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Abstract

Purpose –This paper aims to study Irreversible conversion processes, which examine the spread of a oneway
change of state (from state 0 to state 1) through a specified society (the spread of disease through populations,
the spread of opinion through social networks, etc.) where the conversion rule is determined at the beginning of
the study. These processes can be modeled into graph theoretical models where the vertex set V(G) represents
the set of individuals on which the conversion is spreading.
Design/methodology/approach –The irreversible k-threshold conversion process on a graphG5(V,E) is an
iterative process which starts by choosing a set S_0?V, and for each step t (t5 1, 2,. . .,), S_t is obtained from
S_(t�1) by adjoining all vertices that have at least k neighbors in S_(t�1). S_0 is called the seed set of the
k-threshold conversion process and is called an irreversible k-threshold conversion set (IkCS) ofG if S_t5V(G)
for some t 5 0. The minimum cardinality of all the IkCSs of G is referred to as the irreversible k-threshold
conversion number of G and is denoted by C_k (G).
Findings – In this paper the authors determine C_k (G) for generalized Jahangir graph J_(s,m) for 1 < k5 m
and s,m are arbitraries. The authors also determineC_k (G) for strong gridsP_2?P_nwhen k5 4, 5. Finally, the
authors determine C_2 (G) for P_n? P_n when n is arbitrary.
Originality/value – This work is 100% original and has important use in real life problems like Anti-
Bioterrorism.

Keywords Jahangir graph, Strong grid graph, Graph conversion process, k-threshold conversion set

Paper type Research paper

1. Introduction
As usual n ¼ jV j andm ¼ jEjdenote the numbers of vertices and edges at a graph GðV ;EÞ,
respectively. LetY ⊆V and let F be a subset of E such that F consists of all edges of Gwhich
have endpoints inY , thenH ¼ ðY ;FÞ is called an induced subgraph ofGbyY and is denoted
byGY :The open neighborhood of a vertex v∈V isNðvÞ ¼ fu∈V : uv∈Egwhile the closed
neighborhood of v is N ½v� ¼ NðvÞ∪ fvg. The degree of a vertex v is denoted by degðvÞ and
degðvÞ ¼ jNðvÞj. An independent vertex set of a graph GðV ;EÞ is a subset of V such that no
two vertices in the subset represent and edge of G. The independence number, denoted by
αðGÞ, is the cardinality of the largest independent vertex set of G. The term irreversible
k-threshold conversion problem on graphs refers to the process of finding the least number of
vertices we need to initially convert in step t ¼ 0 in order to get an irreversible k-threshold
conversion process, which is an iterative process that starts by choosing a seed set S0 ⊆V ,
and for each step tðt ¼ 1; 2; . . . ;Þ; St is obtained from St−1 by adjoining all vertices that have
at least k neighbors in St−1.We call S0 the seed set of the k-threshold conversion process and if
St ¼ V ðGÞ for some t ≥ 0, then S0 is an irreversible k-threshold conversion set (IkCS) ofG. The
k-threshold conversion number of G (denoted by CkðGÞ) is the minimum cardinality of all the
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IkCSs of G: It is obvious that 1≤ k≤ΔðGÞ and C1ðGÞ ¼ 1 for connected graphs. The first
graphmodel of the Irreversible k-threshold conversion problemwas presented by Dreyer and
Roberts in Ref. [1] where they determined the value of C2ðGÞ for paths and cycles. They also
determined C2ðGÞ andC3ðGÞ for grid graphs P3@Pn. In Ref. [2] Kyn�cl et al. found an upper
bound for CkðGÞ of toroidal grids of size m3 n if m ¼ 4 or n ¼ 4. In Ref. [3] Adams et al.
presented an upper bound for CkðGÞof the tensor product of two arbitrary graphsG andH. In
Ref. [4] Mynhardt and Wodlinger presented a lower bound for CkðGÞ of graphs of maximum
degree kþ 1: Frances et al. [5] studied the relationship between IkCSs and minimum
decycling sets. An upper bound for CkðGÞ of regular graphs was presented byMynhardt and
Wodlinger in Ref. [6]. In Ref. [7] Shaheen et al. studied irreversible k-threshold conversion
processes on circulant graphs. In Ref. [8] Shaheen et al. determined C2ðGÞ andC3ðGÞ for the
strong grid graphs Pm@Pn when m ¼ 2; 3. For further information on the irreversible
k-threshold conversion problem on graphs see Centeno et al. [9], Takaoka andUeno [10], Kyn�cl
et al. [11]. A generalized Jahangir graph Js;m for m≥ 2 is a graph on smþ 1vertices, i.e. a graph
consisting of a cycle Csmwith one additional vertex which is adjacent to m vertices of Csm at
distance s from each other on Csm, see Ref. [12] for more information on Jahangir graph. Let
vsmþ1 be the label of the central vertex and v1; v2; . . . ; vsm be the labels of the vertices that
incident clockwise on cycleCsm so that degðv1Þ ¼ 3.Wewill use this labeling for the rest of the
article. The vertices that are adjacent to vsmþ1 have the labels v1; v1þs; v1þ2s; . . . v1þðm−1Þs:Let
Pm, Pn be two paths, we define the strong product of Pm and Pn (also called strong grid graph)
as the graph Pm@Pn such that V ðPm@PnÞ ¼ fði; jÞ : 1≤ i≤m; 1≤ j≤ ng and two vertices
ði1; j1Þ; ði2; j2Þ are adjacent if and only if maxfji2 − i1j; j j2 − j1jg ¼ 1: See Ref. [13] for more
information on strong grids:

Proposition 1.1. [3] For n≥ 2; C2ðPnÞ ¼ nþ1
2 :

Proposition 1.2. [3] For n≥ 3; C2ðCnÞ ¼ n
2:

Proposition 1.3. [13] For n≥ 2; C2ðP2@PnÞ ¼ 2:

Proposition 1.4. [13] For n≥ 2; C3ðP2@PnÞ ¼ nþ 1:

Proposition 1.5. [6] Form; n≥ 2; αðPm@PnÞ ¼ m
2

n
2:

Note 1: As an immediate consequence of the definition, CkðGÞ≥ k for any graph G.

Note 2: As an immediate consequence of the definition, when studying an irreversible k-
threshold conversion process on a graph GðV ;EÞ all vertices fv∈V ; degðvÞ < kgmust be
included in the seed set S0, otherwise the process will fail because none of these vertices can
satisfy the conversion rule.

Note 3: For Jahangir graph Js;m;we denote the set of vertices of degree 3 which consists of
v1; v1þs; . . . v1þðm−1Þs by R: So, R ¼ fv1þis : i ¼ 0; 1; . . . ;m− 1g
Note 4: In every figure of this article, we assign the black color to the converted vertices and
the white color to unconverted ones:

2. Main results
In this section we determine CkðGÞ for generalized Jahangir graph Js;m for 1 < k≤m and s;m
are arbitraries. We also determine CkðGÞ for strong grids P2@Pn when k ¼ 4; 5: Then we
determine C2ðGÞ for Pn@Pn when n is arbitrary.

2.1 Ckð Js;mÞ
In this sub-section we find CkðGÞ of generalized Jahangir graph Js;m for 1 < k≤m and s;m
are arbitraries.
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Theorem 2.1. For s;m≥ 2; C2ðJs;mÞ ¼ mðs− 1Þ
2 þ 1:

Proof. Let Js;m be a Jahangir graph on which an irreversible 2-threshold conversion process
is being studied with a seed set S0, letU ⊆V −S0 and vsmþ1 ∉U, thenU is a 2-unconvertible
set of Js;m if it satisfies the following condition:

For all u∈U : jNðuÞ \ U j≥ 2:

Which means each vertex u∈U is unconverted and is adjacent to at least 2 vertices of U at
t ¼ 0. Since degðuÞ≤ 3 then jNðuÞ \ S0j < 2and the conversion cannot reach any vertex ofU
during any step of the process. Therefore, we try to avoid having any version of U on
Js;mwhen choosing S0. We imply that the following sets A1 ¼ fa; b; cg with ðdegðaÞ ¼
degðcÞ ¼ 2and degðbÞ ¼ 3Þ,B1 ¼ fx; yg (with degðxÞ ¼ degðyÞ ¼ 2) are 2-unconvertible sets
on Js;m . Both A1 and B1 are represented in Figure 1.

By Proposition 1.1, we have C2ðPnÞ ¼ nþ1
2 : It is obvious that the nþ1

2 − IkCS of a path Pn must
contain the end vertices fv1; vngotherwise the spread will never reach them. The vertices ofR
divide Csm intompaths (each of which consists of s− 1vertices and they are separated by the
vertices of R). We denote these paths as follows:

P
ð1Þ
s−1 ¼ v2 . . . vs;

P
ð2Þ
s−1 ¼ v2þs . . . v2s;

..

.

P
ðmÞ
s−1 ¼ v2þðm−1Þs . . . vms:

We consider the following subcases:
Case 1. s is even.

In this case, each path P
ðiÞ
s−1 : 1≤ i≤m contains an odd number of vertices. We divide

V ðPðiÞ
s−1Þ into two sets:

EPi ¼
�
v2þði−1Þs; v4þði−1Þs; . . . ; vis

�
which consists of

s� 1

2
vertices:

OPi ¼
8<
:

∅ if s ¼ 2;

�
v3þði−1Þs; v5þði−1Þs; . . . ; vis−1

�
which consists of

s� 1

2
vertices if s≥ 4:

We define a family of sets D ¼
�
Di : 1≤ i≤m; whereDi ¼

�
EPi if i is odd;
OPi if i is even:

�

The process goes as follows:

t ¼ 0: We convert the vertices of S0 ¼ D ∪ fvsmþ1g:
t ¼ 1: The conversion spreads to:

Figure 1.
A1 ¼ fa; b; cg;
B1 ¼ fx; yg are

2-unconvertible on Js;m
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� The vertices of fOPi : i is oddg.
� The vertices of fEPi − fv2þði−1Þs; visg : i is eveng.
� The vertices of degree 3 (vertices of R).

t ¼ 2 : The conversion spreads to fv2þði−1Þs; vis : i is eveng.

By the end of step t ¼ 2, the conversion is spread to V ð Js;mÞ entirely and the process

succeeds. It is obvious that jS0j ¼

8><
>:

m

2

�
s− 1

2
þ s− 1

2

�
þ 1 if m is even;

m

2

s− 1

2
þm

2

s− 1

2
þ 1 if m is odd:

Which means:

C2

�
Js;m

	
≤
mðs� 1Þ

2
þ 1 (1)

Figure 2 shows that C2ð J6;4Þ≤ 11:
We imply that the setsA1 ¼ fa; b; cg,B1 ¼ fx; yg represented inFigure 1 are 2-unconvertible

on Js;m. We notice thatD is the only mðs− 1Þ
2 - seed set that does not leave any versions ofA1 or B1

on Csm and every k-seed set with k < mðs− 1Þ
2 will leave some versions of A1 or B1 on Csm. Let us

assume that D0 is a IkCS of cardinality mðs− 1Þ
2 , we consider the following subcases:

Case 1.a. vsmþ1 ∉D0, which meansD0 ⊆V ðCsmÞ, and since jD0j ¼ mðs− 1Þ
2 , thenD0 ¼ D as

we found earlier. However, since C2ðCsmÞ ¼ sm
2 by Proposition 1.2, it is impossible to convert

all the vertices of Csm depending only onD. Therefore, we need to convert vsmþ1 at some point
and benefit from it being adjacent tomvertices ofCsm. To achieve that we need at step t ¼ 0to
choose one of three strategies:

� Convert 2 vertices of R (e.g. v1; v1þs). However, that leaves
mðs− 1Þ

2 − 2 vertices in D0

whichmeans we end upwith at least two versions ofB1 and the process fails as shown
in Figure 3(a).Without loss of generality, any choice of the two vertices ofR leads to the
same result.

� Convert 1 vertex of R (e.g. v1), and 2 vertices that are adjacent to a vertex of R (for

example v2s; v2þ2s), by converting the remaining mðs− 1Þ
2 − 3 vertices in D0 in a similar

way to D, we end up with two versions of B1 and the process fails as shown in

Figure 2.
C2ð J6;4Þ≤ 11
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Figure 3(b). Without loss of generality, any choice of the one vertex of R and the two
vertices that are adjacent to a vertex of R leads to the same result.

� Convert 2 pairs of vertices each of which is adjacent to one vertex of R ðe:g:v2; vsm;
vs; v2þsÞ;by converting the remaining mðs− 1Þ

2 − 4vertices in D0 in a similar way to D,
we end up with two versions ofB1 and the process also fails as shown in Figure 3(c).
Without loss of generality, the same result is obtained for whatever 4 vertices that
each of which is adjacent to a vertex of R we choose to initially convert.

All strategies end upwith two versions ofB1 onCsm, andwithout loss of generality, we get the
same results by choosing different vertices that satisfy the conditions mentioned in the three

strategies above, therefore C2ð Js;mÞ > mðs− 1Þ
2 when s is even and vsmþ1 ∉D0.

Case 1.b. vsmþ1 ∈D0, by converting
mðs− 1Þ

2 vertices of Csmwe end up with two versions of

B1 (as shown in Figure 3(d)), and the process fails. Therefore, C2ð Js;mÞ > mðs− 1Þ
2 in this case

as well.
From Case 1.a and Case 1.b we conclude that:

For s is even; C2

�
Js;m

	
>

mðs� 1Þ
2

: (2)

From (1) and (2) we conclude that for s is even; C2ð Js;mÞ ¼ mðs− 1Þ
2 þ 1.

Figure 3.
C2ð J6;4Þ > 10
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Case 2. s is odd.

In this case, each path P
ðiÞ
s−1 : 1≤ i≤m contains an even number of vertices. We define a

family of setsD ¼ fDi : 1≤ i≤mgwhereDi ¼ fv2þði−1Þs; v4þði−1Þs; . . . ; vis−1gwhich contains
mðs− 1Þ

2 vertices. The process goes as follows:

(1) t ¼ 0: We convert the vertices of S0 ¼ D ∪ fvsmþ1g.
(2) t ¼ 1: The conversion spreads to the vertices of fDi − fvis−1g : 1≤ i≤mg.
(3) t ¼ 2 : The conversion spreads to fvis−1 : 1≤ i≤mg:

By the end of step t ¼ 2, the conversion is spread to V ð Js;mÞ entirely and the process
succeeds.

It is obvious that jS0j ¼ mðs− 1Þ
2 þ 1whichmeansC2ð Js;mÞ≤ mðs− 1Þ

2 þ 1: In a similar way to

Case 1, S0 is the only IkCS of cardinality mðs− 1Þ
2 þ 1 because D is the only set of cardinality

mðs− 1Þ
2 that does not leave any versions ofA1 orB1 onCsm. By following the same discussion in

Case 1 we conclude that C2ð Js;mÞ > mðs− 1Þ
2 if s is odd, which means C2ð Js;mÞ ¼ mðs− 1Þ

2 þ 1 if s
is odd.

Figure 4 illustrates a 2-conversion process on J7;4 starting with jS0j ¼ 13:

From Case 1 and Case 2 we conclude that C2ð Js;mÞ ¼ mðs− 1Þ
2 þ 1 for s≥ 2.

Theorem 2.2. For m≥ 2; C3ð Js;mÞ ¼ mðs− 1Þ þ 1:

Proof. By definition all vertices with degree lower than 3 need to be added to the seed set S0.
However, in order to convert a vertex of degree 3, we need it to be adjacent to three converted
vertices which means the conversion will not spread unless vsmþ1 is initially converted. The
process goes as follows:

t ¼ 0 :We convert the vertices of S0 ¼ fVðCsmÞ−Rg∪ fvsmþ1g, we implied that this set is
unique.

t ¼ 1 : The conversion spreads to the vertices of R.

Figure 4.
A 2-conversion process
on J7;4 starting
with jS0j ¼ 13
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The process succeeds and Js;m is entirely converted by the end of step 2 which means that
C3ð Js;mÞ≤mðs− 1Þ þ 1, since S0 is unique and none of its vertices can be removed,
then C3ð Js;mÞ ¼ mðs− 1Þ þ 1.

Theorem 2.3. For 4≤ k≤m; Ckð Js;mÞ ¼ sm:

Proof. By definition all vertices with degree lower than 4 need to be included in S0 which
means S0 ¼ V ðCsmÞ and this set is unique. The process goes as follows:

t ¼ 0: We convert the vertices of S0 ¼ V ðCsmÞ.
t ¼ 1: The conversion spreads to vsmþ1.

The process succeeds and Js;m is entirely converted by the end of step 2 which means that
Ckð Js;mÞ≤ sm, since S0 is unique and none of its vertices can be removed, we conclude
that Ckð Js;mÞ ¼ sm.

2.2 CkðPm@PnÞ
In this sub-section we determine CkðGÞ for strong grids P2@Pn when k ¼ 4; 5: Then we
determine C2ðGÞ for Pn@Pn when n is arbitrary.

Theorem 2.4. For n≥ 3; C4ðP2@PnÞ ¼
�
nþ 1 if n is odd;
nþ 2 if n is even:

Proof. Let P2@Pn be a strong grid graph on which an irreversible 4-threshold conversion
process is being studied with a seed set S0, let U ⊆V − S0 and fð1; 1Þ; ð1; nÞ; ð2; 1Þ;
ð2; nÞg \ U ¼ ∅, thenU is a 2-unconvertible set ofP2@Pn if it satisfies the following condition:

For all u∈U : jNðuÞ \ U j≥ 2:

Which means each vertex u∈U is unconverted and is adjacent to at least 2 vertices of U at
t ¼ 0. Since degðuÞ ¼ 5 then jNðuÞ \ S0j≤ 3 and the conversion cannot reach any vertex ofU
during any step of the process. Therefore, we try to avoid having any version of U on P2@Pn

when choosing S0. For 2≤ j≤ n− 1, we imply that the following sets are 4-unconvertible:
X1 ¼ fð1; j− 1Þ; ð1; jÞ; ð2; jÞg, X2 ¼ fð2; j− 1Þ; ð1; jÞ; ð2; jÞg, X3 ¼ fð1; jÞ; ð2; jÞ; ð1; jþ 1Þg,

X4 ¼ fð1; jÞ; ð2; jÞ; ð2; jþ 1Þg. Figure 5 shows that for 1≤ i≤ 4: if Xi \ S0 ¼ ∅ on P2@P6

then none of the vertices of Xi can be converted and the process fails even if S0 ¼ V −Xi. In
order to avoid having any version of X1;X2;X3 or X4 on P2@Pn, every two adjacent columns
must include at least two vertices of S0 at t ¼ 0.

We consider the following cases:

Case 1. n is odd.
Let S0 be a seed set of an irreversible 4-threshold conversion process on P2@Pn; since each

vertex ofW ¼ fð1; 1Þ; ð1; nÞ; ð2; 1Þ; ð2; nÞg is of degree 3, thenW ⊂S0, otherwise the process
fails. Since we are trying to avoid having two adjacent columns that include less than two

Figure 5.
X1;X2;X3 and X4 are

4-unconvertible
on P2@P6
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vertices of S0 at t ¼ 0, we choose S0 ¼
�ð1; 2l þ 1Þ; ð2; 2l þ 1Þ: 0≤ l ≤ n− 1

2

�
, which means S0

contains all the vertices of the odd indexed columns of P2@Pn and jS0j ¼ nþ 1. The process
goes as follows:

t ¼ 0: S0 ¼
�
ð1; 2l þ 1Þ; ð2; 2l þ 1Þ: 0≤ l ≤

n� 1

2

�
:

t ¼ 1: S1 ¼ S0 ∪
�
ð1; 2lÞ; ð2; 2lÞ: 1≤ l ≤

n� 1

2

�
¼ V ðP2@PnÞ:

This means S0 is an I4CS on P2@Pn. Therefore, if n is odd then:

C4ðP2@PnÞ≤ nþ 1 (3)

Figure 6 illustrates that C4ðP2@P9Þ≤ 10.
Now let us assume that D0 is a 4-conversion seed set of cardinality n on P2@Pn. SinceW

must be contained inD0, thismeanswe need to distribute the remaining n− 4vertices ofD0 on
the remaining n− 2 columns ð2; 3; . . . ; n− 1Þ without having two adjacent columns that
include less than two vertices ofD0 which is impossible. Therefore, we end upwith at least one
version of X1;X2;X3 or X4 on P2@Pn and the process fails. This means if n is odd:

C4ðP2@PnÞ>n (4)

From (3) and (4) we conclude that C4ðP2@PnÞ ¼ nþ 1 if n is odd.

Case 2. n is even.
In a similar way to Case 1, the vertices of W must be contained in the seed set S0. We

choose S0 ¼
�ð1; 2l þ 1Þ; ð2; 2l þ 1Þ: 0≤ l ≤ n

2− 1
�
∪ fð1; nÞ; ð2; nÞg which is of cardinality

nþ 2. The process goes as follows:

t ¼ 0: S0 ¼
n
ð1; 2l þ 1Þ; ð2; 2l þ 1Þ: 0≤ l ≤

n

2
� 1

o
∪ fð1; nÞ; ð2; nÞg:

t ¼ 1: S1 ¼ S0 ∪
n
ð1; 2lÞ; ð2; 2lÞ: 1≤ l ≤

n

2
� 1

o
¼ VðP2@PnÞ:

This means S0 is an I4CS on P2@Pn. Therefore, if n is even then:

C4ðP2@PnÞ≤ nþ 2 (5)

Figure 7 shows thatC4ðP2@P10Þ≤ 12. According to the same 4-threshold conversion process,
let D0 be an I4CS of cardinality nþ 1. Since W must be contained in D0, it is impossible to
distribute the remaining n− 3 vertices of D0 on the n− 2 unconverted columns at t ¼ 0
without having at least two adjacent columns that include less than two vertices ofD0, which
means a version of X1;X2;X3 or X4 will definitely be created on P2@Pn and the process fails.
We conclude that if n is even then:

Figure 6.
C4ðP2@P9Þ≤ 10
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C4ðP2@PnÞ>nþ 1 (6)

From (5) and (6) we conclude that C4ðP2@PnÞ ¼ nþ 2 if n≥ 4and n is even. From Case 1 and
Case 2 we conclude the requested.

Theorem 2.5. For n≥ 3; C5ðP2@PnÞ ¼

8><
>:

3nþ 1

2
if n is odd;

3n

2
þ 1 if n is even:

Proof. In a similar way to Theorem 2.4, the vertices of W ¼ fð1; 1Þ; ð1; nÞ; ð2; 1Þ; ð2; nÞg
must be included in the seed set S0. Now we try to determine which vertices ofM ¼ V −W
we need to include in S0. Since M ¼ fð1; jÞ; ð2; jÞ: 2≤ j≤ n− 1g, every vertex of M is of
degree 5 which means there cannot be two adjacent vertices v1; v2 ∈M −S0. Otherwise, the
process will fail because neither v1 nor v2 will be converted at any step of the conversion
process. We conclude thatM − S0 must be an independent set. In order to make S0 as small as
possible, we try to makeM − S0 as large as possible. We notice thatM represents the vertices
of a stronggridP2@Pn−2 with the difference that the endvertices ofM: ð1; 2Þ; ð2; 2Þ; ð1; n− 1Þ,
ð2; n− 1Þ are of degree 5 while the end vertices of a usual P2@Pn−2 strong grid:
ð1; 1Þ; ð2; 1Þ; ð1; nÞ, ð2; nÞ are of degree 3, but this difference does not change that
αðGM Þ ¼ αðP2@Pn−2Þ which means from Proposition 1.5, αðGM Þ ¼ n− 2

2 . We conclude that
theminimumcardinality ofS0 that does not allowhaving two adjacent unconverted vertices is:

jS0j ¼ jM j− αðGM Þ þ jW j ¼ 2ðn− 2Þ− n− 2
2 þ 4 ¼ 2n− n− 2

2 . We consider the following
cases for n :

Case 1. n is odd.
Since n is odd then αðGM Þ ¼ n− 1

2 . Therefore, C5ðP2@PnÞ ¼ 2 n− n− 1
2 ¼ 3 nþ1

2 .
Case 2. n is even.
Since n is even then αðGM Þ ¼ n− 2

2 . Therefore, C5ðP2@PnÞ ¼ 2 n− n− 2
2 ¼ 3 n

2 þ 1.
From Case 1 and case 2 we conclude the requested.

Theorem 2.6. For n≥ 3; C2ðPn@PnÞ ¼ 2.

Proof. It is known by definition that CkðGÞ≥ k for any G. Therefore, C2ðPn@PnÞ≥ 2. Now
we prove that C2ðPn@PnÞ≤ 2by finding an I2CS of cardinality 2 on Pn@Pn. In order to make
the conversion steps as few as possible, we start from the middle by choosing the seed set to
be S0 ¼

��
n− 1
2 ; nþ1

2

	
;
�
nþ3
2 ; nþ1

2

	�
. The process goes as follows:
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Figure 7.
C4ðP2@P10Þ≤ 12
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t ¼ 2: S2 ¼ S1 ∪
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t ¼ 4: S4 ¼ S3 ∪
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We notice that at t ¼ nþ1
2 , the spread reaches its limits horizontally and vertically (the three

middle vertices of each of the first row, the last row, the first column and the last column are
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converted). Therefore, in the remaining steps, the conversion spreads only diagonally as
follows:

t ¼ nþ 1

2
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2
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When we reach step t ¼ n− 1, we have m ¼ n− 3
2 which means:
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¼ Sn−2 ∪ fð1; 1Þ; ð1; nÞ; ðn; 1Þ; ðn; nÞg ¼ VðPn@PnÞ

we conclude that S0 is an I2CS of cardinality 2 on Pn@Pn. Therefore, C2ðPn@PnÞ≤ 2 which
means C2ðPn@PnÞ ¼ 2 if n is odd. Figure 8 illustrates that C2ðP9@P9Þ ¼ 2:

Case 2. n is even.
In a similar way to Case 1, we need to prove that C2ðPn@PnÞ≤ 2by finding an I2CS of

cardinality 2 on Pn@Pn. We start from the middle to make the conversion steps as few as
possible. We choose the seed set to be S0 ¼

��
n
2;

n
2

	
;
�
n
2 þ 1; n2 þ 1

	�
. The process goes as

follows:
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t ¼ 2: S2 ¼ S1 ∪
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Figure 8.
C2ðP9@P9Þ ¼ 2
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2≤ t ≤
n

2
: St ¼ St−1 ∪

n
n
2
� t þ 1;

n

2

�
;

n
2
� t þ 1;

n

2
þ 1

�
;

n
2
;
n

2
� t þ 1

�
;
n

2
þ 1;

n

2
� t þ 1

�
;

n
2
þ t;

n

2

�
;

n
2
þ t;

n

2
þ 1

�
;

n
2
;
n

2
þ t

�
;

n
2
þ 1;

n

2
þ t

�
;
n

2
� l þ 2;

n

2
� t þ l � 1

�
;

n
2
þ l � 1;

n

2
� t þ l � 1

�
;

n
2
� t þ l � 1;

n

2
þ l � 1

�
;
n

2
þ l � 1;

n

2
þ t � l þ 2

�
: 3≤ l ≤ t

o
:

We notice that at t ¼ n
2 ; the spread reaches its limits horizontally and vertically (the three

middle vertices of each of the first row, the last row, the first column and the last column are
converted). Therefore, in the remaining steps, the conversion spreads only diagonally as follows:

For 1≤m≤ n
2− 1whichmeans for nþ1

2 þ 1≤ t ≤ n− 1:
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When we reach step t ¼ n− 1, we have m ¼ n
2− 1 which means l ¼ n

2 þ 1 therefore:
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2
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2
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�
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2−2
∪ fð1; 1Þ; ðn; 1Þ; ð1; nÞ; ðn; nÞg ¼ V ðPn@PnÞ:

We conclude that S0 is an I2CS and C2ðPn@PnÞ≤ 2which means C2ðPn@PnÞ ¼ 2 if n is even.
Figure 9 illustrates that C2 P8@P8ð Þ ¼ 2: From Case 1 and Case 2 we conclude the requested.

Figure 9.
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