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Abstract

Purpose – The purpose of this paper is to study large deviations for the solution processes of a stochastic
equation incorporated with the effects of nonlocal condition.
Design/methodology/approach – A weak convergence approach is adopted to establish the Laplace
principle, which is same as the large deviation principle in a Polish space. The sufficient condition for any
family of solutions to satisfy the Laplace principle formulated by Budhiraja and Dupuis is used in this work.
Findings – Freidlin–Wentzell type large deviation principle holds good for the solution processes of the
stochastic functional integral equation with nonlocal condition.
Originality/value – The asymptotic exponential decay rate of the solution processes of the considered
equation towards its deterministic counterpart can be estimated using the established results.
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1. Introduction
Differential equations are applied in a wide variety of disciplines, including physics,
chemistry, engineering, economics and biology by many researchers. An initial value
problem describes the evolution of a physical system. An improvement of initial/local
condition is done by imposing a nonlocal condition into the problem. Nonlocal conditions take
values/measurements at more places and are more precise than the local condition. That is, if
we consider the differential equation

x$ðtÞ ¼ f ðt; xðtÞÞ; xðt0Þ ¼ x0;

for t≥ t0 with xðtÞ∈R then the corresponding nonlocal differential equation evolveswhen the
initial condition is replaced by the following nonlocal condition:

xðt0Þ þ gðxð⋅ÞÞ ¼ x0;

where x(⋅) denotes the solution at some specific times t ≥ t0 and g defines a mapping
consisting of certain functions on some space. Nonlocal conditions have several
applications in real life situations, for example, in the diffusion phenomenon/dripping of
a small amount of coloured water in a transparent tube filled with colourless water.
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Here there will be too little coloured water at the initial time t0, so the measurement
x(t0) þ g(x(⋅)) will be more precise compared to x(t0). One more example is from the field of
kinematics, to determine the location of a physical object with an evolution t → x(t) where
the initial position holds the nonlocal condition.

Today, nonlocal condition has enormous applications in the field of quantum mechanics,
continuum mechanics, damage mechanics, sub-surface flows, image recognition, peri-
dynamic models, environment–human coupled systems like AI and decision making
problems. Some of the applications are cited in References [1–5]. Recently, in Reference [6], the
authors have discussed in detail different mathematical models with non-local initial
condition and their applications.

But, since the late 1970s, non-local condition has been studied by many researchers,
including Kerefov, who proposed non-local boundary value problems for parabolic equations
[7]. Vabishchevich [8] in 1981, studied parabolic problems with non-local condition and
problem related to the inverse of heat conduction. Charbowski [9] was the first to propose
nonlocal initial-boundary value problems for linear parabolic equations and also investigated
their existence and uniqueness. Byszewski, motivated by the physical problems in 1991,
investigated nonlocal problems for nonlinear parabolic equations and also found the
existence and uniqueness of solutions for non-local hyperbolic equations [10, 11]. Byszewski
also found the existence and uniqueness of the solution for semi-linear evolution non-local
Cauchy problems [12]. Inspired by the works of Byszewski, Jackson [13] also contributed to
the generalization of the classical Cauchy problem to the nonlocal Cauchy problem yielding
better results in many physical systems. The research works [14–16] are few more
contributions on non-local Cauchy problems. Byszewski and Lakshmikanthamwere the first
to introduce the study of non-local condition in Banach spaces [17], which paved the way for
many researchers to study integro-differential equations with non-local condition in Banach
spaces (for instance, References [18, 19]). Ntouyas has given a detailed survey about nonlocal
initial and boundary problems in Reference [20]. The existence and uniqueness of solutions
for nonlocal stochastic differential equationswas studied by Lorenz [21]. AVolterra type non-
local random integral equation was studied by Abdou et al. [22] by using admissibility of
integral operator theory. A study of the Volterra–Itô–Doob type non-local stochastic
functional integral equation is developed by Elborai and Youssef [23] using the fixed point
technique.

The preceding works in the field of nonlocal condition and its variant applications in real
life have motivated us to investigate large deviations for nonlocal stochastic functional
differential equations. The subject of the large deviation theory is about controlling the
probabilities of atypical events. It is a sub-discipline of probability theory that studies the
exponential decline of probability measures of particular kinds of tail events. It has a rich
history of development, starting with the works of a Swedish mathematician Cramer in the
1930s for insurance business modelling. In the year 1954, Petrov generalized Crame

́
r’s limit

theorem. In 1966, Varadhan [24] developed the large deviation principle in a unique manner,
making way for many more applications in a more convincing manner, like entropy
calculation in statistical mechanics. Using Varadhan’s contraction principle, Freidlin and
Wentzell [25] developed the large deviation principle (LDP) for differential equations with
small stochastic perturbation. Large deviations are established for stochastic differential
delay equations by Mo and Luo [26]. Large deviations for stochastic integro-differential
equations are studied in Reference [27] and for stochastic functional differential equations
with infinite delay in Reference [28]. Large deviations for stochastic partial differential
equations driven by a Poisson randommeasure is worked in Reference [29] and for the mean
reflected stochastic differential equation with jumps in Reference [30].

In this paper, the large deviation theory is studied for the stochastic functional integral
equation with non-local initial condition by adopting the weak convergence technique, which
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was formulated by Dupuis and Ellis [31] using Fleming’s [32] stochastic control approach.
The basic idea behind Dupuis and Ellis’s formulation is that, under Polish space, the Laplace
principle and the LDP are equivalent. The sufficient conditions for any family of solutions to
satisfy the Laplace principle formulated by Budhiraja and Dupuis [33] are precisely used in
this work.

2. Preliminaries
We consider the following nonlocal stochastic functional differential equation:

dXðtÞ ¼ f ðt;XðtÞ;AXðtÞÞdt þ gðt;XðtÞ;BðtÞXðtÞÞdW ðtÞ;
Xð0Þ ¼ X 0 þ hðXð⋅ÞÞ; (2.1)

where t ∈ J d[0, T], T < ∞, and the nonlocal condition h(X(⋅)) is used in the sense that
in the place of “⋅”; we can substitute only elements of the set {t1, t2, . . ., tp},
where 0≤ t1 < t2 < . . . < tp ≤T; p∈N.

Let ðΩ; F;PÞ be a complete probability space with a filtration fFtgt∈J where Ω is a
nonempty set known as the sample space, F ¼ FT is a σ - algebra of events of Ω occurring
during the time interval J, P is a complete probability measure and fFtgt∈J is an increasing

family of sub σ algebras Ft ⊂ Fsatisfying the usual conditions. Let {Xe, e>0} be a sequence of
random variables taking values in a Polish space Z and defined in ðΩ; F;PÞ. Also, let
CdCðJ ;L2ðΩ; F;PÞÞ be the space of all continuous stochastic processes which are adapted
to the filtration fFtgt∈J. The following definitions and results are needed for this work.

Definition 2.1. [33]: A function I : Z→ ½0;þ∞� is called a rate function if I is lower semi-
continuous. A rate function I is called a good rate function if for each a < ∞, the level set
ff ∈Z : Iðf Þ≤ ag is compact.

Definition 2.2. [31]: Let I be a rate function onZ. We say the sequence {Xe, e> 0} satisfies
the LDP with rate function I if the following two conditions hold:

(1) Large deviation upper bound: For each closed subset F of Z,
lim sup

e→0
e logPðX e

∈FÞ≤ � IðFÞ:

(2) Large deviation lower bound: For each open subset G of Z,
lim inf

e→0
e logPðX e

∈GÞ≥ � IðGÞ:

Definition 2.3. [33]: Let I be a rate function on Z. We say {Xe} satisfies the Laplace
principle with rate function I if for all real valued bounded continuous functions h defined
on Z,

lim
e→0

e logE exp −
1

e
hðX eÞ

� �� �
¼ −inf

f∈Z
fhðf Þ þ Iðf Þg:

Theorem 2.4. [31]The family {Xe} satisfies the Laplace principle with good rate function on
a Polish space if and only if {Xe} satisfies the LDP with the same rate function.
Equation (2.1) is equivalent to the following Volterra–Itô type stochastic functional integral
equation with nonlocal condition:
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XðtÞ ¼ X 0 þ hðXð⋅ÞÞ þ
Z t

0

f ðτ;XðτÞ;AXðτÞÞdτ þ
Z t

0

gðτ;XðτÞ;BðτÞXðτÞÞdW ðτÞ; (2.2)

where X0∈ R, and the function h(X(⋅)) is random and defined onRwith values in the spaceR.
In the above equation the first integral is a mean square Riemann integral and the second

is an Itô integral.W(t) is a real valued Brownian motion adapted to the filtration fFtgt∈J. The
operator A is closed, linear and defined onCwith values inC. The operators {B(t) : t ∈ J} are

linear, bounded and defined on C into C. By the closed graph theorem, we get that

jAXðtÞj≤ βjXðtÞj; t ∈ J and jBðtÞXðtÞj≤ γðtÞjXðtÞj; t ∈ J ; (2.3)

in such away that γ(t) is square integrable on J and β≥ 0 is a real constant. The functions f and
g are real, measurable and defined on J 3C3Cwith values in the space C.

Let j⋅j denote the Euclidean norm. The functions f, g and h will be specified with the
conditions below.

H1. The functions f(t, x, y) and g(t, x, y) are mean square continuous in (x, y) for each t ∈ J.

H2. f and g have the following restriction on growth:

jf ðt; x; yÞj≤ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jxj2 þ jyj2Þ

q
;

jgðt; x; yÞj≤ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jxj2 þ jyj2Þ

q
;

for all t ∈ J, x, y∈R, where the constant α > 0.

H3. There exist constants α1 > 0; 0 < α2 < 1
2 such that

jf ðt; x2; y2Þ � f ðt; x1; y1Þj≤ α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jx2 � x1j2 þ jy2 � y1j2

�r
;

jgðt; x2; y2Þ � gðt; x1; y1Þj≤ α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jx2 � x1j2 þ jy2 � y1j2

�r
;

jhðt; x2Þ � hðt; x1Þj≤ α2jx2 � x1j;

for all t ∈ J , x1, x2, y1, y2 ∈R.
The existence and uniqueness of solution of equation (2.2) has been established by Elborai
and Youseff [23]. In this work we study large deviation principle for Equation (2.2).

Consider Equation (2.2) stochastically perturbed by a small parameter e > 0

XðtÞ ¼ X 0 þ hðXð⋅ÞÞ þ
Z t

0

f ðτ;XðτÞ;AXðτÞÞdτ þ ffiffi
e

p Z t

0

gðτ;XðτÞ;BðτÞXðτÞÞdW ðτÞ:
(2.4)

Let {Xe} denote the solution of the perturbed Equation (2.4). Since {Xe} is a strong solution to
Equation (2.4), there exists a Borel-measurable function Ge : CðJ ;RÞ→CðJ ;RÞ such that
Xe(⋅) 5 Ge(W(⋅)) a.s. by the Yamada Watanabe theorem [34].

Let A ¼
n
v : v is a real valued Ft predictable process and

RT
0 jv τð Þj2dτ < ∞ a:s:

o
;

SN ¼
n
v ∈ L2ðJ ;RÞ :

R T
0

			vðτÞj2dτ≤N
o
, where L2ðJ ;RÞ is the space of all real valued

square integrable functions on J. Then SN endowed with the weak topology in L2ðJ ;RÞ is a
compact Polish space. Let us also define AN ¼ fv∈A : vðωÞ∈SN P − a:sg.
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The sufficient conditions framed by Budhiraja and Dupuis [33] under which the Laplace
principle holds for the family {Xe} are the following:

Proposition 2.5. Suppose that there exists a measurable map G0: CðJ ;RÞ→CðJ ;RÞ such
that the following two conditions hold:

(1) Compactness : For each N < ∞, the set KN ¼ fG0ðR ⋅0 vðτÞdτÞ : v∈ SNg is a compact
subset of CðJ ;RÞ.

(2) Weak convergence: Let fve : e > 0g⊂AN for some N < ∞. If ve converge to v in

distribution as SN valued random elements, then Ge W ð⋅Þ þ 1ffiffi
e

p
R :
0 v

eðτÞdτ
� �

→G0 R :
0 vðτÞdτ


 �
in distribution as e → 0.

Then the family {Xe, e > 0} satisfies the Laplace principle in CðJ ;RÞ with the rate function I
given by

IðfÞ ¼ inf
1

2

Z T

0

jvðτÞj2dτ;f ¼ G
0

Z :

0

vðτÞdτ
� 


and v∈L2ðJ ;RÞ
� �

for each f∈CðJ ;RÞ.
Theorem 2.6. [31] Let fYn; n∈Ng be a sequence of real-valued random variables that are

defined on a sequence of probability spaces fðΩn; Fn;PnÞ; n∈Ng. If Yn!D Y and f ∈ CbðXÞ,
then f ðYnÞ!D f ðY Þ.

3. The Large deviation principle
Here we establish the LDP for the family of solution processes of Equation (2.4) by using
Proposition 2.5.

Theorem 3.1. With the assumptions (H1) to (H3), the family {Xe} of solutions of Equation
(2.4) satisfies the LDP (equivalently, the Laplace principle) in CðJ ;RÞ with good rate function

IðfÞ ¼ inf
1

2

Z T

0

jvðτÞj2dτ;Xv ¼ f

� �
;

where v∈L2ðJ ;RÞ and Xv denotes the solution of the controlled equation

XvðtÞ ¼X 0 þ hðXvð⋅ÞÞ þ
Z t

0

f ðτ;XvðτÞ;AXvðτÞÞdτ þ
Z t

0

gðτ;XvðτÞ;BðτÞXvðτÞÞvðτÞdτ (3.1)

with the convention that the infimum of an empty set is infinity.
The above theorem gets proved with the proof of the following two lemmas:

Lemma 3.2. (Compactness): Define G0 : CðJ ;RÞ→CðJ ;RÞ by

G
0ðgÞd Xv; if g ¼

Z :

0

vðτÞdτ for some v∈L2ðJ ;RÞ
0; otherwise;

8<
:

where Xv denotes the solution of Equation (3.1). Then for each N < ∞, the set

KN ¼ fG0ðR :

0
vðτÞdτÞ : v∈SNg is a compact subset of CðJ ;RÞ.
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Proof: Consider a sequence {vn} ∈ SN such that vn → v weakly in L2ðJ ;RÞ as n→∞. Let
Xvn denote the solution of the controlled Equation (3.1) with v replaced by vn. That is

XvnðtÞ¼X 0 þ hðXvnð⋅ÞÞ þ
Z t

0

f ðτ;XvnðτÞ;AXvnðτÞÞdτ þ
Z t

0

gðτ;XvnðτÞ;BðτÞXvnðτÞÞvnðτÞdτ: (3.2)

From Equations (3.1) and (3.2),

XvnðtÞ � XvðtÞ¼ hðXvnð⋅ÞÞ � hðXvð⋅ÞÞ

þ
Z t

0

f ðτ;XvnðτÞ;AXvnðτÞÞ � f ðτ;XvðτÞ;AXvðτÞÞdτ

þ
Z t

0

gðτ;XvnðτÞ;BðτÞXvnðτÞÞvnðτÞ � gðτ;XvðτÞ;BðτÞXvðτÞÞvðτÞdτ:

Taking modulus and by using H€older’s inequality

jXvnðtÞ � XvðtÞj≤ jhðXvnð⋅ÞÞ � hðXvð⋅ÞÞj

þ
Z t

0

j f ðτ;XvnðτÞ;AXvnðτÞÞ � f ðτ;XvðτÞ;AXvðτÞÞj2dτ
� 
1

2

3T
1
2

þ
Z t

0

jgðτ;XvnðτÞ;BðτÞXvnðτÞÞ � gðτ;XvðτÞ;BðτÞXvðτÞÞj2dτ
� 
1

2

3

Z t

0

jvnðτÞj2dτ
� 
1

2

þ
				
Z t

0

gðτ;XvðτÞ;BðτÞXvðτÞÞðvnðτÞ � vðτÞÞdτ
				:
(3.3)

Let ζnðtÞ ¼ R t0 gðτ;XvðτÞ;BðτÞXvðτÞÞðvnðτÞ− vðτÞÞdτ. Squaring both sides of Equation (3.3)
and using conditions (H2) and (H3),

jXvn tð Þ � Xv tð Þj2 ≤ 4α2
2jXvnð⋅Þ � Xvð⋅Þj2

þ 4α2
1T

Z t

0

jXvn τð Þ � Xv τð Þj2 þ jAXvn τð Þ � AXv τð Þj2
� �

dτ

þ 4α2
1N

Z t

0

jXvn τð Þ � Xv τð Þj2 þ jB τð ÞXvn τð Þ�B τð ÞXv τð Þj2
� �

dτ þ 4jζnðtÞj2:
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Using Equation (2.3),

jXvnðtÞ � XvðtÞj2 ≤ 4α2
2jXvnð⋅Þ � Xvð⋅Þj2

þ 4α2
1T

Z t

0

jXvnðτÞ � XvðτÞj2 þ β2
			XvnðτÞ � XvðτÞj2dτ

þ 4α2
1N

Z t

0

jXvnðτÞ � XvðτÞj2 þ γ2ðτÞ
			XvnðτÞ � XvðτÞj2

� �
dτ þ 4jζnðtÞj2:

(3.4)

Consider

jζn tð Þj ¼
				
Z t

0

g τ;Xv τð Þ;B τð ÞXv τð Þð Þ vn τð Þ � v τð Þð Þdτ
				:

Applying H€older’s inequality and taking supremum to the above equation leads to,

sup
τ∈J

jζnðτÞj≤α
Z T

0

�
1þjXvj2CðJ ;RÞ 1þγ2ðτÞ
 �

dτ
� �1

2

Z T

0

jvnðτÞ�vðτÞj2dτ
� 
1

2

≤α
ffiffiffiffi
N

p
TþkXvk2CðJ ;RÞ

�Z T

0



1þγ2ðτÞ�dτ
� �1

2

≤C<∞;where C is a constant:

(3.5)

Observe that {ζn(t)} is a family of linear, continuous, real valued functions mapping SN to
CðJ ;RÞ. By noting that sup0≤τ≤tjζn(τ)j< C, the constant C not depending on n, we get that the
family {ζn} is uniformly bounded by C. It can be concluded that {ζn} is equi-continuous by
use of the fact that between Banach spaces the family of point-wise bounded continuous
linear functions is equi-continuous. Since vn * v in L2ðJ ;RÞ, ζn(t) → 0 point-wise for t ∈ J.

By applying a version of the Arze
́
la−Ascoli theorem immediately implies that ζn →

0 uniformly in CðJ ;RÞ. Hence
lim
n→∞

sup
τ∈J

jζnðτÞj ¼ 0: (3.6)

Set κnðtÞ ¼ sup0≤τ≤t jXvnðτÞ−XvðτÞj2. Then from Equation (3.4)

κnðtÞ≤ 4α2
1

1� 4α2
2

Z T

0

κnðτÞ 
1þ β2
�
T þ 
1þ γ2ðτÞ�N� �

dτ þ 4

1� 4α2
2

sup
0≤τ≤t

jζnðτÞj2:

Now by using Gronwall’s lemma,

κnðtÞ≤C1 sup
0≤τ≤t

jζnðτÞj2eC2T

where C1 and C2 are constants depending on β, γ(τ), α1, α2, N and T. Hence

jXvn � Xvj2CðJ ;RÞ ¼ sup
τ∈J

jXvnðτÞ � XvðτÞj2≤C1sup
t∈J

jζnðtÞj2eC2T
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and so Xvn →Xv inCðJ ;RÞby Equation (3.6). Since the space SN is compact, it follows the set

KN ¼ G
0 R :

0
vðτÞdτ
 �

: v∈SN

n o
for N < ∞ is compact.

We consider the following stochastic integral equation for verifying theweak convergence
condition of Proposition 2.5.

X e

veðtÞ ¼ X 0 þ h


X e

veð⋅Þ
�þ Z t

0

f


τ;X e

veðτÞ;AX e

veðτÞ
�
dτ

þ
Z t

0

g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
veðτÞdτ

þ ffiffi
e

p Z t

0

g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞ:

(3.7)

FromGirsanov’s theorem, the existence of the above Equation (3.7) follows. So wemove on to
the weak convergence result.

Lemma 3.3. (Weak Convergence): Let fve : e > 0g⊂AN for some N < ∞. Assume ve

converges to v in distribution as SN-valued random elements. Then Ge W ð⋅Þþð
1ffiffi
e

p
R :
0 v

eðτÞdτÞ→G0 R :
0 vðτÞdτ


 �
in distribution as e → 0.

Proof: Applying Itô’s formula

jX e

veðtÞ � XvðtÞj2 ¼ jh
X e

veð⋅Þ
�� hðXvð⋅ÞÞj2

þ 2

Z t

0



f


τ;X e

veðτÞ;AX e

veðτÞ
�� f ðτ;XvðτÞ;AXvðτÞÞ

�
3


X e

veðτÞ � XvðτÞ
�
dτ

þ 2

Z t

0



g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�� gðτ;XvðτÞ;BðτÞXvðτÞÞ

�
3


X e

veðτÞ � XvðτÞ
�
veðτÞdτ

þ 2

Z t

0



X e

veðτÞ� XvðτÞ
�
gðτ;XvðτÞ;BðτÞXvðτÞÞðveðτÞ � vðτÞÞdτ

þ 2
ffiffi
e

p Z t

0



X e

veðτÞ � XvðτÞ
�
g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞ

þ e

Z t

0

jg
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�j2dτ:

(3.8)

Define

ζeðtÞ ¼
Z t

0

gðτ;XvðτÞ;BðτÞXvðτÞÞðveðτÞ � vðτÞÞdτ: (3.9)

Taking supremum and expectation we get E supt∈J
		ζeðtÞ		
 �

≤ C3 < ∞, where C3 is a
constant.
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By virtue of Itô’s formula

2

Z t

0

X e

veðτÞ

 �XvðτÞÞgðτ;XvðτÞ;BðτÞXvðτÞÞðveðτÞ � vðτÞÞdτ

¼ 2


X e

veðtÞ � XvðtÞ
�ðζeðtÞÞ � 2

Z t

0

h


X e

veð⋅Þ
�� hðXvð⋅ÞÞ


 �
ζeðτÞdτ

� 2

Z t

0

f


τ;X e

veðτÞ;AX e

veðτÞ
�� f ðτ;XvðτÞ;AXvðτÞÞ


 �
ζeðτÞdτ

�2

Z t

0

g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
veðτÞ�gðτ;XvðτÞ;BðτÞXvðτÞÞvðτÞ


 �
3 ζeðτÞdτ � 2

ffiffi
e

p Z t

0

g


τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
ζeðτÞdW ðτÞ

¼ I 1 þ I 2 þ I 3 þ I 4 þ I 5:

(3.10)

By the help of Young’s inequality and (H3), we get

I 1 ≤
1

2
jX e

veðtÞ � XvðtÞj2 þ 2jζeðtÞj2: (3.11)

I 2 ≤
1

2
α2
2

Z t

0

jX e

veð⋅Þ � Xvð⋅Þj2dτ þ 2

Z t

0

jζeðτÞj2dτ: (3.12)

I 3 ≤
1

2
α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jAX e

veðτÞ � AXvðτÞj2
h i

dτ þ2

Z t

0

jζeðτÞj2dτ: (3.13)

I 4 ≤
1

2
α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jBðτÞX e

veðτÞ � BðτÞXvðτÞj2
h i

dτ

þ 2 sup
τ∈½0;t�

jζeðτÞj2
Z t

0

jveðτÞj2dτ þ 2 sup
τ∈ ½0;t�

jζeðτÞj
 !2

≤
1

2
α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jBðτÞX e

veðτÞ � BðτÞXvðτÞj2
h i

dτ

þ 2N sup
τ∈½0;t�

jζeðτÞj2 þ 2 sup
τ∈ ½0;t�

jζeðτÞj
 !2

:

(3.14)

Using Young’s inequality, condition (H3) and substituting the estimates (3.11)–(3.14) of I1, I2,
I3 and I4 in Equation (3.8), we get,

jX e

veðtÞ � XvðtÞj2 ≤ jh
X e

veð⋅Þ
�� hðXvð⋅ÞÞj2 þ

Z t

0

jX e

veðτÞ � XvðτÞj2dτ
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þ α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jAX e

veðτÞ � AXvðτÞj2
h i

dτ

þ
Z t

0

jX e

veðτÞ � XvðτÞj2jveðτÞj2dτ

þ α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jBðτÞX e

veðτÞ � BðτÞXvðτÞj2
h i

dτ

þ 1

2
jX e

veðtÞ � XvðtÞj2 þ 2jζeðtÞj2 þ 1

2
α2
2

Z t

0

jX e

veð⋅Þ � Xvð⋅Þj2dτ

þ 4

Z t

0

jζeðτÞj2dτ þ 1

2
α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2þjAX e

veðτÞ�AXvðτÞj2
h i

dτ

þ 1

2
α2
1

Z t

0

jX e

veðτÞ � XvðτÞj2 þ jBðτÞX e

veðτÞ � BðτÞXvðτÞj2
h i

dτ

þ 2
ffiffi
e

p 			 Z t

0



X e

veðτÞ�XvðτÞ�ζeðtÞ�g
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�jdW ðτÞ

				
þe

Z t

0

jg
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�j2dτþ2ðNþ 1Þ sup

τ∈ ½0;t�
jζeðτÞj

 !2

:

(3.15)

Using conditions (H2) and (H3) and simplifying, we get

jX e

veðtÞ � XvðtÞj2 ≤ 2

1� 2α2
2

Z t

0

jX e

veðτÞ � XvðτÞj2dτ

þ 2α2
1

1� 2α2
2

Z t

0

jX e

veðτÞ � XvðτÞj2þ β2jX e

veðτÞ � XvðτÞj2
� �

dτ

þ 2

1� 2α2
2

Z t

0

jX e

veðτÞ � XvðτÞj2jveðτÞj2dτ

þ 2α2
1

1� 2α2
2

Z t

0

jX e

veðτÞ�XvðτÞj2þγ2ðτÞjX e

veðτÞ�XvðτÞj2
� �

dτ

þ 4

1� 2α2
2

jζeðtÞj2 þ α2
2

1� 2α2
2

Z t

0

jX e

veð⋅Þ � Xvð⋅Þj2dτ

þ 8

1� 2α2
2

Z t

0

jζeðτÞj2dτ

þ α2
1

1� 2α2
2

Z t

0

jX e

veðτÞ � XvðτÞj2 þ β2jX e

veðτÞ � XvðτÞj2
� �

dτ
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þ α2
1

1� 2α2
2

Z t

0

jX e

veðτÞ�XvðτÞj2þ γ2ðτÞjX e

veðτÞ�XvðτÞj2
� �

dτ

þ 4

1� 2α2
2

ðN þ 1Þ sup
τ∈ ½0;t�

jζeðτÞj
 !2

þ 2eα2

1� 2α2
2

Z t

0

1þ jX e

veðτÞj2 þ γ2ðτÞjX e

veðτÞj2
h i

dτ

þ 4
ffiffi
e

p

1� 2α2
2

j
Z t

0



X e

veðτÞ�XvðτÞ�ζeðτÞ�g
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞj:

(3.16)

Denote

κeðtÞ ¼ sup
0≤τ≤t

jX e

veðτÞ � XvðτÞj2:

Taking supremum of Equation (3.16)

κeðtÞ≤ M 1

Z t

0

�
1þ jveðτÞj2

�
κeðτÞdτ þM 2

Z t

0

κeðτÞ
1þ γ2ðτÞ�dτ
þM 3 sup

τ∈ ½0;t�
jðζeðτÞÞj

 !2

þ 2eα2

1� 2α2
2

Z t

0

1þ jX e

veðτÞj2


1þ γ2ðτÞ�h i

dτ

þ 4
ffiffi
e

p

1� 2α2
2

sup
s∈½0;t�

j
Z s

0



X e

veðτÞ�XvðτÞ�ζeðτÞ�g
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞj:

Here M1, M2 andM3 are constants depending on β, N, α, α1, α2 and T. By using Gronwall’s
lemma

κeðtÞ ≤

0
@M 3 sup

τ∈ ½0;t�
jζeðτÞj

 !2

þ 2eα2

1� 2α2
2

Z t

0

h
1þ

			X e

veðτÞj2


1þ γ2ðτÞ�idτ

þ 4
ffiffi
e

p

1� 2α2
2

sup
s∈½0;t�

				
Z s

0



X e

veðτÞ�XvðτÞ�ζeðτÞ�g
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞ

				



3 exp M 1

Z t

0

�
1þ jveðτÞj2

�
dτ þM 2

Z t

0



1þ γ2ðτÞ�dτj� 


:

Simplifying further

κeðTÞ ≤C M 3

�
sup
τ∈ J

jζeðτÞj

2

þ 2eα2

1� 2α2
2

T þ sup
τ∈J

jX e

veðτÞj2
Z T

0



1þ γ2ðτÞ�dτ� � 

þ 4
ffiffi
e

p

1� 2α2
2

sup
s∈J

j
Z s

0



X e

veðτÞ�XvðτÞ�ζeðτÞ�g
τ;X e

veðτÞ;BðτÞX e

veðτÞ
�
dW ðτÞj



:

(3.17)
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For showing convergence of ζe(τ), we define

FðuÞ ¼
Z t

0

gðτ;XvðτÞ;BðτÞXvðτÞÞuðτÞdτ; u∈AN:

Recall that ve converges to v in distribution as SN valued random elements which is endowed
with the weak topology. By linear growth of g, we could observe that F as a mapping from SN
to CðJ ;RÞ is bounded and continuous. Now applying Theorem 2.6, we get ζe → 0 in
distribution as e → 0.

Using Burkholder–Davis–Gundy inequality, it can be easily verified that

E sup
s∈J

				
Z s

0

X e
ve τð Þ�Xv τð Þ�ζe τð Þ
 �

g τ;X e
ve τð Þ;B τð ÞX e

ve τð Þ
 �
dW τð Þ

				
� 


≤C:

With the above bound andwith the distributional convergence of ζe to 0, it follows from (3.17)
that κe(T) → 0 in distribution as e → 0. Thus the lemma is established, thereby proving the
main theorem.

4. Conclusion
Here, a control system for the corresponding original system is taken, and the compactness of
the solution is proved. And with the help of the estimates of the solution, it is proved
successfully that, for a controlled deterministic system, a controlled stochastic system
converges weakly. Thus, the stochastic functional integral equationwith a nonlocal condition
under Polish space satisfies the Laplace principle, and thereby the large deviation principle is
also proved. In the future, one can move to study exit time problems, the uniform large
deviation principle, and the moderate deviation principle for the equation considered in this
work, and also study the LDP and moderate deviation principle for coupled stochastic
integral equations with nonlocal condition.
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