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Abstract: The biharmonic equation/eigenvalue problem is one of the fundamental model problems
in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue
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we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-
Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator
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1. Introduction

The biharmonic equation/eigenvalue problem is a fundamental model in mathematics and physics,
and many numerical methods for these problems have been developed. Among these methods, the
Ciarlet-Raviart mixed finite element method [1] is popular and classical, and it has been applied to the
biharmonic equation (see [2—7], etc.), the biharmonic eigenvalue problem (see [8—12], etc.), and the
transmission eigenvalue problem which has a similar structure with the biharmonic eigenvalue problem
(see [13, 14], etc.).

In practical calculations, in order to obtain high-precision approximations, a posteriori
error estimation and adaptive algorithms have been widely applied (such as those in introductory
textbooks [15, 16] and review article [17]). For the biharmonic eigenvalue problem, Li and Yang [18]
gave C'IPG adaptive algorithms. Under the condition that the eigenfunctions u and v = Au have the
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same regularity, Wang et al. [10] proposed a mixed discontinuous Galerkin (denoted as DG mixed)
approximation scheme, and got the residual-based a posteriori error estimator of the approximate
eigenpair. Feng et al. [19] proposed the reliable residual-based a posteriori error estimator of the
approximate eigenvalue under the condition that the eigenfunction u and v = Awu have different
regularity. This paper aims to study the a posteriori error estimation and adaptive algorithms of
the Ciarlet-Raviart mixed conforming finite element method (denoted as the C-R mixed method) for
the biharmonic eigenvalue problem. Discontinuous Galerkin methods are also effective methods for
solving the biharmonic eigenvalue problem (see [10,19]) and they have advantages for irregular regions
as they preserve local conservative properties and allow hanging nodes in the mesh adaption. But, on
the same adaptive mesh without hanging nodes, the C-R mixed method has much fewer degrees of
freedom than the DG mixed method. For the biharmonic eigenvalue problem on convex polygons,
the C-R mixed method is simple and efficient. However, we have not seen literature on the a posteriori
error analysis of this method.

As we know, the finite element method and its error estimates for an eigenvalue problem are based
on the finite element method and its error estimates for the corresponding source problem. For the
biharmonic equations, Charbonneau et al. [20] explored the residual-based a posteriori error estimate
of the C-R mixed method, and Gudi [21] further studied the a posteriori error estimate under the
condition that there are no quasi-uniformity assumptions on the triangulation.

In this paper, we extend the a posteriori error analysis of the biharmonic equation in [21] to
the eigenvalue problem, prove the reliability and efficiency of the estimator of the approximate
eigenfunction, use the error identity (2.15) to study the a posteriori error estimates of the approximate
eigenvalues, and analyze the reliability of the error estimator of the approximate eigenvalues. We also
implement adaptive computation. Numerical experiments indicate that our method is efficient and can
get an approximate solution with high accuracy.

The organization of this paper is as follows. In the next section, we introduce the biharmonic
eigenvalue problem and its C-R mixed approximation. In Section 3, we discuss the a posteriori error
estimates. Finally, we present some numerical experiments to validate our theoretical results.

In this paper, C represents a generic positive constant independent of the mesh size #, which may
not be the same constant in different places. For simplicity, we use the symbol a < b to mean that
a < Cbh.

2. Preliminaries

Consider the biharmonic eigenvalue problem

A%*u = Au, in Q,
(2.1

u:%:o, on 0Q,

where Q C R? is a bounded convex polygonal domain with boundary dQ, and v is the unit outward
normal to 0€).
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Let v = Au. We can rewrite the forth-order problem (2.1) as a system of second-order problems:

-Au+v=0, inQ,
Av = Au, in Q, (2.2)
u=2% =0, on 0Q).

o

Multiplying the first and the second equations of (2.2) by test functions ¢ and ¢, respectively,
integrating by parts and using the boundary conditions, we can obtain the following C-R mixed
variational form of (2.1): find (4, u,v) € R X Hé (Q) x H'(Q) such that ||ullp = 1 and

v, ) +b(,u) =0, Yy € H(Q), (2.3)
b(v,g) = -, @), Vo € Hy(), 24)

where the bilinear forms are defined as follows:
(p,¥) = f eydx, (2.5)
Q
b g) = f vy - V. 2.6)
Q

In this paper, we assume D C Q. Let H°(D) denote the standard Sobolev space on D with norm
1,0, seminorm ||, p, and H(D) = L*(D). When D = Q, ||-||,0 and | -|, o are simply denoted by || - ||,
and | - |, respectively. Let H?(0D) denote the Sobolev space on dD with norm || - ||, 5p and seminorm
| ' |p,¢9D-

Assume that [}, = {«} is a family of regular triangulation of Q (see [2]). Let 4, be the diameter of «
and & = max{h, : k € J,}. The set of interior edges in [ is denoted by I'; and the set of boundary
edges is denoted by I's. Set I' = I'; U I's. Denote the length of any edge e € I" by |e|. For any e € T}
and e = 0™ () 0k~ the jump of the derivative of ¢ € V), on e is defined as

oy ot B %

[E] B ov ov

where v denotes a unit normal vector on e, which is directed outward from «*; for e € 'y = 0k () 0€2,

where v denotes a unit normal vector directed outward from the boundary 0€2.
Define the finite element spaces as

VO = {p € HY(Q) : ¢l € Pu(x), V& € T,
Vi = (W € H(Q) : Y, € Pu(k), Y& € T},

where P, (k) is the space of polynomials of degree < m (m > 2).
Define the broken Sobolev space

HXQ,T3) = (Y € Hy(Q) : Yl € H (1), € T}
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with the mesh-dependent norm
1 oy
2= Ay + f— ——1ds.
1Al nghll Yllo ;EF elel[av] s

Define the following norm on product space W = L*(Q) x H*(Q, ;) as

10c- @llw = (bllg + lllP)?, x € LX(Q) and @ € HX(Q, T3).

Based on the mixed formulation (2.3) and (2.4), we can get the C-R mixed finite element
approximation: find (4, u,, vy) € R X V}? X Vi, |lupllo = 1, such that

Vs n) + bW, up) =0, Yy, € V), (2.7)
bWn, 1) = —(un 1), Vou € Vy. (2.8)

Consider the following fourth-order problem:

-Aw+ ¢ =0, in Q,
Ap =g, in Q,
w=0, on 0,
Vw-v =0, on 0Q.

(2.9)

We assume the following regularity assumption is valid:
For given g € L*(Q), there is a unique solution (w,¢) € Hy(Q) x H'(Q) to the problem (2.9)
satisfying the following elliptic regularity estimate:

llwlls + llellz < ligllo- (2.10)

When Q is a smooth domain, (2.10) is valid. However, when Q c R? is a bounded convex domain,
Grisvard [22] only stated that A> : H*(Q) — H~'(Q) is isomorphic, and Blum et al. [23] stated
that (2.10) is true if the maximum interior angle of € is less than 126.283696 - - -. This assumption is
made only to reduce the technical complexity of the error analysis.

Let A and A4, be the kth eigenvalue of (2.3), (2.4) and (2.7), (2.8), respectively. The algebraic
multiplicity of 2 1s g, 4 = A = Agy1 = ... = Agg-1. Let V, denote the space spanned by all
eigenfunctions corresponding to A, and let V,(h) denote the space spanned by all eigenfunctions
corresponding to the eigenvalues A;, that converge to A.

Lemma 2.1. Let A be the kth eigenvalue of (2.3) and (2.4), V, ¢ H™'(Q), and (A, v;,, u;,) be the kth
eigenpair of (2.7) and (2.8) with ||u,||, = 1, then there exists an eigenfunction (v, u) corresponding to A,
such that [Ju||p = 1 and

A, — A S B2, (2.11)
v = vally < A", (2.12)
lu — uplly < ™, (2.13)

llot = uplly < H” (2.14)
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where e = O whenm = 2 and £ = 1 whenm > 3. Let u € V, and ||u||p = 1, then there exists u; € V,(h)
such that ||u — uy||, < h™.
Proof. We know that (2.11), (2.12) and (2.14) are valid from Theorem 11.4 in [8]. We obtain the
conclusion (2.13) from [4].
Lemma 2.2. Suppose (4,u,v) and (4, up,v,) are the eigenpairs of (2.3), (2.4) and (2.7), (2.8),
respectively. Then

Wy =v,v, —Vv) +2b(vy, — v, uy, — u) (uy, — u,uy, — u)

A, — A= ’ +A . (2.15)
g —(up, up) —(up, up)

Proof. By (2.3) and (2.4) we deduce that

v = v,V = v) +2b(vy, — vuy, — u) + A(uy, — u, uy, — u)
=V, Vi) + bV, wp) + bV, up) + A(up, up) — (v, vy —v) + b(vy, — v, u) + b(v, uy, — u)
+ A(u, up, — u)) — (i, v) + b(v, up,) + b(vy, u) + Auy, u))
=V, vi) + 2b(vy, up) + A(uy, up). (2.16)

By (2.7) and (2.8) we have

(Vi vi) + 2b(vy,, up)
—(up, up)
Then, dividing by —(uy,, u;,) on both sides of (2.16), we obtain (2.15).
To discuss the error estimates, we state some results on the approximation properties of interpolation
in [24] without proof, which will play a crucial role in our analysis.

Lemma 2.3. For any ¢ € HS(Q), let ¢, € V), be the Lagrange interpolant of ¢. Then, for any x € [},
there exists a positive constant C which is independent of % such that

Ap =

16 — Bullo.c < Chllplla.es (2.17)
3
¢ = Pullo.oc < ChLllllo (2.18)

Denote the piecewise (element-wise) Laplacian of v € V), by A,v.
Lemma 2.4. For all g, € V), there exists a positive constant C independent of 4 such that

| )
||Ah<qh—thh)||og_CZ f % iy (2.19)

where E;, 1 V), — \7,, C H%(Q) is a recovery operator defined as in [21], \7;, is a Hsieh-Clough-
Tocher (HCT) finite element space associated with .

Proof. Charbonneau et al. [20] and Gudi [21] proved the above conclusion for m = 2 and 3. From
Lemma 1 in [25], we know the above conclusions are valid for m > 2.

3. A posteriori error estimates

Based on the a posteriori error analysis of the source problem corresponding to the biharmonic
eigenvalue problem (2.1) in [21], the local estimator can be defined as follows:
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For k € 93,
2 _ 4 2 2.
e = BllApun — Apvillo, + ve — 2nullg

fore eIy,
ov
2 3 hqp2
= |e _ ’
e = leP Il 0,

and fore e I

ou
ulﬂime

Let
1
MW=ty ) Wt BIE ) e
eCok,ecl’y eCOk,ecl’p
and
Q) = > w0’
KET

We can get the following theorem.

Theorem 3.1. Let (4,u,v) and (A, u,, v,) be the kth eigenpairs of (2.3), (2.4) and (2.7), (2.8),

respectively. Then it holds that
(A = viy u — up)llyy < 75(Q) + [l Au — pusllg.
Proof. From the definitions of the norm || - ||y and ||| - |||, we know that

2 2 2
I(Au = vp, = up)lly, = NlAu = vally + [llee = walll”,

1 O(u—u
e = 7 = }jmnw—ummk+§jj} A W)y,

Kejh

Now we estimate |||u — uy||. Since [%] = 0 on ¢, we have

16(u u) lau
> g 3 [ G

Using the triangle inequality and Lemma 2.4 we obtain

1AL — up)llo < N|AR(u — Epup)llo + IAL(Eruy, — ug)llo
1 Buh

ﬂmm—mmm+Q] =[S 2ds).

e lel” v

Note that by the dual argument we have

Alu—-E A
1AW= Bl = sup 2= Enn: B0)
$eH2(Q\(0) lA®llo

3.1

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)
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Let ¢ € H3(Q). Then
(A(u = Epup), Ap) = (Au = vy, A@) + (v — AEjup, Ag).
Let ¢, € V}? be the Lagrange interpolant of ¢, then we can deduce that
(Au = vy, Ap) = (Au, Ap) — (vi, AP)
= (Au, ¢) + (Vvy, Vo)
= (Au, ) = (Apttn, $n) + (Vvi, V(P — ¢1))

= (Au, @) — (Apup, ¢, — ) — (g, @) + (Vvy, V(G — ¢4))
= (Au — Ay, @) + (A, & — ¢i) + (Vvp, V(e — é41))

0
= 3 [ tan = dviro - oz + Y, [15216 - dixds + (= dn. 0.

KEJ], K eEFI ¢
Using the Cauchy-Schwarz inequality and Lemma 2.3, we know

» f (Antt, = Avi)(@d = g)dxl < () WillAuaen — Avill3 )7 gl

k€T VK Tegy

< O i = AvilE )2 1A,
K€

vy, vy, 1
» f (516 = ddsl < () f e [= " Fds) g,

eel’; eel’y

0 |
<) [lePi5erds iagly

eel’y e

and

[(Au — Apup, @) < ||Au — Apuyllollllo-

Substituting (3.9)—(3.11) into (3.8), we obtain

1 ov 1
(At = v, AB (O il = Avill} )2 + (O f eF L= Pds)? + e = Ay o)1 Ao

'SV ecl’y ¢

Using the triangle inequality and Lemma 2.4, we obtain
|(vi = AEyup, AG)| < (v, — Apunllo + [|1An(un — Enun)llo)l|Adllo

1 Ou 1
< (v = Auaaglly + ) | f =[—==Tds)?)lIAdlo.
~J. le| ™ dv
Substituting (3.12) and (3.13) into (3.7), and using (3.6), we deduce

ov
1AGe= Exllo < (Y hilldus = Avill)* + (Y | leP = Pds):

eed), ecl’; V¢

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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+||Vh_Ahuh”O+(Zf| N 2 12ds)7 + |l = Apiagll. (3.14)

Then, from (3.3)—(3.5) and (3.14), we can get
e = unll> < 7(€) + llAu = Ay 5.
Using the triangle inequality (3.5) and (3.14), we obtain

1Au = villg < ARG = up)llG + 11A5un — vill
S () + [l = Ay,
The proof is complete.
The following theorem gives the error bounds for the approximate eigenvalue.

Theorem 3.2. Let (4,u,v) and (4, u,, v,) be the kth eigenpairs of (2.3), (2.4) and (2.7), (2.8),
respectively. Then it holds that

1
A= ) S Q) + Al =l + > B2 = vIE, (3.15)
k j=0

where I,v € V), is the Lagrange interpolant of v.
Proof. From (2.3) and (2.7), we get

Vn = o) + bW, up —u) =0, Y, € V.

Thus, using (2.15) and integrating by parts, we deduce that

|4 =l = | = 2(Ipy = v, Ap(up, — u)) + 2(vy — v, Ih =V) ==V, v, — V)
o(uy, —
+ Ay, — , uy, — u)+22f[ Wn =011~ vy
eel’
<2 Z v = vlollan(un — wllox + 2 Z v = villollZny = Vilox + v = vill§
KET KT
Ouy — u)
+ Ay = ull§ +2 ) —||[ lo.lel? 1y = i,
ecl’ € 2 dv
< MY = ViG> e = vl + > o= vyl + > My =g,
k€T n k€Tn k€Th k€Tn
11 = vl + Al — ullf + Z ||[—]||Oe D Pl =i, (3.16)
K€

Using the definition of norm || - ||y and (3.1), we can get (3.15). The proof is complete.

Now, based on [16,21] we study the efficiency of the error estimator.

Let e represent a common edge shared by the two elements «* and «~, and denote w, = k" U k™.
Theorem 3.3. Let (4,u,v) and (4, u,, v,) be the kth eigenpairs of (2.3), (2.4) and (2.7), (2.8),
respectively. Then it holds that

RNy — Avillo S 180 = valloe + B2l Antar, — Aullo s (3.17)
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f e[S ds < 18w = vill, + lel*lAu = A, (3.18)
Q) < II(AM — vt = up)l[y + Z B = Aty I - (3.19)
KETn

Proof. Using bubble function techniques (see [16,21]), we first estimate (3.17).
Let b, € HS(K) be a bubble polynomial defined on «. Then

1
lAnun — Avpllox < I1bg (Apttn — Avi)llox
10 (Apun — Avi)llox < llAnttn — Avpllok-

Let ¢ = b (Au, — Avy). Then

| Anitn — Avillg , < fbx(/lhuh — Avy)’dx = f(/lhuh — Avp)pdx.

K

Integrating by parts twice and using the inverse inequality, we get

f(/lhuh — Avy)pdx = fAzu(bdx - fAvthdx + f(/lhuh — Au)pdx

= fAuA¢dx—fth¢dx+f(/lhuh—/lu)¢dx

2
< bl Au = vpllollllox + llAnttn — Aullo ll@llo-

Combining the above three estimates, we get (3.17).
In the proof of Lemma 3.3 in [21], let f = A,u;, then we can get (3.18).

It is clear that
1 6uh 1 a(u uh)
°ds, 3.20
Zf ' o) Zf s 5:20)

keI

and using (3.17), (3.18) and the definition of norm || - ||y, we can get (3.19). The proof is complete.
Remark 3.1. From Lemma 2.1, we know that ||u;, — ul|y is a higher-order term than [|Au — v;|p. And,

interpolation theory shows that the estimate of the error ), Z h, 2J [T,y — v||2 is optimal with respect to

k j=0
h, so we can expect to get
ZZhZJnlhv—vn,K < l1Au = vy, (3.21)
k j=0
So, substituting (3.21) into (3.15), we obtain
|4 = A4l < 17,(Q) + Alluy, — ull5. (322)

Therefore, the estimator 77,21(9) of the eigenvalue error |1, — 4| is reliable up to the higher-order term
Alluy, — ull3.
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4. Numerical experiments

In this section, we will present some numerical results to validate our theoretical analysis. We
calculate the smallest eigenvalue of the biharmonic eigenvalue problem on adaptive meshes in three
domains: the unit square Qg = (0, 1)?, the regular hexagon Q with side length of 1, and the L-shaped
domain Q; = (-1, 1)2/[0, 1) x (-1, 0]. For Qg, we choose the reference value 4, ~ 1294.93397959171
(see [26]), and take the reference value A; ~ 163.59756815825 in Qy and A; ~ 6703.6047044786 in
Q; (see [19)).

The computations are implemented according to the following algorithm, and for Qg our
calculations refer to Algorithm 2 in [18] when the P4 element is used. All computations are easily

realized under the packages of the FEM [27,28].

The adaptive algorithm of the mixed conforming finite element method:
Choose the parameter 0 < 6 < 1.

Step 1. Pick any initial mesh 7, with initial mesh size hy.

Step 2. Solve (2.7)-(2.8) on g}, for discrete solution (Ap,, Un,, Vi,)-

Step 3. Let iterations / = 0.

Step 4. Compute the local estimator 1, (k).

Step 5. Construct :TZ, C 9, by Marking Strategy E and parameter 6.

Step 6. Refine 7, to get a new mesh 7}, by procedure REFINE.

Step 7. Solve (2.7)-(2.8) on J},,, for discrete solution (4y,,,, U, Vi, )-
Step 8. Let/ & [+ 1 and go to Step 4.

Marking Strategy E: .
Step 1. Construct a minimal [, C 3, by selecting some elements in Jj, such that

PR ACEL A

k€Th,

Step 2. Mark all elements in 3’;,

The value of 6 is set to 0.5. The results computed by the adaptive algorithm with P2, P3 and P4
elements in Qg, Qy and € are listed in Tables 1-3, respectively. We also depict the curves of absolute
error |4, — Ay in the three domains in Figures 1-3 and show the adaptive meshes obtained by P2, P3
and P4 elements in Figures 4-6.

For Qg, from Table 1 we can obverse that the approximate eigenvalues of high accuracy can be
obtained when using higher degree polynomials. From Table 4, compared with the results obtained
by the DG mixed method in [19], we can conclude that with the same degree of freedom, using the
mixed conforming finite element method can achieve higher accuracy. And, compared with the results
calculated in [11], we can conclude that with the same degree of freedom, the approximations obtained
by the adaptive algorithm with P3 element have higher precision than those computed by the C-R
mixed method with P3 element on uniform meshes.
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Table 1. The smallest eigenvalue using P2, P3 and P4 elements in €.

m [ Dof Ay Error

2 4 1688 1295.55311799145 6.1914E-01
7 6308 1294.96737945769 3.3400E-02
8 10020 1294.94080090246 6.8213E-03
14 392486 1294.93399037708 1.0785E-05
15 731622 1294.93398365798 4.0663E-06

3 3 2378 1294.93953450880 5.5549E-03
6 4868 1294.93734355155 8.1186E-04
9 15590 1294.93400416261 2.4571E-05
13 70640 1294.93397953709 5.4620E-08
14 110612 1294.93397957360 1.8110E-08
15 166268 1294.93397958965 2.0600E-09

4 5 4402 1294.93400398026 2.4389E-05
6 17122 1294.93398001229 4.2058E-07
8 20614 1294.93397969179 1.0008E-07
11 39726 1294.93397963481 4.3100E-08
12 45326 1294.93397959210 3.8995E-10
13 55910 1294.93397958163 1.0080E-08
14 71082 1294.93397959395 2.2399E-09

Table 2. The smallest eigenvalue using P2, P3 and P4 elements in Q.

m ) Dof Ap Error

2 3 1004 163.63563344085 3.8065E-02
7 3160 163.61867333594 2.1105E-02
13 65862 163.59758215821 1.4000E-05
14 120242 163.59757290575 4.7475E-06
15 223442 163.59756998769 1.8294E-06

3 3 1688 163.59829409370 7.2594E-04
9 7790 163.59767457327 1.0642E-04
12 13148 163.59757702759 9.6994E-05
15 35216 163.59756843072 2.7247E-07
17 65954 163.59756822596 6.7710E-08
19 120422 163.59756817386 1.5610E-08
20 179708 163.59756817021 1.1960E-08

4 9 4734 163.59757299916 4.8409E-06
11 6826 163.59756994482 1.7866E-06
13 9198 163.59756856556 4.0731E-07
14 11174 163.59756846936 3.1111E-07
15 12778 163.59756846485 3.0660E-07
16 15670 163.59756819556 3.7310E-08
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Table 3. The smallest eigenvalue using P2, P3 and P4 elements in ;.

m [ Dof A Error

2 5 1112 6709.12631054012 5.5216E+00
13 4288 6705.19344965942 1.5887E+00
16 8888 6704.12267974168 5.1798E-01
20 17050 6703.75315736491 1.4845E-01
21 18864 6703.73737923773 1.3267E-01
22 20764 6703.71676073157 1.1206E-01

3 10 1988 6699.01003534454 4.5947E+00
23 6812 6703.70738462775 1.0268E-01
27 13682 6703.61272707405 8.0226E-03
28 17834 6703.60693637842 2.2319E-03
29 22142 6703.60592592628 1.2214E-03
30 27698 6703.60534928621 6.4481E-04
31 36884 6703.60491084803 2.0637E-04

4 3 2026 6673.41764738391 3.0187E+01
12 4130 6701.92626113286 1.6784E+00
21 7090 6703.55885779365 4.5847E-02
26 8718 6703.60033078041 4.3737E-03
27 9034 6703.60178462851 2.9199E-03
28 9394 6703.60411046150 5.9402E-04

Table 4. The smallest eigenvalue using P2, P3 and P4 elements in Qg, Q4 and €; by the
C-R mixed method and DG mixed method.

Qg Qy Q
m. . Method Dof 1, Dof 1, Dof 1
, mixed 10020 1294.94080 65862  163.59758 17050  6703.75316
DGmixed 10368 129573547 63672  163.61795 17712  6707.69651
,  mixed 70640  1294.93398 35216  163.59757 17834  6703.60694
DG mixed 79740 129493441 39340 16359781 17640  6702.29878
,  mixed 20614 129493398 9198  163.59757 8718  6703.60033
DG mixed 20400 129493399 9510  163.59752 8850  6700.01769

Figure 1 shows that the error curves are approximately parallel to the line with slope —2, —3 and
—4, and the algorithm can achieve the optimal convergence order O(dof~2), O(dof=3) and O(do f~)
when P2, P3 and P4 elements are used, respectively. This means that the results obtained in numerical
experiments have higher order convergence than theoretical analysis, and we think the reason is that
Au € H*(Q) when u € H*(Q), thus the regularity of v = Au is underestimated in the theoretical analysis

of the C-R mixed method.

For Qp and €;, we can observe similar conclusions. Although we only analyze the C-R mixed
method for convex or smooth domains, we also implement adaptive calculations in the L-shaped

domain, and the results in Table 3 and Figure 3 indicate that our method is still convergent.
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Figure 6. Adaptive mesh in Qg, Q4 and Q; by P4 element.

Remark 4.1. There are usually two ways to determine when to terminate the iteration. One is by
the error estimator. The adaptive procedure will continue until the error estimator is less than a
prefixed tolerance. The other is by the difference between adjacent two or several iterations. When
the difference is less than a prefixed tolerance, the iteration will be terminated. However, in this paper,
since our error estimator is not asymptotically accurate and the error curves fluctuate, we judge whether
the calculation result is accurate by observing the changing trend of the error.
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5. Conclusions

In this paper, we study the a posteriori error estimates and adaptive calculation of the C-R
mixed method for the biharmonic eigenvalue problem on convex polygon domains. We propose a
posteriori error estimators, prove the reliability and efficiency of the error estimator of the approximate
eigenfunction, and analyze the reliability of the error estimator of the approximate eigenvalues.
Numerical experiments confirm our theoretical analysis and indicate that our adaptive algorithm is
efficient. Meanwhile, the results in Table 3 and Figure 3 show that the C-R mixed method in adaptive
fashion is convergent and efficient on nonconvex domains. It is a challenging and valuable work to
prove the convergence of C-R mixed method on nonconvex domains.
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