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Abstract

Purpose — Bi-slant submanifolds of S-manifolds are introduced, and some examples of these submanifolds are

presented.

Design/methodology/approach — Some properties of D;-geodesic and D;-umbilical bi-slant submanifolds

are examined.

Findings — The Riemannian curvature invariants of these submanifolds are computed, and some results are

discussed with the help of these invariants.

Originality/value — The topic is original, and the manuscript has not been submitted to any other journal.
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1. Introduction

Slant submanifolds were firstly introduced by B. Y. Chen as a generalization of invariant and
anti-invariant submanifolds of Kaehler manifolds and initial computations, results and
examples of these kinds of submanifolds were presented in his book [1]. A submanifold M of
an almost Hermitian manifold involving an almost complex structure J is called a slant
submanifold if the angle between /X, and X}, is independent of choosing of point p € M and
every non-zero tangent vector X,. Later, the concept of slant submanifolds has been drawing
attentions of many geometers and these submanifolds have been studying in various space

forms admitting complex, contact and product structures [2-6] etc.

From the definition of slant submanifolds, the concept of slanting can be carried to
distributions in the tangent bundle on a Riemannian manifold. A smooth distribution ® is
called as a slant distribution if the angle between /® and © is constant. By using slant
distributions, bi-slant submanifolds of almost Hermitian manifolds were defined by A.

Carriazo [7, 8].

A submanifold M of an almost Hermitian manifold is called a bi-slant submanifold if there
exist two orthogonal slant distributions, ©; and ®s, on tangent bundle 7M of M with slant

angles 6, and 6,, respectively, such that one writes
T = D, 0 Ds.

‘ Here, @ denotes the orthogonal direct sum.
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In the literature, there exist very interesting works on bi-slant submanifolds of various
spaces [9-14]. An important aspect of slant submanifolds is that they can be considered as a
generalization of semi-slant, hemi-slant and CR submanifolds. In fact, a bi-slant submanifold
becomes.

(1) a semi-slant submanifold if and only if 8; = 0 (or 85 = 0),
(2) ahemi-slant submanifold if and only if 8; = % (or 62 = ),
(3) a CR-submanifold if and only if #; = 0 and 6, = %

One of the important points about bi-slant submanifolds is deal to the relations between
bi-slant submanifolds and slant submanifolds. Although slant submanifolds may seem like a
special case of bi-slant submanifolds at first glance, this information is not correct in general.
It should be noted that a bi-slant submanifold may not be a slant submanifold even if 6; =
Another point to note that one cannot know the angle between /®; and D, for any bi- slant
submanifolds. Furthermore, any invariant submanifold does not have to be a bi-slant
submanifold even if 8; = 6 = 0.

On the other hand, one of the most fundamental problems in submanifold theory is to
establish main relations between the extrinsic and intrinsic curvature invariants for
submanifolds. In this respect, B. Y. Chen [15] established an inequality involving Ricci
curvature and the squared mean curvature known as the Chen-Ricci inequality in the
literature. Later, this inequality has been investigated for submanifolds of ambient spaces cf
[16-20].

Considering the facts mentioned above, we investigate bi-slant submanifolds of metric /-
manifolds and S-manifolds in this paper. We give some examples and investigate to totally
geodesic and totally umbilical submanifolds of bi-slant submanifolds. Furthermore, we
compute the curvature tensors and examine the Chen-Ricci inequality and its results on these
submanifolds.

2. Preliminaries
Let (M, g) be an m-dimensional Riemannian manifold with a Riemannian metric g and {e;,

., &, be an orthonormal basis for TPM atapointp € M. The Ricci curvature Ricis defined
by
m

Ric (X, Y) = Zg(ﬁ(ej,X)Y, ej) 21)

=1

forany X,Y € T]~\4.Foraﬁxedie{1,...,m},wehave
Iiivc(e,-,@ R1c (&) ZK €, ¢j). 22
J#i

Here, K (ei, ;) denotes the sectional curvature of the plane section spanned by ¢; and ¢;

in TM. ~
Let II, be a k-plane subsection of 7,M and X be a unit vector in II;,. We choose an

orthonormal basis {ej, . . ., e} of IT, such that e; = X. Then, the Ricci curvature Ricpy, of IT, at
X is defined by

I/i\i;:nk(X):[?m +k13+"'+k(€1,€k). (23)
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Here, ﬁi/cnk (X) is called as k-Ricci curvature of X[15]. Thus for each fixed e, 1 € {1, ..., &k} we
get

k
Ricn, () = Y K(ei,e)- 24)
J#i

Let (M, g) be an n-dimensional submanifold of an -dimensional Riemannian manifold (]Nl/[ ,9)
with the induced metric g from g. The Gauss and Weingarten formulas are given by

VxV =VxY +(X,Y) and  VxN =-AyX +ViN

forallX,Ye TMand N € T*M.Here, V,V and V' are, respectively, the Riemannian, induced

Riemannian and induced normal connections in M, - Mand the normal bundle T*Mof M and &
is the second fundamental form related to the shape operator A by

gh(X,Y),N)=g(AnX,Y). (25)

The mean curvature vector Hisgivenby H = }—1 trace(%). The submanifold M is called totally
geodesicin M if 2 = 0 and minimal if H = 0.If 2(X,Y) = g(X, Y)H for all X, Y € TM, then
M is called totally umbilical [21]. _

Let R and R denote the Riemannian curvature tensor fields of M and M respectively. The
well-known equation of Gauss is given by

gRX,NZW) = E(RX,V)Z,W) +&h(X, W),h(Y.Z))

(2.6)

forall X, Y, Z We TM.
Now, we shall recall the Chen-Ricci inequality in the following:

Theorem 2.1. [[22], Theorem 6.1] Let M be an n-dimensional submanifold of a Riemannian
manifold. Then, the following statements are true.

(1) For any unit vector field X € TM, it follows that

. 1 ~
Ric(X) <7 w2 || H|” + Ricin (X), 2.7

where li\i/cm 1) (X)) is the n-Ricci curvature of the tangent space T,M of X at p € M with
respect to the ambient manifold M.

(2) The equality case of (2.7 is satisfied by for a umit vector field X € T,M if and only if

{ hX,Y) =0, for all Y € T,M orthogonal to X, 28)

20(X,X) = nH(p).

Q) The equality case of (2.7) holds for all unit tangent vector X € T,M if and only if either
D is a totally geodesic point or n = 2 and p is a totally umbilical point.

3. Metric f~manifolds and their submanifolds

A Riemannian manifold (M, g) is called as a metric fmanifold if there exists an f structure
(f,&1,.--,&,m, - .., 1n) consisting of a tensor field f of type (1, 1), structure vector fields &,
..., & and 1-forms 7y, . . ., 5 such that this structure satisfies [23].



P==T+Y 0@, (&) =1, fE=0, 5,2/ =0 (31)
a=1
for any a €{1, ..., s} and
2X,Y)=8UX,fY) +> 0 (X)n,(Y). 82
a=1

forany X, Y € TM. We note that the first and one of the remaining relations of (3.1) imply the
other two relations.

The condition for an f structure being normal is equivalent to vanishing of the torsion
tensor such that we have

i +23 dn, @&,
a=1

where [f, f] is the Nijenhuis tensor of f, given by
[fAX,Y) = [fX Y] = FIX, Y] = FIX Y] + X, Y
Let F denotes the fundamental 2-form which is defined by
F(X,Y) = Z(X./7) 33

forany X, Y € TM. An Jfmetric structure (f, &,, oa, ) becomes an S manifold if F = dr; and
the f structure is normal. For an S manifold, it is known that the following relation holds for

anyXeTMandae{l,...,s} B
Vxé, = X. (34)

Now, suppose that & to be a distribution spanned by the structure vector fields &, . . ., & of an
S manifold and © be its complementary orthogonal distribution. In this case, we can write

™ = D@ L. (35)

Hence, it is clear that if X € & then 77,(X) = 0 forany a = {1, ..., s} and if X € D then fX = 0.

Let IT be a plane section spanned by X and fX for any X € ©. Then this plane is called an f
section of © and the sectional curvature of such a plane is called as f sectional curvature. An S
manifold whose all of fsectional curvatures are a constant value ¢ is said to be an S space form.
The Riemann curvature tensor of an S space form of constant f sectional curvature ¢ is given by

ZRXVNZW)) = L{eUX.W)g(fY.12) ~ glFX.SDa(fY SW)
+e(X. W)Y 1Z) ~ (X S2)g(Y .SW) 46
~25(X./V)g(Z./W)}

forall X,Y,Z, W e TM[24].
Next, let M be a submanifold of a metric f manifold. For any X € TM, we put

X = TX + NX, (3.7)

where TXis the tangential part and NX is the normal part of /X respectively. In a similar way,
for any vector field normal to M, we put
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fV=tV+nV, 38

where ¢V and nV are the tangential and normal parts of fV respectively.
From (3.2), (3.3) and (3.7), it is easy to see that

g(TX,Y) = —g(X,TY) 39

forany X, Y € TM.

A submanifold M is said to be an invariant submanifold (resp. anti-invariant) if 7 = 0
(resp. N = 0) [25]. For each non-zero vector field X in TM, if the angle between fX and TX is
independent of the choice of p € M and X then M is called a slant submanifold. Note that M is
a slant submanifold if and only if there exists a constant 4 € [0, 1] satisfying

TP == +2Y 1,88 (3.10)

a=1

where I denotes the identity map [26].

4. Bi-slant submanifolds
Let M be a submanifold of an S manifold and &, ..., & to be tangent to M. A smooth
distribution ® on M is called a slant distribution if the angle between X and fX is constant for
each non-zero vector X in ®, and for each p € M.

Next, we suppose that Pis the projection to 7M onto . In a similar way to (3.10) it can be
also proved that ©®© is a slant distribution if and only if there exists a constant 4 € [0, 1]
satisfying

(PTY = =2 + 1) 1, ®&, 4.1)

a=1

Definition 4‘1L For a submanifold M of an S manifold M we say that M is a bi-slant
submanifold of M if there exist there orthogonal distributions D1, Dy and L such that

Q) TM=2:0D:0L
@) Foranyi€{l,2}, D;is a slant distribution with slant angle ;.
Now we shall give some examples of bi-slant submanifolds of S manifolds.

Example 4.2. Let ,ES“ denotes the Euclidean (8 + s) space with Cartesian coordinates
o x23 2ty 2 3 9t 2 L 2. An S structure on ESYS is usually given by the following
equations:

X‘i-i-Y'i -‘rizi —i Y-i—X-i JriY-ii
Yox T lay) 0] 4 Yo oy & e

=1



Consider a (4 + s)-dimensional submanifold M of E¥* given by the following equation: Bi-slant
x(u,v,w,m, b, by, ... 1) = (ucosOy, usindy, weosOy, wsinds, v,0,m, 0,1, by, . . . , 1) submanifolds

for any 6 € [0,Y]. Then we obtain a basis of TM as follows:

d s d
e = £+;C()391”6_ta 01
d J d d 'L, 0
= c0sO | — 1— ) [ — P—
c0S 1<axl+;y az(,) + s 1<axl+;y 62,,)’
o — a 4
2T % oy
d s J
e3 = %4—;0%02%46—%
d ; d d s d
= 0, [ — 3 @, | — 4
cos Z(Oxg + ;y aza) +sin 2(6963 + ;y 62,,)’
o — 5}
4 = ama
d d
Criqg = a_t(,:26_z(,:€“’ for amy a=1,2,...,s.

Suppose that D1 = Spanfer, ez}, Dy = Span{es,es} and L = Span{es1, ..., e4s}.
Then we see that M is a bi-slant submanifold with angle 0, 05). Moreover, the vector fields

ad .9 ad L, 9
o o= sy | a—+ > ¥ O+ Y P
O+ st 1<6x1 + (,Zly 0za> +oostr <ax1 + (,:ly az,,>’

ad
Cors = W’
d > d ad > d
s = —sindy| — 3 0y | — 4
€74 N <6x3 + ;y 02(,> + cos60, <ax4 + ;y 62,,)’
9
6grs = w

form a basis of the normal space T*M. Also, it can be shown that both bases are orthonormal.

Example 4.3. Consider the Euclidean 8-space E>*° with the usual S structure given in
Example 4.2. For any constant k,

x(u,v,w,m, b, t) = 2(e cosucosv, e sinucosv, e cosusinw,

e sin u sinv, e cos w cos m, e sinw cos m,
M coswsinm, e sinwsinm, ty,. . ., 1)
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defines a (4 + s)-dimensional bi-slant submanifold M with the bi-slant angles (61, 02) such that

0, = arccos L
2k + 1
and
0, = arccos —————.
? vE2+1

Further examples could be given.
Let P: TM — D; be projections. Then we can write any vector field X in 7M by these
projections

3
X =PX+PX+Y n,X)y, 4.2)
a=1
and

¢X = TX+NX
3
PiTX + P,TX + ) 0 (X)&, + NX.

a=1

4.3)

Following the proof way of equation (3.8) in Ref. [10] and using the above facts, we get the
following theorem:

Theorem 4.4. Let M be a (2n + 2m + s)-dimensional bi-slant submanifold of M. Then there
exists an orthonormal frame field {ey, ..., €, €241, - - - Consom E1, - - - Es} on TM where
D1=Spaniey, ..., 2.}, Do = Span{esni1, ..., eomiom},

R=Spani{éy, . . ., &} such that the following conditions hold:

Te;, = cosbie; + PoTe,
Te;, = —cosbre; + PyTes,
Tegn = —cosbe,-1 + Pg Tegn
and
Teg1 = cosbreris + PrTeg, 1,
Teopis = —c0SO283,11 + PrTe 0,
Teopiom = —C086269, 9m-1 + PrTes, om.

Considering (4.1) and Theorem 4.4, we obtain the following lemmas immediately:



Lemma 4.5. Let M be a bi-slant submanifold of M. we can write

3
g(TPX, TRY) = cos’6; (g(RX BY) - vaa(TPiX)na(TBY)) 44
a=1

forany X, Y € TM.

Lemma 4.6. Any totally geodesic or totally umbilical bi-slant submanifold of an S manifold is
an invariant submanifold.

Proof. From (3.4) and (3.7), we have for any Xin TM and a €{1, .. ., s}
Vxé, = —=TX + NX

which shows that
h (X ) éa) =

Hence, if M is totally geodesic or then it is clear that N = 0 which shows that the submanifold
is invariant.

From Theorem 4.6, we see that the study of totally geodesic or totally umbilical bi-slant
submanifolds of an S manifold reduces to the study of invariant submanifolds. Therefore, we
shall investigate to the concepts of D; geodesic or D; totally umbilical bi-slant submanifolds of
an S manifold throughout this study.

Now, let us consider any two vector fields X and Y in TM such that we write

X = P1X+P2X+Zn e, and Y = P1Y+P2Y+Z;7 (45)

a=1 a=1

If Mis D; geodesic, then we have i(P;X, P;Y) = 0. Using this fact we see that the submanifold is
totally D; geodesic if and only if

WX.Y) = WPX.BY)+hEX,PY)+h(PX,BY)

+Z'7a (Y, &) +n, (V)X E,). 4.6)

If M 1s totally D; umbilical if and only if
nX,Y) = h(P-X PY)+ nPX,PY)+ hPX,PY)
+ Zm, WY .&) +n (00X &) +gX.fv) @D

for i #7 €{1, 2}.

Theorem 4.7. Let M be 2n + 2m + s)-dimensional (01, 0-) bi-slant submanifold of an S
manifold. If M is D,-geodesic then we have the following relations:

1) Forany X; €D, we have NX; = 0.
(2) Foranyi+#je{l, 2}, we have
BTP,T = sin’0,1. 43
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Proof. From (3.4) and (3.7), the proof of the statement (1) is straightforward.

Now we prove the statement (2), Since M is D;,-geodesic, we put

PX = TPX
PTPX + P,TPX

for any X € TM. Using Lemma 4.5, we get
ZUPX.fPX) = cos’0; g(P.X, PX) +¢(PTPX, P, TPX),
which implies that
g(PTPX, K, TP.X) = sin’ 6, g(P:X, P.X).

Hence we obtain
g(P, TP TP.X,P.X) = sin’0; g(P.X,P.X),

which shows the proof of statement (2).

4.9

Theorem 4.8. Let M be a (61, 0-) bi-slant submanifold of M. For any 6 € [0,%], Mis 0-slant if

and only if the following relations hold:
P, TP, TP, + P,TP,TP;, =0,

P TP TP, + P TP, TP, =0,

PlTPZTpl = (COS2 91 — COS2 G)Pl,

PyTP, TP, = (cos? 8, — cos® 0)P;.
Proof. Suppose that M is #-slant and D = D; @ D,. Then we write

T(TX) =T TX + P,TX).
for any X € ®. Using (3.10), (4.1) and (4.14), we have

T(TX) = -—cos?’OP X + P TP TPX + P, TP TP X
+P, TP TP,X + P, TP, TP X + P, TP, TP, X
+P2TP2TP1X — COSzgszX.

Considering tangential parts of ®©; and s in (4.15), the proof is straightforward.

The converse can be obtained directly.

4.10)

@11)

4.12)

4.13)

4.14)

4.15)

Theorem 4.9. Let M be a D,-geodesic (01, 0) bi-slant submanifold. If M is 0-slant for any

0€(0,%], then 6, = 0, and there exists the following equation for i €{1, 2}.

cos® 0 = cos 26;.

(4.16)



Proof. From (4.7), (4.12) and (4.13) we get
sin®6; = cos®0; — cos> 0, .17

which implies (4.16). Since equation (4.16) satisfies for all 7 €{1, 2}, we obtain that 8; = 6,.(]

Remark 4.10. We note that if a (6., 0-) bi-slant submanifold is 0-slant, then the angle 0 does
not have to be equal to 61 and 6,. For this situation, we refer to Example 4.3 of A. Carriazzo [7]
and Example 3.3 of [10].

As a result of Theorem 4.9, we get the following:

Corollary 4.11. Let M be a D;-geodesic (01, 0) bi-slant submanifold. If M is -slant with
0 = 0, = 0y then M is an invariant submanifold.

Theorem 4.12. Let M be a (61, 02) bi-slant submanifold. If M is both D1 and D geodesic
submanifold then 61 + 6 =%

Proof. Suppose X is a unit vector field on ® such that ® = ®; @ D,. Considering the
statement of (1) of Theorem 4.7 we put

X = TP.X + P, TX.

Since M is (01, 09) bi-slant, we write from Theorem 4.4 that
JX = cosO,P1X + cosO,PoX.

which implies that cos@; = sin 6. Therefore, we obtain 6; 4- 8, = £ which is the claim of
theorem. O
With similar arguments, we have the following theorem.

Theorem 4.13. Let M be a (01, 05) bi-slant submanifold of an S manifold. Then we have the
Sfollowing statements:

(1) If M s both totally umbilical then it is an invariant submanifold.

@) If Mis D1 and D, totally umbilical, then 6, + 05 = %
As a result od Theorem 4.12 and Theorem 4.13, we obtain the following:
Corollary 4.14. There do not exist semi-slant and hemi-slant submanifolds of an S manifold
which is D1 and D+ geodesic or D1 and Do-totally wmbilical

5. Ricci curvatures of bi-slant submanifolds
In this section, we investigate the Chen-Ricci inequality and its results for bi-slant
submanifolds of an S space form.

We need the following lemma for later uses:

Lemma5.1. Let Mbea (2n + 2m + s)-dimensional (01, 0s) bi-slant submanifold of an S-space
Jorm and {e, . . ., €2y, €21141, - - - €2p40my €1, - - -, Es} De an orthonormal basis of TM such that
D = $pan{e1, 6o} and Do = Span{egy1, .. ., eomrom - Then we have the following
equalities:

1) Foramyk#0e{l,...2n+2m}, a+bell,... s} andplane sections I, = {es, e},
I, = S]‘)d% {en &} and Iy = Span{&ja, &}, we have

K(Iy) = ;i {1+ 3g(fer, e0)*} 6.1)
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@) Foramyiefl,...,2n}andje{2n+1,... 2n+ 2m}, we have
26 Ricr,u(e) = i{(Zn +2m — 1) + 3c0s%6, + 3Py Te;|*} (5.3)
and
Ricr,u(e) = Zi {20+ 2m — 1) + 3cos?0, + 3| P, Tes | (5.4)

Proof. Putting X = W=¢,and Y = Z = ¢, 1n (3.6) we have

§(X)(€k,€z)ez,€k)) = ;i{g(fek,fek)g(f%fez)*g(f%fez)g(fez,fek)

+g(ekafek)g(eé7fe€) - g(ek:fef)g(eéafek)
—2g(ex, fe)g(ev fer) }-

(5.5)

From (3.9) and (5.5) we get (5.1). In a similar way, it can be obtained (5.2) which completes
the proof of (@). Using (2.2) and (5.1), we obtain (5.3) and (5.4) thus the proof of (b) is
straightforward. O

Theorem 5.2. Let M be a 2n + 2m + s)-dimensional bi-slant submanifold of an S-space
form. Then, the following statements are true.

(1) For any unit vector field X € D, it follows that

. 1
Ric(X) < #*|H + 2 {(2n +2m — 1) + 3cos?0; + | P, TX|}. (5.6)

The equality case of (5.6) holds for all unit tangent vector X € D1 if and only if M is D
totally geodesic.

@) For any unit vector field X € Do, it follows that

. 1
Ric(X) < #*|HI + ;i {(2n +2m — 1) + 3cos?0, + |, TX|}. 6.7)

The equality case of (5.7) holds for all unit tangent vector X € Do if and only if M is D,
totally geodesic.

()  The equality cases of both (5.6) and (5.7) satisfy then 6, + 65 = 0.

Proof. Putting (5.3) and (5.4) in (2.7), we obtain (5.6) and (5.7) inequalities respectively.
Considering the (3) statements of Theorem 2.1 we get M is D and D, geodesic. Using this
fact and Theorem 4.12, we have 61 + 62 = %. This completes the proof of theorem.

Now, we need to following lemma:



Lemma 5.3. Let M be semi-slant or hemi-slant submanifold of a S manifold. Then we have
the following statements:
1) For any X € D1 we have
P,TX =0. ©.8)

@) For any X € Dy we have
PTX =0. (5.9

Proof. Suppose that {ey, . . ., €2, €241, - - - €25 19m, E1, - - -, Es} 10 be an orthonormal frame field
on TM where ®; = Span{ey, ..., e},

Dy = Span{ez,m, ey @ntom} .53 = S_pan{§17 o , &} Since M is semi-invariant, we can
choose this orthonormal frame field which satisfies

Tey =ey,...,Tey = e,
Teopi1 = €086260,42, Tl = —COSO28211, - - -, T€oni2m = —COSO2L2 1 2m-1.

Therefore, we have g(fX,Y) = 0 when X € ®; and Y € D, which shows the statements of
(1) and (2) are also true for semi-slant submanifolds.

In a similar manner, it can be shown that the statements of (7)) and (:z) are true for hemi-slant
submanifolds. O

Corollary 5.4. Let M be a (2n + 2m + s)-dimensional semi-slant submanifold of an S space
form. Then, the following statements are true.

(1) For any unit vector field X € Dy, it follows that

Ric(X)g%nZHHHZ +%{(2n+2m+2)}. (5.10)

The equality case of (5.10) holds for all unit tangent vector X € D if and only if M is D,
totally geodesic point.

) For any unit vector field X € Do, it follows that

Ric(X) s% w2 |H|? + 2 (20 +2m — 1) + 3cos?6s ). (6.11)

The equality case of (5.11) holds for all unit tangent vector X € Dy if and only if Mis D,
totally geodesic point.

B)  The equality cases of both (5.10) and (5.11) do not satisfy.

Proof. Under the assumption, using 6; = 0 and Lemma 5.3 in (5.6) and (5.7) we find (5.10) and
(5.11). The equality cases of both (5.10) and (5.11) holds if and only if Mis ©1 and D, geodesic.
Considering this fact and Corollary 4.14 we get a contraction. Thus the equality cases of both
(5.10) and (5.11) do not satisfy.

Following the proof way of Corollary 5.4, we obtain the following corollary:
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1) For any unit vector field X € Dy, it follows that
Ric(X) 5%{ W H|? + 2 {20+ 2m — 1) + 3cos?, ). (5.12)

The equality case of (5.12) holds for all unit tangent vector X € D1 if and only if M is D,
totally geodesic.

(2) For any unit vector field X € Do, it follows that
. 1
Ric(X) <7 w*| H|I +£{(2n+2m— ). (5.13)

The equality case of (5.13) holds for all unit tangent vector X € Dy if and only if M is a
D, totally geodesic.

() The equality cases of both (5.12) and (5.13) do not satisfy.
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