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Myoelectric pattern recognition (MPR) has evolved into a sophisticated
technology widely employed in controlling myoelectric interface (MI) devices
like prosthetic and orthotic robots. Current MIs not only enable multi-degree-of-
freedom control of prosthetic limbs but also demonstrate substantial potential in
consumer electronics. However, the non-stationary random characteristics of
myoelectric signals poses challenges, leading to performance degradation in
practical scenarios such as electrode shifting and switching new users.
Conventional MIs often necessitate meticulous calibration, imposing a
significant burden on users. To address user frustration during the calibration
process, researchers have focused on identifying MPR methods that alleviate this
burden. This article categorizes common scenarios that incur calibration burdens
as based on data distribution shift and based on dynamic data categories. Then
further investigated and summarized the popular robust MPR algorithms used to
reduce the user’s calibration burden. We categorize these algorithms as based on
data manipulate, feature manipulation and, model structure. And describes the
scenarios to which each method is applicable and the conditions required for
calibration. Finally, this review is concluded with the advantages of robust MPR
and the remaining challenges and future opportunities.
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1 Introduction

The surface electromyography (sEMG) signal is an electrophysiological signal that
records muscle activity by placing electrodes on the surface of the skin (Scheme and
Englehart, 2011). As it contains movement information and is non-invasive, it can be used
to decode motor intent. Many researchers consider it ideal for controlling devices such as
prosthetics and exoskeletons (Hudgins et al., 1993). Over the years, myoelectric pattern
recognition (MPR) technology has been a breakthrough, enabling multi-degree-of-freedom
prosthetic control (Scheme and Englehart, 2011), offering hope for the rehabilitation of
people with disabilities. In recent years, MPR technology has found wider application in
human-computer interaction and has even demonstrated potential in consumer electronic
devices. For example, it is utilized in MI devices for virtual reality, gaming entertainment,
and industrial control (Zhang et al., 2009; Taneichi and Toda, 2012; Khalaf et al., 2020).
Although the performance of myoelectric interfaces (MIs) is satisfactory under laboratory
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conditions, there are usually a variety of practical challenges in real-
lift applications (Parajuli et al., 2019; Stephanidis et al., 2019).

Real-life applications often present dynamic environments,
where conditions change over time (Stephanidis et al., 2019;
Fleming et al., 2021). However, traditional MIs are typically
trained based on the assumption of data being identically and
independently distributed (i.i.d) (Jiang and Farina, 2014). This
assumption implies that the training and testing of the classifiers
occur under the same conditions, including users, electrode
positions, and command categories. Consequently, this lack of
adaptability and variability can significantly impact performance
of the system or render it unusable (Rodriguez-Tapia et al., 2020).
Hence, traditional MIs require frequent calibration—a redundant,
time-consuming, and labor-intensive process that imposes a
substantial burden on users. These calibration burdens stand as a

primary factor contributing to the abandonment of myoelectric
interfaces (Jiang and Farina, 2014; Fleming et al., 2021).

Some of the common calibration burdens are, for example, that
the electrode positions may shift due to sweaty skin or large
movements of the user (Ameri et al., 2020); that the recognition
accuracy is compromised by the user-dependent characteristics of
the EMG signals after switching users (Phinyomark et al., 2021); that
the recognition accuracy fluctuates over time due to changes in the
environment or the user’s own physiological conditions (Jiang and
Farina, 2014; Donati et al., 2023); that the MIs become disabled due
to ineffective training after alternating commands used for control
(Wang et al., 2023a); and that the user performs actions outside of
the command set which are incorrectly recognized as being inside
the command set during execution of the movement (Wu et al.,
2021). These calibration burdens are essentially brought about by

FIGURE 1
Illustration of the calibration scenarios required after two types of data shift have occurred. Data distribution shift includes electrode shift, cross-
user, and cross-day (a1–a3). Dynamic data categories include cross-set and unwanted action interference (b1-b2).
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asymmetries in the distribution of data domains (Wang et al., 2021).
For instance, the shift happens from the source domain to another
target domain after the calibration burden has occurred. The shift is
typically observed in the following application scenarios, which are
divided into two types in the present article: data distribution shift
and dynamic data categories (Figure 1).

2 Calibration burden scenarios

2.1 Data distribution shift

Data distribution shift occurs when there are changes in
electrode position, user switching, or long-term wear, resulting in
data within the source and target domains to no longer exhibit
independent and identical distribution (i.i.d) (Zhang et al., 2022;
Kou et al., 2023). These shifts in data distribution often coincide with
electrode shifts, cross-user scenarios, and changes across
different days.

2.1.1 Electrode shift
Electrode shift can be caused by repositioning the device or by

limb movement, which can lead to variations in the EMG signal.
These variations can have an impact on the accurate recognition of
motor intent by the MI (Wu et al., 2020). Electrode shift has been
observed in both separated electrode and high-density electrode
arrays (Isaković et al., 2022). In the case of 4-channel separated
electrodes, a 1-cm shift increases misclassification by 15%
(longitudinal shift) to 35% (lateral shift) (Yang et al., 2018).
Similarly, with 10 × 10-channel HD-sEMG electrodes, a 7-mm

shift leads to nearly 15% misclassification (right-distal) to 30%
misclassification (left-proximal) (Wu et al., 2020). Electrode shift
is considered almost unavoidable in MIs. Therefore, there is a need
to improve the robustness of MIs to overcome the disturbances.

2.1.2 Cross-subject
When performing the same action or movement task, sEMG

signals exhibit significant variations among users due to their non-
stationary random characteristics and differences underlying MI
(Stephanidis et al., 2019; Wu et al., 2019; Rodriguez-Tapia et al.,
2020). Factors such as fat volume, number of muscle fibers, and skin
impedance can impact sEMG measurements (Phinyomark et al.,
2021; Zhang et al., 2022). Figure 2 illustrates the data distribution for
2 users performing 6 identical actions. Significant differences can be
seen in the data distribution between different users even when
performing the same action. For healthcare applications, where
multiple users alternate in using public devices, frequent
calibration is required (Jiang and Farina, 2014; Fleming et al.,
2021). In the case of private prostheses, although they are be
used by multiple users, differences in the distribution of pre-
training data and end-user data exist, necessitating a long
learning period for calibration during the initial use (Cote-Allard
et al., 2020). Additionally, for MIs utilized in consumer electronics,
seamlessly switching between multiple users is equally crucial
(Wang et al., 2022; Wang et al., 2023b). Therefore, the ability to
cope with differences in multiple users is important for
commercial MIs.

2.1.3 Cross-day
A state-of-the-art MI should exhibit stability and repeatability;

however, in practical applications, the sEMG signal shows
significant variations over time (J. Wu et al., 2019). These
variations can be attributed to electrode shifts caused by device
wear-off and physiological factors such as muscle fatigue and
changes in body temperature (N. Jiang and Farina, 2014).
Therefore, achieving a cross-day stable MI requires more
comprehensive robustness, which also presents a greater
challenge (Jiang et al., 2022a). Some studies (Phinyomark et al.,
2013; Waris et al., 2018) suggest that training data collected over
several days (days >5) can be effectively enhance recognition
accuracy. However, this approach is impractical for real-world
applications (Jiang and Farina, 2014). Hence, it becomes essential
to enhance the cross-day robustness of the MI to reduce the
calibration burden.

2.2 Dynamic data categories

Dynamic data categories are characterized by variations in the
action categories between the source and target domains. These
discrepancies may arise users requiring additional or alternative
action commands, or from the presence of unwanted interfering
actions in the target domain.

2.2.1 Cross-set
Whether in consumer electronics or prosthetics, effectively

switching between command sets for various application
scenarios is crucial (Zhang et al., 2009; Kim et al., 2016). For

FIGURE 2
The t-SNE visualization shows the data distribution of the same
six actions for two users. The blue data is fromuser 1 and the red data is
from user 2, with different shades representing different actions. The
difference in data distribution between two users is significant
even when they perform the same actions.
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TABLE 1 Comparison of conditions required for different calibration methods.

MPR
methods

Strategies Calibration
Scenarios

Labeled Calibration
Data

Unlabeled
Calibration Data

Re-
training

Related Works

Data Manipulate Data Augmentation Manipulates Electrode Shift; Not Necessary Not Necessary Not Necessary Chamberland et al. (2023);

Cross-day; Jiang et al. (2022a);

Cross-subject Jiang et al., (2022b);

Islam et al. (2022);

Wu et al. (2020)

Core Activation Zone Extraction Electrode Shift Not Necessary Need Not Necessary Hu et al., (2021);
Zhang et al., (2020)

Feature Manipulate Feature Alignment Cross-subject; Electrode Shift Not Necessary Need Need Wang et al., (2023b);

Donati et al., (2023);

Kou et al., (2023);

Zhang et al., (2022);

Fan et al. (2022);

Li et al. (2023)

Feature Metric Novel Action Interference Not Necessary Not Necessary Not Necessary Jiang et al., (2022a);

Wu et al., (2021);

Li et al. (2023)

Feature Optimization Cross-day; Not Necessary Not Necessary Not Necessary Jiang et al., (2022b); Scheme and Englehart (2014)

Model Structure Pretraining-finetuning Electrode Shift; Cross-subject Need Not Necessary Need Chappell et al., (2022); Yang et al.,. 2018; Ameri et al., (2020)

Adversarial Learning Cross-subject; Cross-day Not Necessary Need Need Côté-Allard et al., (2020);

Phinyomarkb et al., (2021);

Cote-Allard et al. (2020)

Meta-
learning

Few-shot One-shot
Zero-shot

Cross-set; Cross-subject;
Electrode Shift

Need Not Necessary Not Necessary Wang et al., (2023a); Phinyomark et al., (2013); Rahimian et al.,
(2021); Proroković et al., (2020)

Multi-task Learning Electrode Shift; Cross-subject Need Not necessary Need Kulwa et al., (2023);

Zhang et al., (2023);

He et al. (2020)
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instance, in rehabilitation training based on game interaction,
referring to diagnostic results to establish a rehabilitation
prescription (command set) is often necessary (Taneichi and
Toda, 2012). However, the calibration process after switching sets
can be excessively time-consuming and labor-intensive, particularly
when recording data for new actions, which also requires a
considerable amount of time (Wang et al., 2023a). Traditional
MIs barely work when they cross-sets but have not been
calibrated. Therefore, being able to quickly update the MIs’
control commands is necessary to improve the flexibility and is
also a challenging calibration scenario for myoelectric interfaces.

2.2.2 Unwanted pattern interference
The majority of MIs are trained using a fixed command set

consisting of a limited number of actions (Rodriguez-Tapia et al.,
2020). These MIs rely on predefined action commands. However,
users should not restrict themselves to only a few specific actions,
and many unintended interfering actions are often misidentified as
trained actions by the MI. Such unwanted actions can not only lead
to misclassification or even compromise the functionality of the
entire system (Simão et al., 2019). This misidentification
significantly impacts the accuracy of MPR (Wu et al., 2021).

3 Robust MPR methods

The researchers propose various solutions for the
aforementioned calibration scenarios. Initially, calibration
methods involved data re-collection and model retraining.
Subsequently, updating the electrode configuration also became a
calibration method. While these methods improved the robustness
of MI, they still imposed a significant calibration burden on users
due to their cumbersome operation. In recent years, MPR has
achieved remarkable success in the field of MIs, and robust MPR
methods show potential for alleviating the calibration burden. These
robust MPR methods usually depend on strategies involving data
manipulation, feature manipulation, and model structure. Table 1
provides a summary of representative studies on multiple methods,
describing the specific calibration scenarios targeted by each method
and the required conditions for calibration. In addition, Table 2
summarizes the advantages and shortcomings of these methods.

3.1 Based on data manipulate

Data manipulation method plays a crucial role in enhancing the
performance and generalization ability of MPR classifiers. There are
two common strategies in this method: pre-processing manipulates
strategy and core activation zone strategy.

3.1.1 Data augmentation manipulates
Data augmentation is a straightforward and powerful technique

solution that involves applying deformations to labeled training
samples, generating extra training data while preserving the
semantic meaning of the labels (Wu et al., 2020). One reason for
this is that expanding the dataset enhances the model’s ability to
generalize, which aligns with common understanding. Another
reason is that specific data augmentation techniques enable the

model to adapt to the data in the target domain. Common data
augmentation operations include rotation, panning, random
channel masking, adversarial generation, and more. These
techniques have been extensively verified for their effectiveness in
MPR. In a study by Wu et al. (Wu et al., 2020), the training set data
was generated through simulating HD-sEMG images with fictitious
shift positions, which effectively reduced the misclassification rate.
The randomized channel masking technique proposed by Jiang et al.
(Jiang et al., 2022b) is another effective strategy that generates new
data with added perturbations based on the training data. This newly
generated data becomes more complex and diverse, which benefits
the enhancement of generalization ability in classifiers, particularly
those focusing on cross-day scenarios. Lin et al. (Lin et al., 2023)
proposed an adversarial-based perturbation data augmentation
method that generates synthetic HD-sEMGs. These synthetic
signals are utilized to train robust deep-learning models, enabling
them to withstand interference from real HD-sEMG signals. There is
also a data augmentation technique based on signal processing
methods that generates synthetic data for increasing the data
amount. Tsinganos et al. (Tsinganos et al., 2020) proposed a
synthetic sEMG based on signal amplitude warping and wavelet
decomposition techniques to add synthetic sEMG to the dataset,
which improves the pattern recognition accuracy. Adjustment by
electrode placement to improve the robustness of the model is
another solution. Yang et al. (Yang et al., 2018) recommended
placing all the electrodes in opposite directions during the
training process and introducing the data after randomly
switching the two channels into the training set to improve the
robustness of MPR. The current robust MPR based on data
augmentation is typically a straightforward additional strategy
applied solely to the source domain data (Gu et al., 2022). It
involves generating virtual data for the target domain, thereby
enhancing the diversity of training samples, to improve the
model’s generalization performance against perturbations. Data
augmentation serves the purpose of increasing the volume of
data, minimizing user data collection time, and enhancing model
accuracy, ultimately aiming to alleviate the calibration burden.

3.1.2 Core activation region extraction
Extracting core activation region is a commonly used data

manipulation technique for electrode shifting. Previous research
has suggested that the core activation region of human muscles
remains relatively fixed and consistent for the same actions (Zhang
et al., 2020; Hu et al., 2021). Consequently, the detrimental impact of
electrode shifting on MPR performance can be alleviated by
extracting the core activation region across various repetitive
movements. Zhang et al. (Zhang et al., 2020) employed a deep
neural network to detect and match muscle activation in HD-sEMG.
They employed a partially overlapping region between the training
and test images, serving as the core activation region. MPR was
achieved by training solely on the core activation region. During
testing, the system scans the entire array image of the test samples to
locate and detect the core activation region Hu et al. (Hu et al., 2021)
implemented a FastICA-based algorithm for extracting the core
activation region before the MPR classifier. Subsequently, the
training and test samples were converted into core activation
region samples for MPR. Strategies based on the extraction of
core activation regions aim to mitigate the impact of shifts in
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data distribution by preserving common information within a
specific subset of the samples. This approach reduces the
frequency of model calibration by minimizing the effect of data
shifts to ease the calibration burden on the user.

3.2 Based on feature manipulate

Information extracted from EMG signals is represented as
feature vectors. Feature extraction is considered a crucial step in
MPR (Scheme and Englehart, 2014), as a well-chosen combination
of features can minimize MPR errors (Hudgins et al., 1993). There
are various common feature combinations, such as time-domain
(TD) features proposed by Hudgins et al. (Hudgins et al., 1993). In
recent years, extensive studies have been conducted to enhance the
robustness of MPR through feature manipulation. Three commonly
employed strategies include feature alignment, feature metrics, and
feature optimization.

3.2.1 Feature alignment
Feature alignment is a widely used strategy in feature

manipulation that aims at minimizing the disparity between
cross-domain data distributions. Zhang et al. (Zhang et al., 2022)
employed the MMD distance function as a loss function to compute
the distance between the source and target domains. Minimizing the
distances between the source and target domains decreased the
model’s gradient, achieving feature alignment. Kou et al. (Kou et al.,
2023) developed a domain adaptive framework, known as second-
order statistical distribution alignment (SSDA), that utilizes second-

order covariance as a statistic and achieves alignment in both
subspace and statistical distribution. Covariance characterizes the
interrelationships between dimensions in a multidimensional space,
offering insights into the overall situation. Leveraging these
covariance characteristics improves the overall generalization of
the system. Xue et al. (Xue et al., 2021) extracted inherent user-
independent properties using canonical correlation analysis (CCA)
and subsequently minimized inter-user distributional differences
through the optimal transport (OT) framework. Moreover, many
other robust MPR works are based on similar feature alignment
strategies (Zhang et al., 2022; Wang et al., 2023a; Liu et al., 2023).
Feature alignment involves computing the distance between the
distributions of the source and target domains and subsequently
minimizing this loss to achieve alignment between data domains.
Aligning the data domain facilitates the adaptability of the originally
trained model to the target domain, thereby reducing the need for
model re-training.

3.2.2 Feature metric
Feature metrics serve a different purpose compared to feature

alignment, which not only reduces the distance between different
domains but also aims to increase the data between different
categories, thereby reducing the misclassification rate of the
classifier. Therefore, this method can be used to reject unwanted
actions. Wu et al. (L. Wu et al., 2021) employ a feature metric
function to quantitatively measure the distribution distance between
two samples, enabling them the identification and rejection of
actions identify and reject unwanted actions that deviate
significantly from the target actions. Chappell et al. (Chappell

TABLE 2 Comparison of characteristics and shortcomings of several robust MPR methods.

MPR
Methods

Strategies Advantages Shortcomings

Data Manipulate Data Augmentation
Manipulates

1. No need for calibration data. 2. Applicable to any model.
3. Executing this process imposes almost no burden on
users.

Recognition accuracy improvement is not significant for
scenarios involving category changes.

Core Activation Zone
Extraction

Feature
Manipulate

Feature Alignment Can be employed to minimize the gap between domains
within each distinct category.

1. Significant depreciation in recognition accuracy when there
is insufficient unlabeled calibration data. 2. Recognition
accuracy improvement is not significant for scenarios
involving category changes.Feature Metric Can be utilized to widen the gap between distinct

categories.

Feature Optimization 1. No need for calibration data. 2. Applicable to any model.
3. Executing this process imposes almost no burden on
users.

Recognition accuracy improvement is not significant for
scenarios involving category changes.

Model Structure Pretraining-finetuning Higher recognition accuracy. 1. There is still a large burden of data collection and model
retraining. 2. Recognition accuracy improvement is not
significant for scenarios involving category changes.

Adversarial Learning No need to retrain the model. 1. There is still need burden of unlabeled data collection. 2.
End-user applications with unsatisfactory recognition
accuracy over time. 3. Recognition accuracy improvement is
not significant for scenarios involving category changes.

Meta-
learning

Few-shot
One-shot
Zero-shot

1. Higher flexibility. 2. No need to retrain the model. 1. Few-shot and One-shot require labeled calibration data. 2.
Zero-shot eliminates the need for calibration data but
recognition accuracy is not ideal.

Multi-task Learning 1. A model can be developed customized for each new
scenario. 2. Higher recognition accuracy.

1. Model structure is complex and slow to respond. 2. Model
structure needs to be updated after switching usage scenarios.
3. Insufficient flexibility.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Wang et al. 10.3389/fbioe.2024.1329209

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1329209


et al., 2022) employed the Wasserstein distance to compare the
distribution of the input signal with a set of reference distributions.
The was then classified based on the most similar distribution.
Therefore, the feature metric strategy shares a similarity with the
feature alignment approach as it involves calculating the distance
between domains. However, the feature metric strategy aims not
only to minimize the shift in domain distribution but also to directly
classify or reject categories based on the computed distance. In
certain cases, intentionally increasing the distance serves to alleviate
classification challenges for the classifier. The need for frequent
calibration ofMIs can be alleviated by improving the performance of
the classifier during cross-domain recognition.

3.2.3 Feature optimization
Numerous studies propose novel feature combinations for various

calibration scenarios, and these optimized combinations often
demonstrate greater robustness compared to routine feature sets.
Jiang et al. (Jiang et al., 2022a) utilized linear discriminant analysis
to identify a set of high-performing feature combinations, highlighting
the dependability of optimized features in classifying gestures across
different days. Moreover, Scheme et al. (E. Scheme and Englehart,
2014) achieved significant improvements by substituting conventional
time-domain features with innovative enhancements. The feature
optimization strategy enables the model to acquire a generalized
feature representation, enhancing its performance across domains.
This results in improved cross-domain recognition accuracy and
reduces the frequency of model calibrations. However, using this
simple solution alone is still insufficient. Tkach et al. (Tkach, Huang,
and Kuiken, 2010) suggest using feature optimization strategies as an
adjunct in conjunction with effective classifier training strategies to
further improve the robustness of MIs.

3.3 Based on model structure

With the rapid advancement of deep learning, numerous neural
network models applied in computer vision and natural language
processing have also influenced the field of MPR. However,
designing a model structure for robust MPR is influenced by
physiological factors, making not all models from computer-
related fields applicable. The four primary strategies for achieving
robust MPR through model structure include finetuning, adversarial
methods, meta-learning, and multi-task learning.

3.3.1 Pretraining-finetuning
Pretraining-finetuning refers to the process of improving the

performance of a pre-trained model by adjusting specific
parameters to accommodate changes in the data. This strategy
typically necessitates access to labeled target domain data and
involves retraining the model. Ameri et al. (Ameri et al., 2020)
were the first to employ a depth model and finetuning approach
to calibrate MI, with the goal of addressing the challenge of electrode
shift. Despite its effectiveness, this method still required a substantial
amount of data and calibration time. Subsequently, Chen et al. (Chen
et al., 2021) introduced a novel model and finetuning framework that
reduced the amount of calibration data and further alleviating the
burden on the user. The pre-training-finetuning strategy involves
modifying only specific parameters, thereby decreasing the time
required for model retraining in comparison to a full re-
training process.

3.3.2 Adversarial learning
Although the finetuning strategy has demonstrated

commendable performance in many cases, it still relies on labeled

FIGURE 3
Illustration of themodel architecture of DANN (Domain-Adversarial Neural Network). It contains green blocks (feature extractors), blue blocks (label
classifiers) and red blocks (domain classifiers). The objective of model training is to minimize both label prediction loss (for source examples) and domain
classification loss (for all samples). The gradient reversal layer is instrumental in ensuring that the feature distributions between two domains are made as
similar as possible. This makes it exceedingly challenging for domain classifiers to discern differences between the domains. Such an operation is
designed to generate domain-invariant representations that exhibit high similarity across various domains.
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data for calibration. In contrast, the adversarial learning strategy
provides independence from labeled calibration data. This approach
is widely employed to acquire domain-invariant features. Ganin
et al. (Ganin et al., 2016) were pioneers in introducing an adversarial
neural network (DANN) for the field of computer vision (Figure 3).
In this model, a discriminator is trained to distinguish between
different domains, while a generator is trained to deceive the
discriminator, facilitating the learning of domain-invariant
feature representations. Cote et al. (Cote-Allard et al., 2020; Côté-
Allard et al., 2021) proposed the adaptive domain adversarial neural
network (ADANN) for MI, employing the adversarial concept to
alleviate cross-domain data variations. The concept behind ADANN
is to extract a universal feature representation from this multi-
domain setting. Zhang et al. (Y. Zhang et al., 2023) proposed an
improved conditional domain adversarial network (ICDAN). This
model calculates the conditional domain adversarial network
(CDAN) loss between source domain features and target domain
features through a discriminator. The CDAN loss is employed to
align features and categories. There are also many MPR algorithms
based on adversarial learning which strategy is one of the most
popular deep learning-based MPR algorithms (Y. Hu et al., 2019;
Leite and Xiao, 2020; Choi et al., 2022). Adversarial learning
strategies facilitate the unsupervised training of domain-invariant
features between domains. This approach maximizes adaptation to
both source and target domains, effectively reducing the need for
model re-training and eliminating the requirement for labeled
calibration data.

3.3.3 Meta-learning
Meta-learning, referred to as learning-to-learn, has attracted

considerable attention in recent years (Rahimian et al., 2021). Unlike
traditional machine learning, models are trained with a focus on
solving specific tasks. Meta-learning aims to enhance the
generalization capabilities of the models, enabling them to learn
rapidly and accurately with a limited number of samples and
empirical data, even when faced with previously unseen tasks.
Thus, meta-learning aligns better with the concept of natural
interaction. It can address both the challenge of scarcity of
training samples and facilitate swift command set switching.
According to the amount of calibration data required, meta-
learning is categorized into few-shot learning, one-shot learning,
and zero-shot learning. Rahimian et al. (Rahimian et al., 2021)
proposed the “few-shot learning hand gesture recognition”
framework (FS-HGR) based on meta-learning. The framework
combines temporal convolution and attention mechanisms. The
objective is to rapidly calibrate MI using a limited number of
calibration datasets (1-5 labeled samples per action category).
Wang et al. (Wang et al., 2023b) improved the flexibility of MIs
when crossing domains by leveraging a similarity function for one-
shot learning, with only one labeled sample per action category. This
approach utilizes a Siamese neural network to train a similarity
function that evaluates the similarity between pairs of samples. In
novel scenarios with newly introduced gesture categories and/or
new users, rapid calibration of the MI can be achieved with just one
sample per category. Al-Naser et al. (Al-Naser et al., 2018) proposed
a framework based on zero-shot learning that utilized unlabeled
samples. Unlike the idea of traditional frameworks that recognize
fixed action categories, zero-shot learning involves setting action

categories as predefined basic actions and related combinations of
actions. Once an unknown action is recognized, it is automatically
transformed into a predefined combination of basic actions,
eliminating the need for calibration. Meta-learning demands a
few calibration data, or even none (Zero-shot), for proficiently
classifying unseen categories. It is especially well-suited for
dynamic data categories tasks, facilitating rapid additions or
substitutions in the command set, thereby enhancing the
flexibility of MIs. This approach significantly reduces the
calibration data requirement for users and eliminates the need
for the model re-training process.

3.3.4 Multi-task learning
Multi-task learning involves training a model to simultaneously

handle multiple related tasks, rather than training separate models
for each task as the routine strategy. The central concept of multi-
task learning is to enhance the model’s generalization across all tasks
by sharing knowledge and features. A related concept is multi-
domain learning, which commonly applies the principles of multi-
task learning. In multi-domain learning, the model is trained on data
from various domains, to improve its adaptability to the data shifts
occurring in these different domains. Consequently, this strategy
enhances the model’s generalization performance, making multi-
domain learning most suitable for addressing challenges related to
data domain shifts. He et al. (He et al., 2020) introduced a position
recognition framework that utilizes multi-domain learning to
mitigate the effects of electrode shifts. In the training phase, data
were gathered from both the initial position and potential shifted
locations, and classifiers were trained using data from each specific
location. In the testing phase, the user executed a specialized gesture
designed to detect electrode shifts. This concise gesture contraction
facilitated the selection of the optimal classifier, which was
subsequently employed for subsequent myoelectric control.
Kulwa et al. (Kulwa et al., 2023) proposed a dual-stage
convolutional neural network (DS-CNN)-based model, where
multiple convolutional neural network (CNN) models are trained
in the first stage for shifts at different locations. The second stage
then triggers the corresponding models based on the detected
electrode shift locations to accurately decode the individual’s
motor intention. Rahimian et al. (Rahimian et al., 2023)
proposed dynamic multi-task learning, where a multi-task
network can dynamically decide which parts of the network to
activate based on the task and input samples, with the aim of
exploiting the task and sample conditions to improve the weight-
sharing flexibility of the multi-task network, and ultimately achieve
better generalization among multiple tasks. Multi-task learning
allows the model to perform well on multiple tasks at the same
time by learning generalized representations for different domains,
which in turn reduces the process of calibrating MIs.

4 Discussion

In summary, the robust MPR methods hold great potential for
creating user-friendly MI devices. These methods boast various
advantages, as we have outlined, the most significant being their
capacity to alleviate the calibration burden on the user while
enhancing the flexibility of the MIs.
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4.1 Alleviating calibration burden

Robust MPR methods are implemented to alleviate the
calibration burden for users. This burden usually consists of
two parts: calibration data collection and model training time
(Wang et al., 2023a). Minimizing the number of calibration
samples and shortening the model training time can lead to a
reduction. For MI devices, the model training time usually consists
of two parts: pre-training time and re-training time. The pre-
training time for robust MPR algorithms based on deep learning is
indeed quite extended, sometimes reaching hourly durations.
Nevertheless, this process can be computed in advance using a
substantial amount of offline data, and the end-user is not
inconvenienced by this phase. What can impact users’
calibration burden is typically the computational time for
model re-training.

4.1.1 Computational time for model re-training
The extended computation time of re-training significantly

impacts the calibration burden on end-users. Prolonged waiting
times, especially when switching scenarios, can adversely affect the
overall user experience. However, recent advancements have
resulted in novel models that substantially decrease or eliminate
the necessity for re-training (Cote-Allard et al., 2020; Wang et al.,
2023b). Some robust MPR methods, such as zero-shot learning,
have been reported to completely eliminate the need for the model
re-training process (Al-Naser et al., 2018). On the other hand,
routine machine learning models such as KNN require only a
millisecond level for retraining (Guo et al., 2003; Murugappan,
2011; Wang et al., 2023a). While certain robust MPR algorithms
have demonstrated the elimination of model re-training time,
routine machine learning methods generally maintain an
acceptable level of re-training time. Therefore, computation
time is not the primary contributor to the calibration burden
on the end-user. Indeed, the significant breakthrough achieved by
the robust MPR approach lies in the substantial reduction of
calibration data.

4.1.2 Re-collection process for calibration data
In traditional machine learning, four repetitions are

performed. With each action category having a contraction time
of 5 seconds, requiring over 3 minutes to collect data for just ten
actions. In contrast, some robust MPR methods, such as zero-shot
learning and data augmentation, do not require any calibration
data (Rahimian et al., 2021; Wang et al., 2023b). Therefore, robust
MPR methods offer substantial advantages in alleviating the
calibration burden.

4.2 Enhancing flexibility

Flexibility plays a vital role in commercial MIs, as it enables them
to swiftly adapt to the donning and doffing of prosthetics and
wearable MIs. Moreover, these MIs must possess the capability to
seamlessly switch between users, rapidly adjust the range of action
commands, and handle various scenarios effectively (Jiang and
Farina, 2014; Fleming et al., 2021). Research efforts have yielded
targeted solutions for these challenges with some studies

demonstrating the possibility of achieving plug-and-play
functionality without the need for any calibration data (L. Wu
et al., 2020; Al-Naser et al., 2018). These approaches provide
substantial advantages over standard methods, which typically
demand a large amount of labeled data collection and model
updating during the switching process between command sets
(Guo et al., 2003; Murugappan, 2011; Paul, Goyal, and Jaswal,
2017). In contrast, robust MPR methods greatly enhance the
flexibility of MIs, making them more versatile and user-friendly.

5 Challenges and opportunities

Current MIs based on MPR often face limitations related to
specific calibration burden scenarios, hindering their ability to
switch seamlessly between different scenarios. As an example, an
MI device that focuses on cross-users usually struggles to perform
well cross-set (Rodriguez-Tapia et al., 2020). Moreover, specific
MPR strategies, such as adversarial learning, require substantial
amount of unlabeled data despite not necessitating labeled
calibration data. However, the challenge lies in the fact that
although unlabeled data can be gathered during the myoelectric
interface’s usage, it cannot be directly utilized by end-users,
particularly if it is not acquired sufficiently during the device’s
initialization phase (Côté-Allard et al., 2020; Cote-Allard et al.,
2020). This limitation impedes the direct usability of the MI in
such situations. Although certain data and feature manipulation
strategies have the potential to eliminate the need for calibration
entirely, insufficient understanding of the target domain can result
in decreased recognition accuracy (L. Wu et al., 2020). Additionally,
it is crucial for the MPR algorithm to maintain stable recognition
accuracy in both offline and online testing scenarios. Although
Ameri et al. (Ameri et al., 2018) have demonstrated that there is
no significant difference in pattern recognition accuracy between
CNNmodels tested online and SVMmodels tested offline. However,
for the same algorithm, there are also many studies reporting that
the real-time accuracy is not as good as the offline accuracy (Zhang
et al., 2020). Numerous robust MPR algorithms, including those
reviewed in this article, have been evaluated primarily through
offline testing. The potential oversight in focusing on real-time
testing results may be attributed to the lack of standardized
evaluation criteria (Hinson et al., 2023) or their limited
deployment in the industry at present. Despite the promise
shown by certain algorithms, like the DANN-based robust MPR
algorithm implemented in a virtual reality system by Côté-Allard
et al. (Côté-Allard et al., 2020), the authors categorize this testing as
“dynamic dataset training” due to feedback solely from the visual
camera. It is not a true online test. Hence, enabling effective online
testing remains a challenge for robust MPR.

In the future, the overarching aim for MI is to achieve genuine
“plug-and-play” functionality. This entails not only the capability for
online applications but also the elimination of any calibration burden.
Data-driven MIs relying solely on data face challenges in achieving
satisfactory recognition accuracy due to the absence of target domain
information. In recent years, integrating physiological knowledge, such
as musculoskeletal information, has become a trend in MI research
(Hu, et al., 2021; Li, Wang, et al., 2023). This approach, grounded in
physiological modeling, ensures robustness in the face of EMG signal

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Wang et al. 10.3389/fbioe.2024.1329209

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1329209


variations. Its effectiveness lies in the recognition that the formation of
the EMG signal is influenced by a variety of factors, including skin
condition, blood flow, fat composition, and temperature, among
others, rather than being a simple linear combination of motor unit
action potentials (MUAPs) (Farina, Stegeman, and Merletti, 2016;
J. Wu et al., 2019). Musculoskeletal models encompass deterministic
information, incorporating models like Hill-type muscle models and
multilink arm dynamic models (Heine, Manal, and Buchanan, 2003;
Pan, Crouch, and Huang, 2018). These models not only derive insights
from EMG signals themselves but alsomap internal muscle force states
and anticipated joint movements based on physiological features.
Moreover, this approach excels in learning the user’s own intricate
factors of variation. Hence, by employing the MPR method that
integrates physiological knowledge, the model can gather more
valuable information. It no longer treats EMG signals as a black
box, directly mapping them to joint kinematics. This advancement
enhances the performance and adaptability of the interface (Berman
et al., 2023).
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