1.000 0.536 1.000 0.937 0.937 0.901 0.949

HPF1
4 0.277 0.246 0.000 0.000 0.000 0.001 0.000 0.976 0.275 0.245 0.000 0.813 0.926 0.925 0.884 0.939

HPF2
1 0.965 0.957 0.006 1.000 0.000 0.731 0.000 1.000 0.965 0.958 0.006 1.000 0.930 0.930 0.890 0.942

HPF2
2 0.956 0.950 0.005 0.999 0.269 0.000 0.000 1.000 0.956 0.951 0.005 1.000 0.930 0.929 0.890 0.942

HPF2
3 1.000 1.000 0.990 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.991 1.000 0.940 0.939 0.904 0.951

HPF2
4 0.077 0.070 0.000 0.024 0.000 0.000 0.000 0.000 0.076 0.069 0.000 0.029 0.922 0.922 0.879 0.935

HPF3
1 0.520 0.291 0.000 0.725 0.035 0.044 0.000 0.924 0.000 0.245 0.000 0.752 0.927 0.927 0.886 0.940

HPF3
2 0.721 0.518 0.000 0.755 0.043 0.049 0.000 0.931 0.755 0.000 0.000 0.781 0.927 0.927 0.886 0.940

HPF3
3 1.000 1.000 0.464 1.000 0.994 0.995 0.009 1.000 1.000 1.000 0.000 1.000 0.937 0.937 0.901 0.949

HPF3
4 0.251 0.223 0.000 0.187 0.000 0.001 0.000 0.971 0.248 0.219 0.000 0.000 0.925 0.925 0.884 0.939

HPF4
1 0.073 0.073 0.063 0.075 0.070 0.071 0.061 0.078 0.073 0.073 0.063 0.075 0.000 0.742 0.000 0.989

HPF4
2 0.074 0.073 0.063 0.075 0.071 0.071 0.061 0.078 0.074 0.073 0.063 0.075 0.258 0.000 0.000 0.981

HPF4
3 0.114 0.114 0.099 0.116 0.110 0.110 0.096 0.121 0.114 0.114 0.099 0.116 1.000 1.000 0.000 1.000

HPF4
4 0.060 0.060 0.051 0.061 0.058 0.058 0.049 0.065 0.060 0.060 0.051 0.062 0.012 0.019 0.000 0.000

After evaluating model performance using accuracy metric errors and the DM test, the next step
is to determine the dominance of these findings. Figures 4 and 5 show a graphical depiction of the
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performance measures (MAE, MAPE, MSPE, RMSE) using bar plots for this purpose. The following
is how these figures are arranged: (a, d, g, j) the first scenario results (70%, 30%), (b, e, h, k) the
second scenario results (80%, 20%) and (c, f, i, l) the third scenario results (90%, 10%). It is clear
from the numbers that the HPF2

3 model outperformed all other combination models across all three
training and testing sample data sets. Additionally, The correlation plot of the best model (HPF2

3)
out of all sixteen models in each training and testing scenario is shown in Figure 6. This includes
the first scenario results (70%, 30%), the second scenario results (80%, 20%) and the third scenario
results (90%, 10%). The figures indicate that the optimal model has the highest correlation coefficient
values and a significant correlation between actual and projected values. Based on the accuracy metric
errors, statistical test (DM test) and graphical results (bar plots and correlation plots), it can be inferred
that the proposed filtering-combination approach is highly efficient and accurate for forecasting stock
market daily closing prices. On the other hand, it is concluded that the HPF2

3 combination model
is more precise in generating forecasts compared to other combination models within the proposed
filtering-combination technique.
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Figure 4. Accuracy metrics bar-plots: The MAE (a-70%-30%, b-80%-20%, c-90%-10%);
the MAPE (d-70%-30%, e-80%-20%, f-90%-10%); the MSPE (g-70%-30%, h-80%-20%,
i-90%-10%); and the RMSE (j-70%-30%, k-80%-20%, l-90%-10%).
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Figure 5. Accuracy metrics bar-plots: The MAE (a-70%-30%, b-80%-20%, c-90%-10%);
the MAPE (d-70%-30%, e-80%-20%, f-90%-10%); the MSPE (g-70%-30%, h-80%-20%,
i-90%-10%); and the RMSE (j-70%-30%, k-80%-20%, l-90%-10%).
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Figure 6. Correlation plots: The real versus forecasted values correlation plot using the best
combination model (HPF2

3), (a) 70%-30%, (b) 80%-20% and (c) 90%-10%.
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As confirmed from the findings of the previous section, such as performance measures (MAE,
MAPE, RMSPE, MDA and CC), a statistical test (the DM test) and graphical analysis (the bar-plot,
correlation plot), the final best combination model was HPF2

3, which was highly accurate and efficient
in forecasting the daily closing stock price of the PSX. Hence, it is important to mention that the
obtained results from the considered benchmark models and the declared proposed best model are
highly comparatively. The considered benchmark models include; three standard time series models,
such as the autoregressive, autoregressive moving integrated average, nonparametric autoregressive
and autoregressive neural network models. Hence, a comparative analysis of the proposed best model
versed the considered benchmark models are numerically listed in Table 6 and graphically shown
in Figure 7 for all three training and testing scenarios. From these presentations, one can observe
that the final best combination model HPF2

3 in this work produced significantly lowest accuracy mean
errors and higher accuracy values of CC and MDA as compared to the autoregressive, autoregressive
moving integrated average, nonparametric autoregressive and autoregressive neural network models.
Moreover, to confirm the superiority of the proposed best combination model HPF2

3 mentioned in
Table 6, we performed the DM test on each pair of models. The outcomes (p-values) of the DM
test are numerically listed in Table 7 for all three training and testing scenarios. It is confirmed
from these results, that all considered bookmark models (time series and machine learning models)
are outperformed by our proposed best combination model (HPF2

3) at the 5% significance level. To
conclude, based on all of these findings, the accuracy of the proposed filtering-combination technique
is comparatively high and efficient when compared with all considered competitor models.

It is worth noting the literature’s arguments about the pros and cons of using HP filters
vary [46, 48–51]. Some researchers say that when applied to statistical data, the HP filter creates
illusorycycles [48], while others claim that it is better treated using a random walk and therefore a
distinct stationary process [46]. However, in the current study, the HP filter is utilized to extract a
nonlinear trend component from daily data rather than a quarterly, monthly or annual dataset. In this
regard, the authors argue that the complexity of diverse datasets varies and that no single technique,
method or model is ideal in all circumstances. What performs best for one type of dataset may not work
for another. As a result, each method or model has advantages and disadvantages. Furthermore, we are
not entirely reliant on the HP filter; the HP filter was utilized only for decomposition. After obtaining
the deconstructed series, we processed them for further modeling and forecasting applications. In
this regard, this work obtained a stationary series by employing the first difference approach and then
processing it with standard linear and nonlinear time series models. In summary, we can observe that
the final best ensemble model within the proposed forecasting methodology was the combination of
the nonlinear autoregressive model and the autoregressive moving average model. It was evidence for
capturing the nonlinearity and complexity of the data well within the proposed methodology.

Day-ahead or short-term forecasting is a valuable tool for companies in today’s modern world.
It helps with operational planning by allowing companies to efficiently adjust production schedules,
improve logistics and allocate resources. Additionally, short-term forecasting is useful for risk
management as it enables traders to measure market volatility and control portfolio risk. Accurate and
efficient day-ahead forecasts also assist traders in making informed decisions regarding the purchase
and sale of commodities. Furthermore, these models can be beneficial to traders in developing short-
term trading strategies for profitable trading. Moreover, this research shows that forecasting price
indices can be useful for traders and investors who are interested in index-linked funds and index
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derivatives traded in the derivatives market. The proposed forecasting method can also be useful
for policymakers, mutual funds, investment bankers, FIIs, arbitrage traders and other traders when
forecasting economic or financial time series data. These research findings will be of particular interest
to investors, traders, regulators and anyone who deals with the stock market. By making use of day-
ahead forecasts and knowledge of stock index trends, traders can create more profitable business and
trading plans and make useful asset allocation decisions. Additionally, based on our forecasts, we can
take measures to mitigate possible exchange rate risks. By choosing the best-proposed model, traders
can develop a more robust trading plan and select the model with the best risk-reward combination.
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Figure 7. Accuracy metrics dot-plots: The best proposed model (HPF2
3) vs the considered

baseline models (a-70%-30%, b-80%-20% and c-90%-10%).
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Table 6. Pakistan Stock Exchange: One-day-ahead out-of-sample metrics error of closing
stock price forecast for the best-proposed filtering-combination model vs the considered
baseline models.

The first scenario 70%, 30%
S.No Models RMSPE MAPE MAE RMSE CC MDA

1 HPF2
3 120.8022 0.2924 0.0041 161.9550 0.9992 0.9302

2 AR 156.5730 0.3786 0.0053 209.6822 0.9987 0.8966
3 ARIMA 157.1322 0.3796 0.0053 210.0071 0.9987 0.8980
4 NPAR 127.3876 0.3077 0.0043 170.2426 0.9991 0.9195
5 ANN 162.1289 0.3923 0.0054 214.3426 0.9986 0.9128

The second scenario 80%, 20%
1 HPF2

3 115.5138 0.2622 0.0034 149.8806 0.9980 0.9253
2 AR 151.9299 0.3447 0.0045 199.3006 0.9964 0.8747
3 ARIMA 152.0373 0.3448 0.0045 199.5532 0.9964 0.8788
4 NPAR 122.9880 0.2793 0.0037 160.4473 0.9977 0.9071
5 ANN 155.6473 0.3531 0.0046 202.1268 0.9963 0.8929

The third scenario 90%, 10%
1 HPF2

3 121.8376 0.2866 0.0036 151.6476 0.9958 0.9429
2 AR 156.4563 0.3683 0.0047 199.1440 0.9927 0.8735
3 ARIMA 155.4268 0.3658 0.0047 198.6606 0.9927 0.8735
4 NPAR 130.1624 0.3064 0.0038 163.0377 0.9951 0.9143
5 ANN 159.5017 0.3754 0.0048 202.7243 0.9924 0.8857
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Table 7. Pakistan Stock Exchange: Results (p-values) of the DM test for the proposed best
model vs the considered baseline models.

The first scenario 70%, 30%
models HPF2

3 AR ARIMA NPAR ANN
HPF2

3 0.000 1.000 1.000 0.987 1.000
AR 0.000 0.000 0.698 0.000 0.904

ARIMA 0.000 0.302 0.000 0.000 0.888
NPAR 0.013 1.000 1.000 0.000 1.000
ANN 0.000 0.096 0.112 0.000 0.000

The second scenario 80%, 20%
HPF2

3 0.000 1.000 1.000 0.998 1.000
AR 0.000 0.000 0.649 0.000 0.785

ARIMA 0.000 0.351 0.000 0.000 0.767
NPAR 0.002 1.000 1.000 0.000 1.000
ANN 0.000 0.215 0.233 0.000 0.000

The third scenario 90%, 10%
HPF2

3 0.000 1.000 1.000 0.991 1.000
AR 0.000 0.000 0.245 0.000 0.752

ARIMA 0.000 0.755 0.000 0.000 0.781
NPAR 0.009 1.000 1.000 0.000 1.000
ANN 0.000 0.248 0.219 0.000 0.000

4. Conclusions

The main objective of our research was to forecast the daily closing stock price of the Pakistan Stock
Exchange. To achieve this goal, we proposed a unique filtering-combination forecasting approach that
involved using the HPF filter to divide the original time series of the daily closing price into two new
subseries: A nonlinear long-term trend series and a stochastic series. The filtered series were predicted
by four standard time-series models-two linear and two nonlinear-including the autoregressive moving
average model, the nonparametric autoregressive model and the autoregressive neural network, as
well as all possible combinations of these models. The proposed forecasting technique was applied
and evaluated with daily close stock prices in Pakistan from January 1, 2013, to February 13, 2023.
Six different accuracy measures, pictorial analysis and a statistical test were performed across three
different scenarios of training and testing data, i.e., (70%, 30%), (80%, 20%) and (90%, 10%). For
each of these three scenarios, the HPF2

3 model was found to be the best-proposed combination model
because it resulted in lower accuracy measures and larger values for CC and MDA. However, the
HPF1

3 and HPF3
3 models were found to be good competitors. After that, we compared the best-

proposed combination model to the benchmark models (the autoregressive model, the autoregressive
moving integrated average model, the nonparametric autoregressive model and the autoregressive
neural network) by using different accuracy measures and the DM test, showing that the proposed
model outperformed the other models.

Hence, we focused solely on closing prices. Moreover, the filtering-combination forecasting
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technique can be extended to other variables such as high and low prices, daily open prices, daily
volume and more. Additionally, while we utilized only univariate linear and nonlinear time-series
models, plan to expand this approach in the future to include machine learning and deep learning
models such as random forests, decision trees, support vector machines, long short-term memory
networks, convolutional neural networks and recurrent neural networks. Furthermore, we employed
the HP filter in the current proposal. Furthermore, we intend to incorporate other filters and evaluate
the performance of different filters within the proposed filtering-combination time series models,
such as Hamilton’s filter, robust regression filters, exponential moving filters, smoothing spline
regression filters, etc. Finally, we believe that this filtering-combination forecasting method can
obtain highly efficient and accurate forecasts for other complex financial time-series data such as
inflation, unemployment and cryptocurrencies. Likewise, in other scenarios and with different data,
for example, energy [53, 54], air pollution [55–59], solid waste [60], academic performance [61] and
digital marketing [62].
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