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Due to the harsh environment of highway tunnels and frequent breakdowns of
various detection sensors and surveillance devices, the operational management
of highway tunnels lacks effective data support. This paper analyzes the
characteristics of operational surveillance data in highway tunnels. It proposes
a multimodal information fusion method based on CNN–LSTM–attention and
designs and develops a digital twin for highway tunnel operations. The system
addresses issues such as insufficient development and coordination of the
technical architecture of operation control systems, weak information service
capabilities, and insufficient data application capabilities. The system also lacks
intelligent decision-making and control capabilities. The developed system
achieves closed-loop management of “accurate perception–risk
assessment–decision warning–emergency management” for highway tunnel
operations based on data-driven approaches. The engineering demonstration
application underscores the system’s capacity to enhance tunnel traffic safety,
diminish tunnel management costs, and elevate tunnel driving comfort.
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1 Introduction

Tunnels are vital infrastructures on national highway networks. As of the end of 2021,
there were 23,268 road tunnels in China, with a total length of 24,698.9 km, an increase of
1,952 tunnels and 2,699.6 km, of which there were 1,599 special long tunnels with a length of
7,170.8 km and 6,211 long tunnels with a length of 10,844.3 km [1]. To supervise the
operation of highway tunnels, tunnels are equipped with electromechanical systems which
consist of communication and monitoring facilities. During the construction and operation
of highway tunnel electromechanical systems, a large amount of experience has been
accumulated and complete engineering technical specifications and related product
standards have been formed, laying a good foundation for realizing intelligent
management and control of highway tunnel operations. With the large-scale
construction and operation of Chinese tunnels, especially the increasingly mature digital
tunnel monitoring technology, most highway tunnels currently use area control and switch
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ring network control transmission technology, which has realized
equipment control and data monitoring management inside the
tunnel, and the technology is mature and stable [2].

As early as the 1960s, countries such as the United States,
Germany, and Japan began researching about the mechanical and
electrical control systems of highway tunnels. In the mid-1970s,
Japan’s OMRON Corporation studied a controller link network
control technology that could form a redundant token ring network
with autonomous control capabilities. In the mid-1980s, Germany’s
Phoenix Contact Corporation researched an INTERBUS fieldbus
technology that is suitable for network technology in the automatic
control field. Based on the INTERBUS technology, a highway tunnel
operation control system can perform distributed monitoring of the
mechanical and electrical equipment in single-tube two-way
highways or dual-tube one-way highways. Each tunnel can have
an independent centralized monitoring center. In themid-1990s, the
United States’ Echelon Corporation introduced a LonWorks
distributed highway tunnel monitoring system, which was
developed based on Echelon’s OpenLNS Server software platform
and possessed characteristics such as distribution, openness,
interoperability, and adaptability. These research results have
been widely recognized by the industry and have become
mainstream standards for control networks, widely applied in the
mechanical and electrical control of highways and tunnels
worldwide [3–5].

Since the beginning of the 21st century, countries have gradually
improved the theoretical and technical aspects of highway tunnel
operation safety monitoring. The United States, Germany, and other
countries have formulated technical standards and traffic control
regulations for highway tunnel operation management systems,
while continuously researching and developing updated highway
monitoring facilities and software systems with the application of
new technologies [6–9]. Research on tunnel operation management
technology in China began in the 1980s. Researchers gradually
conducted research on tunnel structural design, safety
construction monitoring, and operational safety management.
The Shanghai Yan’an East Road Tunnel and the Shenzhen
Wutongshan Tunnel were the earliest to introduce foreign tunnel
monitoring systems for application. The Zhongliangshan Tunnel
and the Jinyunshan Tunnel of the Chongqing–Guizhou Highway
also successively introduced advanced equipment from abroad.
With the accumulation of experience in the construction and
operation of highway electromechanical systems, a series of
national standards and industry specifications related to highway
tunnel traffic engineering design were formed. A number of
successful cases have been established, such as the Hong
Kong–Zhuhai–Macao Bridge long-span immersed tunnel
monitoring and management platform, the
Qinling–Zhongnanshan Mountain long tunnel monitoring and
management platform, the Shandong Province Jilai Highway
tunnel monitoring and management platform, and the CMCT’s
new generation of intelligent highway tunnel management platform,
which has laid a good foundation for achieving intelligent
management and control of highway network traffic operation.
In recent years, with the continuous advancement of China’s
construction of a transportation power, provinces such as
Shandong, Zhejiang, Jiangsu, Gansu, Henan, and Yunnan have
successively issued local smart highway construction guidelines

[10–15]. Industry software and hardware leaders such as
Hikvision, Huawei, and Wanji also successively released smart
highway overall solutions [16, 17]. As tunnels are key nodes of
highways, higher requirements have been put forward for intelligent
tunnel operation management systems [18–21].

The data in highway tunnels exhibit characteristics such as
multiple sources and heterogeneity. Various pieces of
electromechanical equipment inside the tunnel constantly
generate a massive amount of data, including real-time
monitoring data such as video, environmental conditions, and
traffic data collected by vehicle detectors (e.g., traffic flow, speed,
and occupancy). The equipment control parameters include
ventilation-, lighting- and traffic-related ones. Due to the harsh
operating environment in the tunnel, the operational data detection
equipment, such as CO/VI detectors, wind speed and direction
detectors, brightness detectors, and vehicle detectors, experiences
frequent failures, leading to distortedmonitoring data. This hampers
the provision of data-based guidance for the precise control of
ventilation, lighting, traffic, and guidance. Currently, research and
application of data mining in highway tunnel monitoring systems
are almost nonexistent, with few relevant research achievements.
The road condition perception system on the Yanqing to Chongli
highway employs LiDAR-vision fusion for road information
acquisition [22]. However, this approach is hampered by the
absence of an integrated data fusion process, leading to
asynchronous radar and video data collection. This limitation
results in a restricted range of data on individual vehicle
operations. In contrast, the Jinghu Jilai Highway tunnels employ
a more advanced traffic data collection system, integrating
technologies such as laser radar, millimeter-wave radar, and
panoramic cameras. The practical outcomes of this system reveal
that traffic data collection, when based on a multi-sensor fusion
approach, significantly surpasses the accuracy of target recognition
achievable with a single sensor. Furthermore, the implementation of
a bidirectional optimal estimation algorithm, built upon the fused
data, enhances the reliability of traffic flow data collection.

In its role as a facilitator of intelligent highway tunnel operation,
the current mechanical and electrical system still has the following
problems in technology architecture, functional design, and
operation management: the development of the system’s
technical architecture is not enough, the coordination is
insufficient, and it is difficult to adapt to the edge-cloud
architecture; the system’s functions have relatively single
information exchange modes and weak precision and timely
information service functions, and the data intelligent
aggregation, analysis, and application capabilities need to be
improved urgently. Furthermore, the establishment of intelligent
decision control capability remains a pending endeavor. This article
initiates its exploration from the feature analysis of monitoring data
pertinent to highway tunnel operations in Section 2. Aiming to
significantly elevate the accuracy of highway tunnel operational
status assessments, this is achieved through the implementation
of a multimodal information fusion method grounded in
CNN–LSTM–attention in Section 3. It designs and develops a
digital twin system for highway tunnel operations in Section 4,
realizing a closed-loop management of “precise perception–risk
judgment–decision warning–emergency control” for highway
tunnel based on data-driven approaches.
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2 Acquisition and feature analysis of
operational monitoring data for
highway tunnels

2.1 Operational data collection of
highway tunnels

The discrimination and control of the operating status of
highway tunnels mainly rely on the monitoring facilities on site.
Monitoring facilities generally include monitoring, control, and
induction facilities. Monitoring facilities typically consist of

vehicle detection facilities, environmental detection facilities,
road anomaly detection facilities, video surveillance facilities,
and alarm facilities [23–25]. Control and induction facilities
include emergency call facilities, information release and
control facilities, and local control facilities. The monitoring
settings related to highway tunnel operation data collection
mainly include vehicle detection sensors, light intensity
detection sensors, carbon monoxide/visibility detection
sensors, wind speed and direction detection sensors, and video
image sensors, and the collection content, methods, and
installation requirements are shown in Table 1.

TABLE 1 Collection methods and requirements of highway tunnel operation data.

Data Collection method Sensor installation requirement

Speed data Vehicle detection sensor 1. When using induction coil detection sensors, the spacing
should be arranged between 300–750 m

Traffic volume data 2. Vehicle detection sensors (radar, microwave, LiDAR fusion
sensors, etc.) should be set up to prevent other equipment or
objects from blockingPercentage of lane occupancy data

Video data Video image sensor 1. The video image sensor outside the tunnel should be set at the
entrance and exit of the tunnel between 100–250 m

2. For the video image sensor inside the tunnel, a spacing of
100–200 m should be used at a distance of 2–5 m from the
entrance, and the recommended setting is 120–150 m

Carbon monoxide data Carbon monoxide detection sensor 1. For tunnels with jet fans for longitudinal ventilation, they
should be set up in the middle, at the bends, and a distance of
100–150 m from the exit

Visibility data Visibility detection sensor 2. For tunnels with vertical and inclined shaft ventilation, they
should be set up 30 m in front of the exhaust port

3. The detection sensor is installed on the outer side wall bracket
of the tunnel, with a height of 2.5–3 m from the maintenance
road

Nitrogen dioxide data Nitrogen dioxide detection sensor The detection sensor is installed on the outer side wall bracket of
the tunnel, with a height of 2.5–3 m from the maintenance road

Light intensity data outside the tunnel Light intensity detection sensor Light intensity detection sensor outside the tunnel is installed
outside the tunnel, a distance of one parking line of sight
(100–200 m) from the tunnel entrance

Light intensity data inside the tunnel Light intensity detection sensor Light intensity detection sensor inside the tunnel is installed
inside the tunnel, 20–25 m away from the tunnel entrance

Wind speed and direction data Wind speed and direction detection sensor 1. For tunnels with jet fans for longitudinal ventilation, they
should be set up at the bends and a distance of 100–150 m from
the exit

2. For tunnels with vertical and inclined shaft ventilation, they
should be set up 30 m in front of and behind the exhaust and
supply air outlets

3. The detection sensor is installed on the outer side wall bracket
of the tunnel, with a height of 2.5–3 m from the maintenance
road or installed on the nails on both sides of the inside and
outside of the tunnel, and the two probes make an angle of
30°–60° with the longitudinal center line of the tunnel, preferably
45°, and cannot encroach on the building clearance

Traffic event data Event monitoring sensor 1. Setting principles refer to video image sensors

2. It is recommended to repurpose existing video image sensors.
If using fusion perception devices, they can replace the original
video image sensors
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2.2 Characteristic analysis of highway tunnel
operation data

In the process of managing the operation of highway tunnels, traffic
and environmental conditions are the focus of attention for managers.
The spatiotemporal variation of traffic volume and composition, as well
as vehicle speed, can determine whether there are traffic safety hazards in
the tunnel and whether the luminaires meet the requirements of traffic
safety [26–28]. This paper selects data from ventilation, lighting, and
traffic detection sensors for analysis. The data characteristics are shown
in Table 2, and the data correlations are shown in Eqs 1–4. The data
collected by the vehicle detection sensors and visibility detection sensors
can be calibrated through video images [29–33], as shown in Figure 1.

QVI � 1
3.6 p 106

p qVI p f a VI( ) p f d p f h VI( ) p f iv VI( ) p L p ∑ nD
m�1 Nm p f m VI( )( ).

(1)

This equation includes the following variables: QVI is the
smoke emission amount of the tunnel; qVI is the benchmark
smoke emission amount for the target year, which can be
calculated based on the specifications; fa(VI) is the coefficient
of vehicle condition considering smoke, which is determined
according to the specifications; fd is the vehicle density
coefficient, which is determined according to the
specifications; fh(VI) is the altitude coefficient considering
smoke, which is determined according to the specifications;
fiv(VI) is the longitudinal slope-speed coefficient considering
smoke, which is determined according to the specifications; L
is the length of the tunnel; fm(VI) is the diesel vehicle type
coefficient considering smoke; nD is the number of diesel
vehicle type categories; and Nm is the traffic volume of the
corresponding vehicle type, which is determined according to
the specifications.

TABLE 2 Characteristics of highway tunnel operation data.

Tunnel environment Direction data Data
units

Data range Data
accuracy

Data transmission
cycle (min)

Ventilation environment
monitoring

Visibility data m-1 0–0.0015 m-1 ± 0.0002 m-1 5–10

Carbon monoxide data 10–6 (ppm) 0–300 × 10−6

(0–300 ppm)
± 2 × 10−6

(± 2 ppm)
5–10

Wind speed and direction data m/s −20 ~ +20 m/s ± 0.2 m/s 5–10

Nitrogen dioxide data 10–6 (ppm) 0–10 cm3/m3 ± 5% indicated
value

5–10

Lighting environment
monitoring

Light intensity data outside the
tunnel

cd/m2 1–6500cd/m2 ± 3% indicated
value

5–10

Light intensity data inside the
tunnel

lx 1–1000lx ± 3% indicated
value

5–10

Traffic environment monitoring Speed data Km/h 5–2000 km/h Accuracy ≥ 85% 5–10

Traffic volume data Vehicle/h - Accuracy ≥ 85% 5–10

Percentage of lane occupancy
data

Vehicle/km - Accuracy ≥ 85% 5–10

FIGURE 1
Image-based visibility detection and recognition.
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FIGURE 2
Multimodal fusion network architecture of tunnel operation monitoring data.

FIGURE 3
CBAM attention mechanism structure diagram.
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QCO � 1
3.6 p 106

p qCO p f a p f d p f h p f iv p L p ∑ nD
m�1 Nm p f m( ). (2)

This equation describes the calculation of carbon monoxide
(CO) emissions in a highway tunnel. QCO represents the amount of

CO emissions, while qCO is the baseline emissions rate for the target
year, which can be calculated based on relevant specifications. The
coefficients fa, fd, fh, and fiv represent the effects of vehicle
condition, traffic density, altitude, and slope-velocity on CO
emissions, respectively, and they are obtained according to
specifications. L is the length of the tunnel. fm is the coefficient
for diesel vehicle type considering CO emissions, nD is the number
of diesel vehicle types, and Nm is the traffic volume for the
corresponding vehicle type, which are all determined based on
specifications.

Lth1 � k p L20 S( ). (3)

This equation includes the following variables: Lth1 represents
the brightness of the TH1 section at the tunnel entrance; Lth1
represents the brightness of the TH2 section at the tunnel
entrance; k is the reduction coefficient of the entrance section
brightness, which is obtained by consulting the specifications
based on traffic volume data; and L20(S) represents the
brightness outside the tunnel.

TABLE 3 1D CNN–LSTM model parameters.

Layer Parameter

Convolutional layers Filter = 20, kernel size = (10.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

Convolutional layers Filter = 40, kernel size = (5.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

Convolutional layers Filter = 80, kernel size = (3.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

LSTM Hidden size = 64

FIGURE 4
CNN–LSTM test results. (A)CNN-LSTM-base test results. (B)CNN-LSTM-ECA test results. (C)CNN-LSTM-SE test results. (D)CNN-LSTM-CBAM test
results. (E) CNN-LSTM-TPA test results.
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Lth2 � 0.5 p k p L20 S( ). (4)

In the field of tunnel vehicle operation data collection and
processing, the integration of LiDAR-vision machines and edge
processors can be utilized to sequentially accomplish the
collection, recognition, and fusion of radar and video data.

The steps are as follows: 1) The LiDAR-vision machine
conducts real-time data collection of vehicles in the target
area, acquiring both radar and video detection data. 2) The
edge processor extracts radar and video detection data
separately. It utilizes the YOLOv5 algorithm to extract vehicle
type information from the video, and the 3DSSD radar target
detection algorithm to extract vehicle position information. 3)
The extracted target data undergo spatiotemporal
synchronization. Through time registration, ineffective radar
and video frames are eliminated. Spatial calibration is then
applied to transform valid radar data into pixel space. 4) The
region of interest (ROI) method is used to merge radar- and
video-detected vehicle targets. Vehicle target information from
both LiDAR and vision sources is fused based on detection
distance, thereby achieving holographic perception of vehicles
passing through highway tunnels.

However, the current operating environment in highway
tunnels is harsh, with frequent malfunctions of operational data

FIGURE 5
Confusion matrix. (A) CNN-LSTM-SE test results. (B) CNN-LSTM-ECA test results. (C) CNN-LSTM-CBAM test results. (D) CNN-LSTM-TPA
test results.

TABLE 4 Test results.

Model RMSE Reduce

CNN–LSTM–BASE 0.01254 0

CNN–LSTM–ECA 0.00526 58%

CNN–LSTM–SE 0.00036 97%

CNN–LSTM–CBAM 0.00023 98%

CNN–LSTM–TPA 0.00015 99%
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FIGURE 6
Schematic diagram of the overall system architecture.

FIGURE 7
Schematic diagram of system technical architecture.
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detection equipment such as carbon monoxide/visibility detection
sensors, wind speed/direction detection sensors, brightness
detection sensors, and vehicle detection sensors, making long-
term stable operation impossible. While video imaging can be
used to detect traffic flow, visibility, and other data, it is still
difficult to accurately predict the overall operating status of the
tunnel, and operational management decisions lack effective data
support. Due to most tunnel data detection sensors currently being
integrated into the tunnel monitoring system via PLC controllers,
the data are first converted from digital to analog form and then back
to digital form before being transmitted to the monitoring system. If
the PLC devices lack effective maintenance, the precision of the data
will not meet the requirements for tunnel operation management
[34, 35]. In response to these issues, this article proposes a method

based on multi-sensor fusion to discriminate the operating state of
highway tunnels.

3 Prediction method of highway tunnel
operation status based on multimodal
data fusion

3.1 Highway tunnel operation status
prediction model based on multimodal
data fusion

The operational status of highway tunnels encompasses various
aspects such as traffic operation status, the adaptability of traffic

FIGURE 8
Schematic diagram of system business architecture.
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TABLE 5 Code of basic tunnel parameters.

Name Abbreviation Data types Can be null Notes

Tunnel name TunName Varchar (20) False

Tunnel beginning number TunBegin Numeric (7.3) False Unit: kilometer

Tunnel ending number TunEnd Numeric (7.3) False Unit: kilometer

Tunnel central number TunCentre Numeric (7.3) False Unit: kilometer

Classification code ClaCode Varchar (20) False

Length Length Numeric (6.2) False Unit: kilometer

Clear width CleWidth Numeric (6.2) False Unit: meter

Clear height CleHeight Numeric (6.2) False Unit: meter

Hole mode HoMode Varchar (20) False

Mode of the cross-section SecMode Varchar (20) False

Lining material LinMaterial Varchar (20) False

Mode of lighting conditions LighMode Varchar (20) False

Mode of ventilation VenMode Varchar (20) False

Mode of electromechanical facilities FaciMode Varchar (20) False

Completion date ComDate Datetime False

Design unit DesUnit Varchar (20) False

Construction unit ConsUnit Varchar (20) False

Supervision unit SupUnit Varchar (20) False

Management unit ManUnit Varchar (20) False

Maintenance unit MainUnit Varchar (20) False

Name of the sender SendMan Varchar (20) Yes

Date and time SectTime Datetime Yes

Vehicle detection sensor ID VDID Varchar (20) False

Collection time RecTime Datetime False

Collection cycle RerPeriod Smallint Yes

Upstream heavy vehicle flow UupFluxB Smallint Yes

Upstream light vehicle flow UupFluxS Smallint Yes

Upstream flow UupFlux Smallint Yes Total traffic volume of all lanes in the upstream direction

Downstream heavy vehicle flow DwFluxB Smallint Yes

Downstream light vehicle flow DwFluxS Smallint Yes

Downstream flow DwFlux Smallint Yes Total traffic volume of all lanes in the downstream
direction

Upstream average speed UpSpeed Smallint Yes

Downstream average speed DwSpeed Smallint Yes

Upstream average occupancy rate UpOccup Numeric (5.2) Yes

Downstream average occupancy rate DwOccdown Numeric (5.2) Yes

Total number of lanes LaneNum Tinyint Yes Number of lanes detected by the equipment

Working status Status Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

(Continued on following page)
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engineering and auxiliary facilities, the environmental adaptability
of tunnel operations, and operational risk. These aspects can be
quantitatively assessed through the status of tunnel infrastructure
and data collected by sensors. The traffic operation status of tunnels
can be determined using data from vehicle sensors. The adaptability
of traffic engineering and auxiliary facilities can be assessed through
the status data of tunnel electromechanical facilities. The
environmental adaptability of tunnel operations can be evaluated
using data collected by environmental sensors in the tunnel.
Operational risks can be identified through event detection
sensors. A comprehensive evaluation standard for the operational
status of highway tunnels can be computed using multimodal data
processing methods, which analyze the connections between various
types of data.

This article combines the CNN–LSTMdeep learningmodel with
the self-attention mechanism to apply it to the judgment of tunnel
operation status. The CNN–LSTM model is used to extract features
from nonintrusive multimodal time series data, and the self-
attention mechanism is used to integrate traffic flow, carbon
monoxide, and visibility detection data, to effectively judge the
tunnel operation service level by weighing the features of
different modes [36]. The multimodal fusion architecture mainly
includes four steps: preprocessing, feature extraction, feature fusion,
and classification, as shown in Figure 2.

3.1.1 1D-CNN
The CNNmodel usually consists of three main components: the

convolutional layer, pooling layer, and fully connected layer.
The role of the convolutional layer is to perform convolutional

operation between the local region of the input data and the
convolution kernel and slide the convolution kernel window to
traverse the entire input data through local receptive fields. The
convolution calculation equation is as follows:

xli � f wl
i pX

l−1 + bli( ). (5)

In the equation, xli represents the ith feature of the output
value of layer l, wl

i represents the weight matrix of the ith
convolution kernel in layer l, * operator represents the
convolution operation, Xl−1 represents the output of layer l-1,
bli represents the bias term, and f represents the activation
function of the output. CNN uses a nonlinear activation
function to solve real-world nonlinear problems and chooses
rectified linear unit (ReLU) as the activation function of the
convolutional neural network.

The role of the pooling layer is to combine spatially, reducing the
dimensionality of the feature map while maintaining the most
important information. There are many types of it, and the
maximum pooling is generally used, and its expression is

TABLE 5 (Continued) Code of basic tunnel parameters.

Name Abbreviation Data types Can be null Notes

Carbonmonoxide and visibility detection sensor ID COVID int False

Collection time COVTime Datetime False

Collection period COVPeriod Smallint Yes

Carbon monoxide concentration COConct Smallint Yes

Visibility Visibility Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Light intensity detection sensor ID LOLIID int False

Acquisition time LOLITime Datetime False

Acquisition period LOLIPeriod Smallint Yes

Outside brightness of the hole LOLumi Smallint Yes

Inside brightness of the hole LILumi Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Wind speed and direction detection sensor ID WSID int False

Collection time WSTime Datetime False

Collection cycle WSPeriod Smallint Yes

Wind direction Direction Tinyint Yes

Wind speed Speed Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown
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TABLE 6 Description of the digital twin system for highway tunnel operation.

Subsystem Function name Description

Comprehensive monitoring
system

Tunnel daily management control According to the monitoring center, the selected tunnels within its jurisdiction can realize
the functions of tunnel electromechanical equipment status, detection information
collection, single control, group control, event monitoring, and alarm information
confirmation, and event and fault information entry in a three-dimensional and two-
dimensional visual model

Digital twin system Tunnel basic information digital twin The digital twin presents the basic information of the tunnel

Digital twin system Field electromechanical equipment digital twin The digital twin presents and controls the electromechanical equipment outside the tunnel
and related road sections

Digital twin system Comprehensive environmental information
digital twin

The digital twin presents the environmental monitoring information of the tunnel and
related road sections

Digital twin system Real-time traffic operation digital twin The digital twin presents the real-time traffic flow and vehicle information of the tunnel and
related road sections

Digital twin system Traffic incident digital twin The digital twin presents the tunnel event detection

Digital twin system Emergency linkage digital twin The digital twin presents the emergency linkage control plan of the tunnel

Specialized control system Video inspection special item The cameras of the selected road sections and tunnels are grouped into 16 video streams for
broadcasting, and the situation inside the tunnel is inspected

Specialized control system Tunnel lighting special item control Remote control, manual control, intelligent control, and contingency control can be
selected for the selected tunnels’ lighting control

Specialized control system Road guidance special item control Graphically display the variable information identification settings of the tunnel’s
surrounding road network, display the current display content of each variable information
sign, and support manual and contingency information release and single or group release
per the contingency plan

Specialized control system Electromechanical equipment linkage control The linkage control plan can be customized based on the tunnel’s actual needs, and the
control modes are accident linkage control mode and daily linkage control mode

Command and control
system

Linkage emergency plan management The graphical interface realizes the linkage control plan for tunnel electromechanical
equipment, and add/delete/modify/query functions are available

Command and control
system

Emergency special plan management The graphical interface realizes the emergency plan for tunnel events, and add/delete/
modify/query functions are available

Command and control
system

Operation log The operation records of the current system users can be viewed

Maintenance management
system

Maintenance task management Tunnel electromechanical system maintenance task management (daily inspection, regular
maintenance, and periodic maintenance task formulation) and tunnel maintenance plan
formulation

Maintenance management
system

Electromechanical equipment fault management Manage faulty electromechanical equipment and fault repair tasks

Maintenance management
system

Data management Manage tunnel electromechanical system-related contracts and knowledge base

Maintenance management
system

Operation log The operation records of the current system users can be viewed

Data analysis system Operation theme data statistical analysis By collecting, summarizing, comparing, and analyzing operation-related data, statistical
and analytical reports in predetermined or customizable formats can be generated

Data analysis system Traffic theme data statistical analysis By collecting, summarizing, comparing, and analyzing traffic-related data, statistical and
analytical reports in predetermined or customizable formats can be generated

Data analysis system Equipment data statistical analysis By collecting, summarizing, comparing, and analyzing electromechanical equipment-
related data, statistical and analytical reports in predetermined or customizable formats can
be generated

Data analysis system Dashboard- operation data display Traffic theme, energy-saving theme, environmental theme, and equipment status data
display

Data analysis system Dashboard- electromechanical equipment
automatic inspection

Inspect the working status of tunnel electromechanical equipment online and automatically
discover abnormal devices

(Continued on following page)
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yl+1i j( ) � max xji k( )k ∈ Dj. (6)

This sentence describes the max pooling operation in a CNN
model. yl+1

i (j) represents an element in the jth pooled feature map
of the (l+1)th layer after pooling. Dj is the jth pooling region, and
xj
i (k) represents an element of the lth layer’s ith feature map within

the pooling kernel.

3.1.2 LSTM
LSTM is an upgraded variant of RNN that adds gate structures

internally, including input gates, forget gates, and output gates,
which can adjust the values of input and hidden layers. The
calculation process is as follows:

f t � σ Wf ht−1, xt + bf[ ]( )
it � σ Wi ht−1, xt + bi[ ]( )
~Ct � tan h Wc ht−1, xt[ ] + bc( )
Ct � f tCt−1 + it C̃t

ot � σ Wo ht−1, xt[ ] + bo( )
ht � σt tanh Ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (7)

In the equation, ft, it, and ot are the computation functions of
the forget gate, input gate, and output gate vectors, respectively. ~Ct

represents the candidate state information. σ is the sigmoid function.
Wf,Wi,Wc, andWo are the corresponding weight matrices, and bf,
bi, bc, and bo are the corresponding bias vectors. xt is the input vector
at time t, Ct−1 is the stored cell information from the previous time
step, and ht is the LSTM output vector.

3.1.3 Attention mechanism
By using the attention mechanism, efficient allocation of

information processing resources can be achieved. Due to the
difference in the importance of features in short subsequences of
long time series, significant features often contain more
information and have a greater impact on the trend of actual
demand. If CNN is given the ability to focus more on high-
importance features, it can better extract short-term patterns and
optimize LSTM input information [37]. Therefore, this paper
uses the attention mechanism to extract significant features of
short sequences.

The attention mechanism can be categorized into hard attention
and soft attention. Hard attention selects the ROI as input and is
effective in focusing on the target object by removing meaningless
background data in image research. However, the direct restriction
of input content processing method used in hard attention is not

entirely suitable for time series prediction. Even if there are
differences in the importance of input sequences, since each
input subsequence contains certain information at different
positions in the sequence, it cannot be identified and removed.
Additionally, hard attention requires reinforcement learning
optimization, which makes training difficult and less universal. In
contrast, soft attention uses weights trained by neural networks to
globally weight input features in space or channel, achieving the goal
of focusing on specific spatial regions or channels. Moreover, this
method is differentiable in backpropagation, allowing end-to-end
learning and direct learning of attention networks. Based on these
principles, this paper introduces soft attention into one-dimensional
CNN, weighting all input features one by one, focusing on specific
spatial regions and channels to achieve the significant and fine-
grained feature extraction of time series.

3.1.3.1 SE attention mechanism
The purpose of the SE (squeeze-and-excitation) module is to

apply a weight matrix from the channel domain perspective,
assigning different weights to various positions in an image,
thereby extracting more significant feature information.

To obtain channel-wise attention, the feature map is first
globally average pooled based on its width and height, reducing
spatial dimensions to 1 × 1. Then, two fully connected layers and
nonlinear activation functions are used to establish connections
between channels. The SE module first performs a “squeeze”
operation on the convolutional feature map to obtain global
channel-wise features and then performs an “excitation”
operation to learn the relationships between channels and obtain
weights for each channel. Finally, the original feature map is
multiplied by the channel-wise weights to obtain the final feature.
Essentially, the SE module performs attention operation on the
channel dimension, allowing the model to focus more on the most
informative channel features while suppressing those that are
not important.

3.1.3.2 ECA attention mechanism
The SE attention mechanism first compresses the input feature

map along the channel dimension, but this compression can have a
negative impact on learning dependencies between channels. Based
on this idea, the ECA attention mechanism avoids dimensionality
reduction and efficiently implements local cross-channel
interactions using a 1D convolution to extract inter-channel
dependencies. The specific steps are as follows:

TABLE 6 (Continued) Description of the digital twin system for highway tunnel operation.

Subsystem Function name Description

Data analysis system Dashboard- emergency command Event detection, alarm confirmation, video call, and contingency plan selection and
demonstration

Data analysis system Operation log The operation records of the current system users can be viewed

Backend management system Role information management The platform’s organization structure management, personnel management, full selection
management, and user management are available

Backend management system Basic data management Manage electromechanical equipment, contract unit, equipment manufacturer, emergency
facilities, and external units management

Backend management system Platform log management The operation records of the current system users can be viewed
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Step 1: Global average pooling is performed on the input
feature map.

Step 2: A 1D convolution operation is performed with a kernel size
of k, and the sigmoid activation function is applied to obtain the
weight w for each channel, as shown in the following equation:

ω � σ C1Dk y( )( ). (8)

Step 3: The weights are multiplied with the corresponding elements
of the original input feature map to obtain the final output feature
map. The idea and operation of the ECA attention mechanism are

FIGURE 9
Digital twin system for highway tunnel operation. (A) Integrated monitoring system function page. (B) Traffic operation digital twin page.

Frontiers in Physics frontiersin.org14

Yang et al. 10.3389/fphy.2024.1335494

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1335494


extremely simple and have minimal impact on network processing
speed. However, ECA attention only uses channel attention, and its
accuracy still needs to be verified for specific application scenarios.

3.1.3.3 Convolutional block attention module
The convolutional block attention module (CBAM) combines

the two-dimensional attention mechanism of feature channel and
feature space, and the structure diagram is shown in Figure 3.

The CBAM, like SE-Net, automatically learns the importance of
each feature channel. Additionally, it learns the importance of each
feature space in a similar manner. By utilizing the importance levels
obtained, the CBAM enhances relevant features and suppresses
those less important for the current task.

The CBAM extracts channel attention in a manner largely
similar to SE-Net, as demonstrated in the code for channel
attention. Building upon the foundation of SE-Net, the CBAM
introduces an additional feature extraction method using max
pooling, while the remaining steps are identical. The features
extracted from channel attention serve as inputs for the spatial
attention module.

In the CBAM, the method for extracting feature space attention
involves processing the feature maps through channel attention to
prioritize channels based on their importance. These feature maps
are then fed into the spatial attention module. Similar to the channel
attention module, spatial attention involves processing the channels
through both maximum and average pooling. The results of these
two processes are concatenated, followed by a convolutional
operation to reduce them into a 1WH feature map, representing
spatial weights. These weights are then applied to the input features
through a point-wise multiplication, thereby implementing the
spatial attention mechanism.

3.1.3.4 Temporal pattern attention mechanism
Temporal pattern attention (TPA) is used for multivariate time

series forecasting. First, a large number of time series are fed into
LSTM to obtain a hidden state matrix H. For each row (ith row) of
the hidden state matrix H, k CNN filters are used to extract features,
resulting in an npk-dimensional matrix HC.

HC
i,j � ∑w

l�1Hi, t − w − 1 + l( ) pCj,T−w+l. (9)

For ht to be predicted, it is interacted with each row of the HC

matrix to produce a weight ai for each row. This weight represents
the strength of the effect of each row of the HC matrix on ht to be
predicted, i.e., the strength of the influence of each time series on ht.

f HC
i , ht( ) � HC

i( )TWaht , (10)
ai � sigmoid f HC

i , ht( )( ). (11)

Each row is weighted and summed to obtain vt, which represents
the combined effect of all rows on ht, i.e., the effect of time,
i.e., time attention.

vt � ∑n

i�1aiH
C
i . (12)

When predicting ht, we add the influence of all time series on ht
to the original equation, namely,

h,t � Whht +Wvvt , (13)

yt−1+Δ � Wh,ht , . (14)

The first step is to synchronize the dynamic traffic detection data
and environmental detection data. Abnormal data in the detection
data are identified and replaced or removed intelligently. To reduce
the data differences between different monitoring points, all data are
normalized. Then, the sliding window method is used to divide each
feature of each mode into time windows with a fixed window size
and overlap. A new training dataset is composed of the generated
time windows, with each label corresponding to the original dataset.

Next, the new training datasets for each mode are input into the
1D-CNN and LSTM framework to extract features. Segment time
windows from the training dataset are first fed into the 1D-CNN to
automatically learn features. Since the time window is a time series, a
one-dimensional convolution layer is used. The feature extraction
framework consists of three one-dimensional convolution layers,
three max pooling layers, and two LSTM layers, with detailed
parameter settings shown in Table 3. The convolution layer uses
a sliding filter to extract effective features. The activation function of
the convolution layer is chosen as the exponential linear unit (ELU),
which can accelerate convergence and improve the robustness of the
model. After each convolution layer, a max pooling layer is used to
reduce the amount of data to half the original size. A dropout layer is
used after the pooling layer to avoid overfitting. In each training
epoch, a random subset of the neurons in the dropout layer is
selected and not allowed to participate in weight optimization. After
three layers of convolution and pooling, the input data are
transformed into a high-dimensional feature map. Since the
feature map is extracted from the time window, and the
convolution and pooling operations do not change their time
sequence, the feature map is directly input into two LSTM layers.
The LSTM network handles time series through gate mechanisms,
including forget gates, input gates, and output gates. They can
control the discard or addition of information to achieve
forgetting and memory. The LSTM network converts the feature
map into the corresponding hidden state.

During the fusion step, the hidden states generated from the
detection data are integrated to create a new feature map. This
feature map contains hidden states and is denoted as H:

H � h1, h2, . . . , hn( ). (15)
Due to the varying degrees of impact of different hidden states

on tunnel operation monitoring, this paper introduces a self-
attention mechanism to measure all hidden states. These hidden
states are aggregated into a vector s through an attention layer,
which is calculated using the following equation:

ut � tanh wht + b( ), (16)

at � exp uT
t u( )∑n

t�1exp uT
t u( ), (17)

s � ∑n

i�1atht . (18)

The hidden state ht is first input into a fully connected layer with
a tanh activation function to obtain the hidden representation ur as
ht. The transpose of the output values is multiplied by a trainable
parameter vector to obtain the attention alignment coefficients.
Then, the alignment coefficients are normalized using the
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softmax function to obtain the summation weights at. Next, the
vector representation s is computed as the weighted sum of the
hidden states. In the final step of the decision-making process, the
vector representation s can be input as a feature vector into a
softmax classifier for judgment. Here, w is the weight matrix and
b is the bias vector of the fully connected layer in the attention layer,
with a dimension of da. The parameter vector u represents the
context information and also has a dimension of da. The value of da
is an important hyperparameter of this model; therefore, to balance
model performance and computational complexity, the optimal
dimension of da is set to 64. During the training process, the
weight matrix w, bias vector b, and parameter vector u are
randomly initialized.

3.2 Example analysis

This article focuses on predicting the air quality level in
tunnel operation using environmental detection data (carbon
monoxide, visibility) and traffic detection data (vehicle flow) as
the research object. The dataset consists of 10,500 sets of data
collected automatically every 5 min from carbon monoxide/
visibility sensors and integrated detection sensors, at the same
location and time in the tunnel. Among them, 10,000 sets of data
are used as training samples, and the remaining 500 sets are used
as test samples. The sample data are combined into a feature
vector using a CNN–LSTM–attention model, and this feature
vector is set as the air quality level of tunnel operation to compare
the predicted and actual states to test the accuracy of the
proposed multimodal fusion algorithm for evaluating tunnel
operation status.

3.2.1 Prediction process
The feature extraction framework for traffic detection data

and environmental detection data mainly includes three steps:
preprocessing, feature extraction, feature fusion, and
classification. First, all data are normalized using min–max
normalization. After preprocessing (missing and abnormal
values), three types of environmental features (carbon
monoxide, visibility, and vehicle flow) and traffic features are
extracted. Finally, all traffic and environmental features are
combined into a feature vector, which is then input into the
classifier. A CNN–LSTM–attention network is used as the
classifier for handcrafted traffic and environmental features.

The handcrafted multimodal data fusion method combines
features from traffic detection data and environmental detection
data into a feature vector, which is set as the air quality level of tunnel
operation. Based on the corresponding historical air quality level of
tunnel operation for traffic and environmental detection data at the
same location and time in the tunnel, this feature vector is defined as
a value between 0 and 1, where 0–0.4 is low, 0.4–0.8 is medium, and
0.8–1.0 is high. This vector is input into the CNN–LSTM–attention
network, and the predicted air quality level of tunnel operation is
compared with the actual state.

3.2.2 Prediction results
The CNN–LSTM–attention network effectively fuses data

from different modalities by allocating different weights to

different features through the self-attention mechanism. The
prediction results of different attention mechanisms, including
CNN–LSTM–BASE, CNN–LSTM–ECA, CNN–LSTM–SE,
CNN–LSTM–CBAM, and CNN–LSTM–TPA, without adding
the self-attention mechanism are compared, and the samples
between 200 and 500 are selected. The accuracy of the evaluation
algorithm under different attention mechanisms is different. The
prediction results of each model are shown in Figure 4.

3.2.3 Evaluation metrics
The root mean square error (RMSE) is used as the measure of

accuracy, which is the square root of the sum of the squared
differences between the predicted values and the actual values,
divided by the number of observations m.

RMSE X, h( ) �
�������������������
1
m
∑m

i�1 h x i( )( ) − y i( )( )2.√
(19)

3.2.4 Evaluation results
The evaluation results of each model on the test set are shown in

Table 4, and the confusion matrix is shown in Figure 5.
Based on the test results shown in Figure 5, the predictions of

the CNN–LSTM–attention model for tunnel operation air quality
levels are very close to the true values. According to the RMSE
test results in Table 4, the CNN–LSTM–ECA, CNN–LSTM–SE,
CNN–LSTM–CBAM, and CNN–LSTM–TPA models reduced
RMSE by 58%, 97%, 98%, and 99%, respectively, compared to
the CNN–LSTM–BASE model without the self-
attention mechanism.

The confusion matrix shown in Figure 5 indicates that the
CNN–LSTM–SE model achieved prediction accuracy rates of
0.76, 0.93, and 0.92 for high, medium, and low levels of tunnel
operation air quality, respectively. This suggests that the SE
attention mechanism can effectively predict the low and
medium levels of tunnel operation air quality. The
CNN–LSTM–ECA model achieved prediction accuracy rates
of 0.76, 0.70, and 0.63 for high, medium, and low levels of
tunnel operation air quality, respectively, indicating that the
ECA attention mechanism had moderate performance in
predicting the high, medium, and low levels of tunnel
operation air quality. The CNN–LSTM–CBAM model
achieved prediction accuracy rates of 0.85, 0.92, and 0.93 for
high, medium, and low levels of tunnel operation air quality,
respectively, indicating that the CBAM attention mechanism
can effectively predict the low and medium levels of tunnel
operation air quality. The CNN–LSTM–TPA model achieved
prediction accuracy rates of 0.94, 0.95, and 0.97 for high,
medium, and low levels of tunnel operation air quality,
respectively, indicating that the TPA attention mechanism
can effectively predict the high, medium, and low levels of
tunnel operation air quality.

From the test results and confusion matrix, it can be
concluded that the CNN–LSTM–attention model has high
prediction accuracy for tunnel operation air quality levels,
with an average NMSE of 0.0015 and an average reduction of
70%. The multimodal fusion algorithm using the TPA attention
mechanism achieved the best analysis and prediction
performance.
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4Design and development of the digital
twin system for highway
tunnel operation

4.1 System architecture design

4.1.1 Overall structure
The digital twin system for highway tunnel operation is based on

the current situation of the highway tunnel operation management
system and monitoring system. It fully utilizes existing resources and
constructs a highway tunnel operation data system with data
homogeneity and business collaboration. The system is not only
suitable for the current distributed architecture model of regional
controllers and services but also adaptable to the future smart
highway’s edge-cloud architecture [38–40], as shown in Figure 6.
On the basis of ensuring the unity of data and business, the system
can be efficiently iterated and updated to support the practical
implementation of various innovative services for the future
smart highway.

4.1.2 Technical architecture
The digital twin system for highway tunnels adopts a

middleware architecture for design and development, which
extracts reusable capabilities from the business, data, technology,
algorithms, and other aspects of highway tunnel operations
management to form a middleware platform, as shown in Figure 7.

(1) Basic backend

The basic backend fully considers various equipment interfaces and
communication methods. By incorporating Internet of Things (IoT)
access modules with built-in multi-brand and multi-type device
communication methods and protocols (such as TCP, WebSocket,
UDP, andHTTP), it ensures reliable and stable communication and fast
integration of tunnel electromechanical equipment. After unifying
coding standards, it forms the highway tunnel basic database,
business database, theme database, and shared database.

(2) Capability middleware

Business middleware: Precious business capabilities are
precipitated into the business middleware to achieve business
capability reuse and linkage and coordination between various
business modules, ensuring stable and efficient critical business
links and enhancing business innovation efficiency.

Data middleware: Highway operating data are uniformly
managed to provide complete and accurate data services for
various business applications, including data storage, processing,
and management.

Technology middleware: Common facilities, development
technology components, and services are integrated and packaged to
provide simple, consistent, and easy-to-use basic infrastructure capability
interfaces, which help the rapid development of upper-layer services.

(3) Application frontend

The application frontend is built around the core business of
tunnel operation management and includes various function

systems such as the tunnel basic information digital twin, field
electromechanical equipment digital twin, comprehensive
environmental information digital twin, real-time traffic
operation digital twin, abnormal traffic event digital twin, daily
operation management digital twin, and emergency linkage control
digital twin, achieving the digitalization, three-dimensionalization,
and precision monitoring and management of tunnel operation.

4.1.3 Business architecture
In daily management, the comprehensive monitoring system is

the business core, which collects real-time detection data of highway
tunnel, monitors the operation status, and completes daily
monitoring management of traffic control, ventilation, lighting,
etc. In abnormal events, it realizes zoning and intelligent linkage
control based on the location of the event, emergency plan, and
precise implementation of special plans, as shown in Figure 8.

4.2 Digital twin model

The digital twin system for highway tunnels divides the
multidimensional data of highway tunnel operation and
management into basic parameter data, electromechanical facility
operation and functional data, civil engineering structure facility
condition data, event data, and maintenance inspection data.
According to the actual needs of the information project, a
digital twin model can be established for the relevant data. For
the convenience of data interconnection, the data of the existing
highway tunnel can be converted and coded according to the coding
format, and the data of the new highway tunnel can be coded
according to the coding format requirements. The data categories of
the highway tunnel digital twin model should include tunnel basic
information, electromechanical facility status and operation
function data, event data, and maintenance inspection data. The
operation data should be coded according to a unified standard, with
complete and accurate parameter information and following the
“one source, one number” principle to avoid duplicate collection.
Data should be managed and classified in a centralized manner, and
the application types can include equipment and facility operation
monitoring, traffic safety control, abnormal event handling, and
public travel services. The digital twin system for highway tunnels
should achieve information interconnection, integration, sharing,
and exchange. The code of highway tunnel information model is
shown in Table 5.

In this article, 3D visualization modeling is conducted for the
basic information, mechanical and electrical facilities, and
operational environment detection data of the highway tunnel.
The following are partial 3D visualization model prototype
diagrams for some mechanical and electrical facilities.

4.3 System function research and
development

The digital twin system for highway tunnels includes seven
functional subsystems: comprehensive monitoring, digital twin,
specialized control, maintenance management, command and
dispatch, data analysis, and backend management. The
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subsystems share data and coordinate their operations to achieve
unified control over 14 types of electromechanical equipment, such
as ventilation, lighting, traffic control, and guidance. The system
enables fine-tuned, modular, and intelligent control over ventilation
and lighting dimming, as well as standardized and integrated
classification control over the entire route guidance system. It
also includes intelligent and linked control based on event types
and rapid, standardized, and traceable command and dispatch based
on eight types of frequently occurring event plans, as well as one-
stop configuration management of basic data information.

The digital twin system for highway tunnel operations is a
tangible representation of sensor data. Taking the precise
perception of traffic volume data (such as cross-sectional traffic
flow, regional traffic flow, vehicle violation information, and traffic
event information) as an example, a holographic, visual, and digital
model of vehicles passing through tunnels is established using
vehicle positioning and trajectory fusion technologies. This model
allows for the identification of vehicle violations such as wrong-way
driving and illegal lane changes based on high-precision trajectory
data and determines speeding or slow-moving vehicles based on
their speed. Additionally, traffic event types are detected and
classified using feature matching and deep learning techniques.

The multimodal information fusion algorithm plays a crucial
role, especially when one or more sensors fail or provide erroneous
detection data. By utilizing the spatiotemporal correlation between
data, the algorithm calibrates and supplements problematic data,
thereby deriving a comprehensive operational status
evaluation indicator.

4.4 Engineering application verification

Multiple sensor fusion perception, multimodal data fusion,
and digital twinning technologies have been applied to the highway
tunnel operation control system. The system has been successfully
implemented in more than 2,000 km of long tunnels in nine
provinces, achieving the standardization of basic data,
visualization of daily management, and process-based
emergency control of tunnel operation management. The
system collects highway tunnel operation monitoring data
through multiple sensors and applies a multimodal information
fusion method based on CNN–LSTM–attention to predict the
highway tunnel operation status. The system supports the
calculation of tunnel ventilation and lighting requirements
under various operating conditions and improves the reliability
and accuracy of tunnel operation intelligent control under normal
conditions and can enable tunnel ventilation and luminaires to
autonomously adjust based on external environmental changes.
This adaptive regulation significantly reduces the energy
consumption costs associated with tunnel operations. In tunnel
lighting, lamps are the primary consumers of electrical energy. In
practical applications, the system employs a smart lighting control
method based on multi-parameter control. This approach
effectively enhances the overall visual environment of the
tunnel, reducing the adverse effects of tunnel black hole and
white hole phenomena on driving safety. The lighting fixtures
and other electromechanical facilities adaptively adjust according
to external environmental changes, significantly reducing the

energy consumption costs of tunnel operations. As a result,
there is an approximate 20% reduction in the energy
consumption costs of tunnel operation. By accurately
monitoring tunnel environmental data and setting up fan
interlocking control programs, it is possible to achieve a 100%
qualification rate for air quality during the regular operation of the
tunnel. In abnormal conditions, by proactively defining the control
scope for tunnel emergencies, traffic management and
electromechanical equipment interlock control plans are
automatically generated based on real-time monitoring data
(location and type of the event) for early warning. Once the
monitor confirms the situation, they can simply click a
confirmation button within the system to deploy the
prearranged plan with a single click. This significantly enhances
the capability for traffic accident prevention and control, as well as
the emergency response to sudden incidents, ensuring that the
emergency response time for exceptional events is less than 2 min.
The number of tunnel traffic accidents has been reduced by over
25% for two consecutive years, effectively guaranteeing the “safe,
smooth, and orderly” operation of the highway tunnel. Description
of the digital twin system for highway tunnel operation is given in
Table 6, and function pages of the system are shown in Figure 9.

5 Conclusion

This article tackles the challenge of frequent failures in
operational data detection equipment within highway tunnels,
including sensors for carbon monoxide/visibility, wind speed and
direction, brightness, and vehicle detection. The harsh internal
environment of tunnels makes accurate prediction of their
operational state difficult, resulting in a lack of effective data
support for management. To address these issues, this article
advocates for the adoption of multi-sensor fusion perception and
digital twin technology in the information infrastructure of
highway tunnels. By creating a unified digital twin
information model tailored to the tunnel’s operational
characteristics, and applying a multimodal information fusion
method based on CNN–LSTM–attention, the accuracy of
highway tunnel operational status assessments has been
markedly improved. This approach significantly enhances the
stability and reliability of target recognition, reduces the
likelihood of target omission, and, through data-driven
methods, greatly improves the efficiency of tunnel ventilation
and lighting control. The developed digital twin system for
highway tunnels addresses centralized management, linkage
control, data sharing, and business coordination challenges.
Practical engineering results demonstrate that the system has
bolstered tunnel traffic safety, reduced management costs, and
improved the comfort of tunnel passage, thereby ensuring the
“safety, smoothness, and orderliness” of highway tunnel
operations.
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