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Abstract

Purpose –Bi-slant submanifolds of S-manifolds are introduced, and some examples of these submanifolds are
presented.
Design/methodology/approach – Some properties of Di-geodesic and Di-umbilical bi-slant submanifolds
are examined.
Findings – The Riemannian curvature invariants of these submanifolds are computed, and some results are
discussed with the help of these invariants.
Originality/value – The topic is original, and the manuscript has not been submitted to any other journal.
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1. Introduction
Slant submanifolds were firstly introduced by B. Y. Chen as a generalization of invariant and
anti-invariant submanifolds of Kaehler manifolds and initial computations, results and
examples of these kinds of submanifolds were presented in his book [1]. A submanifoldM of
an almost Hermitian manifold involving an almost complex structure J is called a slant
submanifold if the angle between JXp and Xp is independent of choosing of point p ∈M and
every non-zero tangent vector Xp. Later, the concept of slant submanifolds has been drawing
attentions of many geometers and these submanifolds have been studying in various space
forms admitting complex, contact and product structures [2–6] etc.

From the definition of slant submanifolds, the concept of slanting can be carried to
distributions in the tangent bundle on a Riemannian manifold. A smooth distribution D is
called as a slant distribution if the angle between JD and D is constant. By using slant
distributions, bi-slant submanifolds of almost Hermitian manifolds were defined by A.
Carriazo [7, 8].

A submanifoldM of an almost Hermitianmanifold is called a bi-slant submanifold if there
exist two orthogonal slant distributions,D1 andD2, on tangent bundle TM ofM with slant
angles θ1 and θ2, respectively, such that one writes

TM ¼ D1 ⊕D2: (1.1)

Here, ⊕ denotes the orthogonal direct sum.
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In the literature, there exist very interesting works on bi-slant submanifolds of various
spaces [9–14]. An important aspect of slant submanifolds is that they can be considered as a
generalization of semi-slant, hemi-slant and CR submanifolds. In fact, a bi-slant submanifold
becomes.

(1) a semi-slant submanifold if and only if θ1 5 0 (or θ2 5 0),

(2) a hemi-slant submanifold if and only if θ1 ¼ π
2 (or θ2 ¼ π

2),

(3) a CR-submanifold if and only if θ1 5 0 and θ2 ¼ π
2.

One of the important points about bi-slant submanifolds is deal to the relations between
bi-slant submanifolds and slant submanifolds. Although slant submanifolds may seem like a
special case of bi-slant submanifolds at first glance, this information is not correct in general.
It should be noted that a bi-slant submanifold may not be a slant submanifold even if θ15 θ2.
Another point to note that one cannot know the angle between JD1 andD2 for any bi-slant
submanifolds. Furthermore, any invariant submanifold does not have to be a bi-slant
submanifold even if θ1 5 θ2 5 0.

On the other hand, one of the most fundamental problems in submanifold theory is to
establish main relations between the extrinsic and intrinsic curvature invariants for
submanifolds. In this respect, B. Y. Chen [15] established an inequality involving Ricci
curvature and the squared mean curvature known as the Chen-Ricci inequality in the
literature. Later, this inequality has been investigated for submanifolds of ambient spaces cf
[16–20].

Considering the facts mentioned above, we investigate bi-slant submanifolds of metric f-
manifolds and S-manifolds in this paper. We give some examples and investigate to totally
geodesic and totally umbilical submanifolds of bi-slant submanifolds. Furthermore, we
compute the curvature tensors and examine the Chen-Ricci inequality and its results on these
submanifolds.

2. Preliminaries
Let ð eM ;egÞ be an m-dimensional Riemannian manifold with a Riemannian metric eg and {e1,

. . ., em} be an orthonormal basis forTp
eM at a point p∈ eM. The Ricci curvature fRic is defined

by

fRic X ;Yð Þ ¼
Xm
j¼1

eg eRðej;XÞY ; ej

� �
(2.1)

for any X ;Y ∈T eM. For a fixed i∈ 1; . . . ;mf g, we have

fRic ei; eið Þ≡ fRic eið Þ ¼
Xm
j≠ i

eKðei; ejÞ: (2.2)

Here, eKðei; ejÞ denotes the sectional curvature of the plane section spanned by ei and ej

in T eM.
Let Πk be a k-plane subsection of Tp

eM and X be a unit vector in Πk. We choose an

orthonormal basis {e1, . . ., ek} ofΠk such that e15 X. Then, the Ricci curvature fRicΠk
ofΠk at

X is defined by fRicΠk
ðXÞ ¼ eK12 þ eK13 þ � � � þ eKðe1; ekÞ: (2.3)
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Here, fRicΠk
ðXÞ is called as k-Ricci curvature of X [15]. Thus for each fixed ei, i∈ 1; . . . ; kf gwe

get fRicΠk
ðeiÞ ¼

Xk
j≠ i

eKðei; ejÞ: (2.4)

Let (M, g) be an n-dimensional submanifold of anm-dimensional Riemannianmanifold ð eM ;egÞ
with the induced metric g from eg. The Gauss and Weingarten formulas are given by

e∇XY ¼ ∇XY þ h X ;Yð Þ and e∇XN ¼ −ANX þ ∇
⊥

XN

for allX,Y∈TM andN∈T⊥M. Here, e∇,∇ and∇⊥ are, respectively, the Riemannian, induced

Riemannian and induced normal connections in eM,M and the normal bundleT⊥M ofM and h
is the second fundamental form related to the shape operator A by

eg h X ;Yð Þ;Nð Þ ¼ g ANX ;Yð Þ: (2.5)

Themean curvature vectorH is given byH ¼ 1
n
traceðhÞ. The submanifoldM is called totally

geodesic in eM if h5 0 and minimal ifH5 0. If h X ;Yð Þ ¼ g X ;Yð ÞH for all X, Y∈ TM, then
M is called totally umbilical [21].

Let R and eR denote the Riemannian curvature tensor fields ofM and eM respectively. The
well-known equation of Gauss is given by

g RðX ;Y ÞZ ;Wð Þ ¼ eg eRðX ;Y ÞZ ;W
� �

þ eg hðX ;W Þ; hðY ; ZÞð Þ
�eg hðX ; ZÞ; hðY ;W Þð Þ

(2.6)

for all X, Y, Z, W ∈ TM.
Now, we shall recall the Chen-Ricci inequality in the following:

Theorem 2.1. [[22], Theorem 6.1] Let M be an n-dimensional submanifold of a Riemannian
manifold. Then, the following statements are true.

(1) For any unit vector field X ∈ TM, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ fRicðTpMÞ Xð Þ; (2.7)

where fRicðTpMÞ Xð Þ is the n-Ricci curvature of the tangent space TpM of X at p∈Mwith

respect to the ambient manifold eM.

(2) The equality case of (2.7 is satisfied by for a unit vector field X ∈ TpM if and only if

h X ;Yð Þ ¼ 0; for all Y ∈TpM orthogonal to X ;
2h X ;Xð Þ ¼ nH pð Þ:

�
(2.8)

(3) The equality case of (2.7) holds for all unit tangent vector X ∈ TpM if and only if either
p is a totally geodesic point or n 5 2 and p is a totally umbilical point.

3. Metric f-manifolds and their submanifolds
A Riemannian manifold ð eM ;egÞ is called as a metric f-manifold if there exists an f structure
f ; ξ1; . . . ; ξs; η1; . . . ; ηsð Þ consisting of a tensor field f of type 1; 1ð Þ, structure vector fields ξ1,

. . ., ξs and 1-forms η1, . . ., ηs such that this structure satisfies [23].
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f 2 ¼ − I þ
Xs
α¼1

ηα ⊗ ξα; ηαðξαÞ ¼ 1; f ξ ¼ 0; ηα ◦ f ¼ 0 (3.1)

for any α ∈{1, . . ., s} and

egðX ;Y Þ ¼ egðfX ; fY Þ þ
Xs
α¼1

ηαðXÞηαðY Þ: (3.2)

for anyX ;Y ∈T eM. We note that the first and one of the remaining relations of (3.1) imply the
other two relations.

The condition for an f structure being normal is equivalent to vanishing of the torsion
tensor such that we have

f ; f½ � þ 2
Xs
α¼1

dηα ⊗ ξα;

where f ; f½ � is the Nijenhuis tensor of f, given by

f ; f½ � X ;Yð Þ ¼ fX ; fY½ � � f fX ;Y½ � � f X ; fY½ � þ f 2 X ;Y½ �:
Let F denotes the fundamental 2-form which is defined by

FðX ;Y Þ ¼ egðX ; fY Þ (3.3)

for anyX ;Y ∈T eM. An fmetric structure f ; ξα;wα;egð Þbecomes an Smanifold if F5 dη; and
the f structure is normal. For an S manifold, it is known that the following relation holds for

any X ∈T eM and α ∈{1, . . ., s} e∇Xξα ¼ −f X : (3.4)

Now, suppose thatL to be a distribution spanned by the structure vector fields ξ1, . . ., ξs of an
S manifold and D be its complementary orthogonal distribution. In this case, we can write

TM ¼ D⊕L: (3.5)

Hence, it is clear that if X ∈L then ηα(X)5 0 for any α5 {1, . . ., s} and if X ∈D then fX5 0.
LetΠ be a plane section spanned by X and fX for any X ∈D. Then this plane is called an f

section ofD and the sectional curvature of such a plane is called as f sectional curvature. An S
manifoldwhose all of f sectional curvatures are a constant value c is said to be an S space form.
The Riemann curvature tensor of an S space form of constant f sectional curvature c is given by

eg eRðX ;Y ÞZ ;W Þ
� �

¼ c

4
gðfX ; fW ÞgðfY ; fZÞ � gðfX ; fZÞgðfY ; fW Þf

þgðX ; fW ÞgðY ; fZÞ � gðX ; fZÞgðY ; fW Þ
�2gðX ; fYÞgðZ ; fW Þg

(3.6)

for all X ;Y ; Z ;W ∈T eM [24].
Next, let M be a submanifold of a metric f manifold. For any X ∈ TM, we put

fX ¼ TX þ NX ; (3.7)

whereTX is the tangential part andNX is the normal part of fX respectively. In a similar way,
for any vector field normal to M, we put
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fV ¼ tV þ nV ; (3.8)

where tV and nV are the tangential and normal parts of fV respectively.
From (3.2), (3.3) and (3.7), it is easy to see that

gðTX ;Y Þ ¼ −gðX ;TY Þ (3.9)

for any X, Y ∈ TM.
A submanifold M is said to be an invariant submanifold (resp. anti-invariant) if T 5 0

(resp. N5 0) [25]. For each non-zero vector field X in TM, if the angle between fX and TX is
independent of the choice of p∈M andX thenM is called a slant submanifold. Note thatM is
a slant submanifold if and only if there exists a constant λ ∈ [0, 1] satisfying

T2 ¼ −λI þ λ
Xs
α¼1

ηα ⊗ ξα; (3.10)

where I denotes the identity map [26].

4. Bi-slant submanifolds
Let M be a submanifold of an S manifold and ξ1, . . ., ξs to be tangent to M. A smooth
distributionDonM is called a slant distribution if the angle betweenX and fX is constant for
each non-zero vector X in Dp and for each p ∈ M.

Next, we suppose that P is the projection toTM ontoD. In a similar way to (3.10) it can be
also proved that D is a slant distribution if and only if there exists a constant λ ∈ [0, 1]
satisfying

ðPTÞ2 ¼ −λI þ λ
Xs
α¼1

ηα ⊗ ξα: (4.1)

Definition 4.1. For a submanifold M of an S manifold eM we say that M is a bi-slant

submanifold of eM if there exist there orthogonal distributions D1, D2 and L such that

(1) TM ¼ D1 ⊕D2 ⊕L.

(2) For any i ∈{1, 2}, Di is a slant distribution with slant angle θi.

Now we shall give some examples of bi-slant submanifolds of S manifolds.

Example 4.2. Let E8þs denotes the Euclidean (8 þ s) space with Cartesian coordinates
(x1, x2, x3, x4, y1, y2, y3, y4, z1, . . ., zs). An S structure on E8þs is usually given by the following
equations:

ηα ¼
1

2
dzα
X4
i¼1

yidxi

 !
; ξα ¼ 2

v

vzα
;

g ¼
Xs
α¼1

ηα ⊗ ηα þ
1

8

X4
i¼1

dxi ⊗ þ dxi þ dyi ⊗ þ dyi;

f
X4
i¼1

Xi

v

vxi
þ Yi

v

vyi

� �
þ
Xs
α¼1

Zα
v

vzα

 !
¼
X4
i¼1

Yi

v

vxi
� Xi

v

vyi

� �
þ
Xs
α¼1

Yiy
i
v

vzα
:
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Consider a (4 þ s)-dimensional submanifold M of E8þs given by the following equation:

xðu; v;w;m; t1; t2; . . . ; tsÞ ¼ ðucosθ1; usinθ1;wcosθ2;wsinθ2; v; 0;m; 0; t1; t2; . . . ; tsÞ
for any θ∈ 0; Π

2

� �
. Then we obtain a basis of TM as follows:

e1 ¼ v

vu
þ
Xs
α¼1

cosθ1v
v

vtα

¼ cosθ1
v

vx1
þ
Xs
α¼1

y1
v

vzα

 !
þ sinθ1

v

vx1
þ
Xs
α¼1

y2
v

vzα

 !
;

e2 ¼ v

vv
¼ v

vy1
;

e3 ¼ v

vw
þ
Xs
α¼1

cosθ2m
v

vtα

¼ cosθ2
v

vx3
þ
Xs
α¼1

y3
v

vzα

 !
þ sinθ2

v

vx3
þ
Xs
α¼1

y4
v

vzα

 !
;

e4 ¼ v

vm
;

e4þα ¼ v

vtα
¼ 2

v

vzα
¼ ξα; for any α ¼ 1; 2; . . . ; s:

Suppose that D1 ¼ Spanfe1; e2g, D2 ¼ Spanfe3; e4g and L ¼ Spanfe4þ1; . . . ; e4þsg.
Then we see that M is a bi-slant submanifold with angle (θ1, θ2). Moreover, the vector fields

e5þs ¼ �sinθ1
v

vx1
þ
Xs
α¼1

y1
v

vzα

 !
þ cosθ1

v

vx1
þ
Xs
α¼1

y2
v

vzα

 !
;

e6þs ¼ v

vy2
;

e7þs ¼ �sinθ2
v

vx3
þ
Xs
α¼1

y3
v

vzα

 !
þ cosθ2

v

vx4
þ
Xs
α¼1

y4
v

vzα

 !
;

e8þs ¼ v

vy4

form a basis of the normal space T⊥M. Also, it can be shown that both bases are orthonormal.

Example 4.3. Consider the Euclidean 8-space E8þs with the usual S structure given in
Example 4.2. For any constant k,

xðu; v;w;m; t1; . . . ; tsÞ ¼ 2 eku cos u cos v; eku sin u cos v; eku cos u sin v;
	
eku sin u sin v; eku cosw cosm; eku sinw cosm;
eku cosw sinm; eku sinw sinm; t1; . . . ; ts
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defines a (4 þ s)-dimensional bi-slant submanifold M with the bi-slant angles (θ1, θ2) such that

θ1 ¼ arccos
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k2 þ 1
p

and

θ2 ¼ arccos
−kffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p :

Further examples could be given.
Let Pi: TM → Di be projections. Then we can write any vector field X in TM by these

projections

X ¼ P1X þ P2X þ
X3
α¼1

ηαðXÞξα (4.2)

and

fX ¼ TX þ NX

¼ P1TX þ P2TX þ
X3
α¼1

ηαðXÞξα þ NX :
(4.3)

Following the proof way of equation (3.8) in Ref. [10] and using the above facts, we get the
following theorem:

Theorem 4.4. Let M be a (2nþ 2mþ s)-dimensional bi-slant submanifold of eM. Then there
exists an orthonormal frame field {e1, . . ., e2n, e2nþ1, . . ., e2nþ2m, ξ1, . . ., ξs} on TM where
D15Span{e1, . . ., e2n}, D2 ¼ Spanfe2nþ1; . . . ; e2nþ2mg,
L5Span{ξ1, . . ., ξs} such that the following conditions hold:

Te1 ¼ cosθ1e2 þ P2Te1;
Te2 ¼ �cosθ1e1 þ P2Te2;

..

.

Te2n ¼ �cosθ1e2n−1 þ P2Te2n

and

Te2nþ1 ¼ cosθ2e2nþ2 þ P1Te2nþ1;
Te2nþ2 ¼ �cosθ2e2nþ1 þ P1Te2nþ2;

..

.

Te2nþ2m ¼ �cosθ2e2nþ2m−1 þ P1Te2nþ2m:

Considering (4.1) and Theorem 4.4, we obtain the following lemmas immediately:
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Lemma 4.5. Let M be a bi-slant submanifold of eM. we can write

gðTPiX ;TPiY Þ ¼ cos2θi gðPiX ;PiY Þ �
X3
α¼1

ηαðTPiXÞηαðTPiY Þ
 !

(4.4)

for any X, Y ∈ TM.

Lemma 4.6. Any totally geodesic or totally umbilical bi-slant submanifold of an S manifold is
an invariant submanifold.

Proof. From (3.4) and (3.7), we have for any X in TM and α ∈{1, . . ., s}e∇Xξα ¼ −TX þ NX

which shows that

h X ; ξαð Þ ¼ −NX :

Hence, ifM is totally geodesic or then it is clear thatN5 0 which shows that the submanifold
is invariant.

From Theorem 4.6, we see that the study of totally geodesic or totally umbilical bi-slant
submanifolds of an Smanifold reduces to the study of invariant submanifolds. Therefore, we
shall investigate to the concepts ofDi geodesic orDi totally umbilical bi-slant submanifolds of
an S manifold throughout this study.

Now, let us consider any two vector fields X and Y in TM such that we write

X ¼ P1X þ P2X þ
Xs
α¼1

ηðXÞξα and Y ¼ P1Y þ P2Y þ
Xs
α¼1

ηðY Þξα: (4.5)

IfM isDi geodesic, thenwe have h(PiX,PiY)5 0. Using this fact we see that the submanifold is
totally Di geodesic if and only if

hðX ;Y Þ ¼ hðPiX ;PjY Þ þ hðPjX ;PiY Þ þ hðPjX ;PjY Þ
þ
Xs
α¼1

ηαðXÞhðY ; ξαÞ þ ηαðY ÞhðX ; ξαÞ: (4.6)

If M is totally Di umbilical if and only if

hðX ;Y Þ ¼ hðPiX ;PjY Þ þ hðPjX ;PiY Þ þ hðPjX ;PjY Þ
þ
Xs
α¼1

ηαðXÞhðY ; ξαÞ þ ηαðY ÞhðX ; ξαÞ þ gðfX ; fY Þ (4.7)

for i ≠ j ∈{1, 2}.

Theorem 4.7. Let M be (2n þ 2m þ s)-dimensional (θ1, θ2) bi-slant submanifold of an S
manifold. If M is Di-geodesic then we have the following relations:

(1) For any Xi ∈Di, we have NXi 5 0.

(2) For any i ≠ j ∈{1, 2}, we have

PiTPjT ¼ sin2θiI : (4.8)
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Proof. From (3.4) and (3.7), the proof of the statement (1) is straightforward.
Now we prove the statement (2), Since M is Di-geodesic, we put

fPiX ¼ TPiX

¼ PiTPiX þ PjTPiX
(4.9)

for any X ∈ TM. Using Lemma 4.5, we get

egðfPiX ; fPiXÞ ¼ cos2θi gðPiX ;PiXÞ þ gðPjTPiX ;PjTPiXÞ;
which implies that

gðPjTPiX ; PjTPiXÞ ¼ sin2 θi gðPiX ;PiXÞ:
Hence we obtain

gðPiTPjTPiX ;PiXÞ ¼ sin2θi gðPiX ;PiXÞ;
which shows the proof of statement (2).

Theorem 4.8. Let M be a (θ1, θ2) bi-slant submanifold of eM. For any θ∈ ½0; π2�, M is θ-slant if
and only if the following relations hold:

P2TP1TP1 þ P2TP2TP1 ¼ 0; (4.10)

P1TP1TP2 þ P1TP2TP2 ¼ 0; (4.11)

P1TP2TP1 ¼ cos2 θ1 � cos2 θð ÞP1; (4.12)

P2TP1TP2 ¼ cos2 θ2 � cos2 θð ÞP2: (4.13)

Proof. Suppose that M is θ-slant and D ¼ D1 ⊕D2. Then we write

TðTXÞ ¼ T P1TX þ P2TXð Þ: (4.14)

for any X ∈D. Using (3.10), (4.1) and (4.14), we have

TðTXÞ ¼ �cos2θ1P1X þ P1TP1TP2X þ P2TP1TP1X

þP2TP1TP2X þ P1TP2TP1X þ P1TP2TP2X

þP2TP2TP1X � cos2θ2P2X :

(4.15)

Considering tangential parts of D1 and D2 in (4.15), the proof is straightforward.
The converse can be obtained directly.

Theorem 4.9. Let M be a Di-geodesic (θ1, θ2) bi-slant submanifold. If M is θ-slant for any
θ∈ ½0; π2�, then θ1 5 θ2 and there exists the following equation for i ∈{1, 2}.

cos2 θ ¼ cos 2θi: (4.16)
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Proof. From (4.7), (4.12) and (4.13) we get

sin2θi ¼ cos2θi � cos2 θ; (4.17)

which implies (4.16). Since equation (4.16) satisfies for all i ∈{1, 2}, we obtain that θ15 θ2.,

Remark 4.10. We note that if a (θ1, θ2) bi-slant submanifold is θ-slant, then the angle θ does
not have to be equal to θ1 and θ2. For this situation, we refer to Example 4.3 of A. Carriazzo [7]
and Example 3.3 of [10].

As a result of Theorem 4.9, we get the following:

Corollary 4.11. Let M be a Di-geodesic (θ1, θ2) bi-slant submanifold. If M is θ-slant with
θ 5 θ1 5 θ2 then M is an invariant submanifold.

Theorem 4.12. Let M be a (θ1, θ2) bi-slant submanifold. If M is both D1 and D2 geodesic
submanifold then θ1 þ θ2 ¼ π

2.

Proof. Suppose X is a unit vector field on D such that D ¼ D1 ⊕D2. Considering the
statement of (1) of Theorem 4.7 we put

fX ¼ TP1X þ P2TX :

Since M is (θ1, θ2) bi-slant, we write from Theorem 4.4 that

fX ¼ cosθ1P1X þ cosθ2P2X :

which implies that cos θ2 5 sin θ1. Therefore, we obtain θ1 þ θ2 ¼ π
2
which is the claim of

theorem. ,
With similar arguments, we have the following theorem.

Theorem 4.13. Let M be a (θ1, θ2) bi-slant submanifold of an S manifold. Then we have the
following statements:

(1) If M is both totally umbilical then it is an invariant submanifold.

(2) If M is D1 and D2 totally umbilical, then θ1 þ θ2 ¼ π
2.

As a result od Theorem 4.12 and Theorem 4.13, we obtain the following:

Corollary 4.14. There do not exist semi-slant and hemi-slant submanifolds of an Smanifold
which is D1 and D2 geodesic or D1 and D2-totally umbilical.

5. Ricci curvatures of bi-slant submanifolds
In this section, we investigate the Chen-Ricci inequality and its results for bi-slant
submanifolds of an S space form.

We need the following lemma for later uses:

Lemma5.1. LetM be a (2nþ 2mþ s)-dimensional (θ1, θ2) bi-slant submanifold of an S-space
form and {e1, . . ., e2n, e2nþ1, . . ., e2nþ2m, ξ1, . . ., ξs} be an orthonormal basis of TM such that
D1 ¼ Spanfe1; . . . ; e2ng and D2 ¼ Spanfe2nþ1; . . . ; e2nþ2mg. Then we have the following
equalities:

(1) For any k ≠ ‘ ∈{1, . . ., 2nþ 2m}, a ≠ b ∈{1, . . ., s} and plane sections Πk‘ 5 {es, ek},
Πka 5 Span{ek, ξa} and Πab 5 Span{ξa, ξb}, we have

eKðΠk‘Þ ¼ c

4
f1þ 3gðfek; e‘Þ2g (5.1)
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and

eKðΠkaÞ ¼ eKðΠabÞ ¼ 0: (5.2)

(2) For any i ∈{1, . . ., 2n} and j ∈{2n þ 1, . . ., 2n þ 2m}, we have

fRicTpMðeiÞ ¼
c

4
fð2nþ 2m� 1Þ þ 3 cos2θ1 þ 3kP2Teik2g (5.3)

and

fRicTpMðejÞ ¼
c

4
fð2nþ 2m� 1Þ þ 3 cos2θ2 þ 3kP1Tejk2g: (5.4)

Proof. Putting X 5 W 5 ek and Y 5 Z 5 e‘ in (3.6) we have

eg eRðek; e‘Þe‘; ek�� �
¼ c

4
gðfek; fekÞgðfe‘; fe‘Þ � gðfek; fe‘Þgðfe‘; fekÞf

þgðek; fekÞgðe‘; fe‘Þ � gðek; fe‘Þgðe‘; fekÞ
�2gðek; fe‘Þgðe‘; fekÞg:

(5.5)

From (3.9) and (5.5) we get (5.1). In a similar way, it can be obtained (5.2) which completes
the proof of (a). Using (2.2) and (5.1), we obtain (5.3) and (5.4) thus the proof of (b) is
straightforward. ,

Theorem 5.2. Let M be a (2n þ 2m þ s)-dimensional bi-slant submanifold of an S-space
form. Then, the following statements are true.

(1) For any unit vector field X ∈D1, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2m� 1Þ þ 3 cos2θ1 þ kP2TXk2g: (5.6)

The equality case of (5.6) holds for all unit tangent vector X ∈D1 if and only if M isD1

totally geodesic.

(2) For any unit vector field X ∈D2, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2m� 1Þ þ 3 cos2θ2 þ kP1TXk2g: (5.7)

The equality case of (5.7) holds for all unit tangent vector X ∈D2 if and only if M isD2

totally geodesic.

(3) The equality cases of both (5.6) and (5.7) satisfy then θ1 þ θ2 5 0.

Proof. Putting (5.3) and (5.4) in (2.7), we obtain (5.6) and (5.7) inequalities respectively.
Considering the (3) statements of Theorem 2.1 we get M is D1 and D2 geodesic. Using this
fact and Theorem 4.12, we have θ1 þ θ2 ¼ π

2. This completes the proof of theorem.
Now, we need to following lemma:
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Lemma 5.3. Let M be semi-slant or hemi-slant submanifold of a S manifold. Then we have
the following statements:

(1) For any X ∈D1 we have

P2TX ¼ 0: (5.8)

(2) For any X ∈D2 we have

P1TX ¼ 0: (5.9)

Proof. Suppose that {e1, . . ., e2n, e2nþ1, . . ., e2nþ2m, ξ1, . . ., ξs} to be an orthonormal frame field
on TM where D1 ¼ Spanfe1; . . . ; e2ng,
D2 ¼ Spanfe2nþ1; . . . ; e2nþ2mg L ¼ Spanfξ1; . . . ; ξsg. Since M is semi-invariant, we can
choose this orthonormal frame field which satisfies

Te1 ¼ e2; . . . ;Te2n−1 ¼ e2n;
Te2nþ1 ¼ cosθ2e2nþ2;Te2nþ2 ¼ −cosθ2e2nþ1; . . . ;Te2nþ2m ¼ −cosθ2e2nþ2m−1:

Therefore, we have egðfX ;Y Þ ¼ 0 when X ∈D1 and Y ∈D2 which shows the statements of
(1) and (2) are also true for semi-slant submanifolds.
In a similar manner, it can be shown that the statements of (i) and (ii) are true for hemi-slant
submanifolds. ,

Corollary 5.4. Let M be a (2nþ 2mþ s)-dimensional semi-slant submanifold of an S space
form. Then, the following statements are true.

(1) For any unit vector field X ∈D1, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2mþ 2Þg: (5.10)

The equality case of (5.10) holds for all unit tangent vector X ∈D1 if and only if M isD1

totally geodesic point.

(2) For any unit vector field X ∈D2, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2m� 1Þ þ 3 cos2θ2g: (5.11)

The equality case of (5.11) holds for all unit tangent vector X ∈D2 if and only if M isD2

totally geodesic point.

(3) The equality cases of both (5.10) and (5.11) do not satisfy.

Proof. Under the assumption, using θ15 0 and Lemma 5.3 in (5.6) and (5.7) we find (5.10) and
(5.11). The equality cases of both (5.10) and (5.11) holds if and only ifM isD1 andD2 geodesic.
Considering this fact and Corollary 4.14 we get a contraction. Thus the equality cases of both
(5.10) and (5.11) do not satisfy.

Following the proof way of Corollary 5.4, we obtain the following corollary:
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Corollary 5.5. Let M be a (2nþ 2mþ s)-dimensional hemi-slant submanifold of an S space
form. Then, the following statements are true.

(1) For any unit vector field X ∈D1, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2m� 1Þ þ 3 cos2θ1g: (5.12)

The equality case of (5.12) holds for all unit tangent vector X ∈D1 if and only if M isD1

totally geodesic.

(2) For any unit vector field X ∈D2, it follows that

Ric Xð Þ≤ 1

4
n2kHk2 þ c

4
fð2nþ 2m� 1Þg: (5.13)

The equality case of (5.13) holds for all unit tangent vector X ∈D2 if and only if M is a
D2 totally geodesic.

(3) The equality cases of both (5.12) and (5.13) do not satisfy.
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