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Introduction: The study concerns the properties of a parallel discrete-event
simulation (PDES) model, namely a simple mobile network model known as a
personal communication service (PCS) model. In this type of parallel computing,
each process has its own computation time, known as local virtual time. The local
virtual times change during the simulation process, forming a complex profile
similar to the surface growth profile in physics.

Methods:We apply the scaling theory of statistical physics to study the properties
of the PCSmodel. We construct a simple local virtual time evolution algorithm for
the PCS model and compare this theoretical time evolution model to a standard
parallel mobile network implementation in Rensselaer’s Optimistic Simulation
System (ROSS).

Results: We show that the value of the critical exponent for the mobile network
system is close to the value in the theoretical local virtual time profile model. A
roughening transition is found in the LVT–PCS model, which belongs to the
universality class of directed percolation in dimension 2 + 1.

Discussion:We believe that the analogies we found can be useful for preliminary
analyses of scalability, process desynchronization, and possible deadlocks in a
wide class of parallel discrete-event simulation models.
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1 Introduction

Parallel discrete-event simulation (PDES) is a large-scale simulation technique with
various applications in engineering, computer science, economics, transportation, the
military, etc. For example, it is used to simulate modern computer networks [1], air
traffic [2], disease spread [3], the evolution of biological systems [4], catalytic kinetics [5],
and metal welding [6]. PDES also provides an environment for war-gaming exercises [7]
and intelligent combat communications simulations [8].

The discrete-event simulation (DES) model assumes that the system being simulated
changes state only at discrete moments in the simulated time. These changes are called
events. Events are not synchronized by global time but occur at irregular intervals [9]. Each
event contains a timestamp and usually represents some change in the state of the system
being modeled. The simulation process can be described as a loop in which the event with
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the smallest timestamp is repeatedly removed from the event list and
processed. Handling an event means changing some state variables
and scheduling new events for the future.

Serial DES typically consumes a large amount of time/memory
resources, but due to its design, it can also be easily parallelized. In
parallel DES, the system being modeled is split into subsystems, and
each subsystem, in turn, is modeled by a separate process called a
logical process (LP). LPs are performed by actual processing
elements such as threads, cores, or nodes. To preserve the
causality of event processing, PDES uses special synchronization
algorithms: the conservative algorithm [10, 11], optimistic algorithm
[12], and freeze-and-shift algorithm [13].

A key concept of PDES used in synchronization algorithms is
the concept of virtual time [12]. Each LP has a local variable
denoting its local virtual time (LVT). The profile of local virtual
times for parallel processes grows during the simulation. It is known
that the evolution of the LVT profile in the conservative algorithm
belongs [14] to the Kardar–Parizi–Zhang (KPZ) universality class
[15] and that the evolution of the LVT profile in the optimistic
algorithm belongs [16] to the directed percolation (PD) universality
class [17, 18].

In this paper, we use the model of LVT evolution in
optimistically synchronized PDES [16] for studying the
properties of the personal communication service (PCS) model
[19]. For this purpose, we associate the parameters of a
theoretical LVT evolution model [20] with those of a realistic
PCS simulation using an optimistic PDES engine called
Rensselaer’s Optimistic Simulation System (ROSS) [21]. We find
that the critical behavior of both models near the roughening
transition is quite similar, suggesting that they belong to the
same universality class.

2 Parallel discrete-event simulation and
a local virtual time profile

The development of parallel discrete-event simulation began in
the 1960s and 1970s of the last century, when the first commercial
multiprocessor computers became available for researchers and
engineers. The development of the method proceeded in two
directions. First, the PDES method is of interest to scientists
because it allows solving problems that cannot be solved using
sequential algorithms. Second, PDES is interesting in its own right
because it represents a particular problem area in parallel computing
in general.

It seems that the first application of the PDES method in physics
was carried out to simulate spin dynamics [22]. An important
property of the parallel modeling method is that it is event-
driven: instead of updating sites at regular intervals Δt, an event-
driven simulation stores a history of updates, and the sequence of
events (spin-flip attempts) does not change in favor of
parallelization. In the following sections, we will refer to the
method proposed in [22] as the basic conservative PDES scheme.
This scheme is ideal for parallel implementation of the Markov
Chain Monte Carlo algorithms [23] and any stochastic cellular
automata with local dynamics, where the discrete events are
Poisson arrivals.

In real systems, events have temporal order and causality
relations in real time. Lamport was the first to show that it was
possible to determine the order of events in distributed systems
using a system of special artificial clocks. The clock is used to mark
events with a unique value [24] in each process. He also formulated
the so-called “Lamport clock conditions,” which are crucial for
preserving causality when computing events in parallel. Jefferson
later formalized the concepts of local and global virtual times [12]
and introduced the famous Time Warp synchronization algorithm.

Local virtual time refers to the current time of logical processes,
which is usually equal to the arrival time of the last processed events.
Global virtual time (GVT) is the smallest LVT in the system. GVT is
used to measure the progress of computation. The LVTs of all logical
processes form the so-called LVT profile, which grows as the
modeling process progresses. The instantaneous LVT profile is
shown as an example in Figure 1. The concept of virtual time
underlies all PDES synchronization protocols and, as will be
discussed later in this article, is a useful tool for analyzing the
efficiency and scalability of PDES algorithms.

It is quite interesting that the analogy of the particular PDES
algorithm, the conservative algorithm, with the KPZ model [14]
can be used to classify possible PDES algorithms [13]. The
reasoning is as follows: the KPZ equation is a partial differential
equation. The solution to the partial differential equation is defined
by the choice of specific boundary conditions. [13] expressed the
idea that the type of synchronization of LPs with each other is
associated with the boundary conditions of the PDES algorithms.
Thus, the continuous boundary conditions correspond to the
conservative scheme, the free boundary conditions correspond
to the optimistic class of algorithms, and the fixed type of boundary
conditions should correspond to the new class of PDES
synchronization algorithms. This class is called the “freeze-and-
shift” algorithm [13].

In the following subsections, we briefly describe two LVT profile
simulation models that reflect the general features of conservative
and optimistic algorithms and have similarities with the phase
transitions in the KPZ model [14] and directed
percolation model [16].

FIGURE 1
Snapshot of the LVT profile in the PCS model at GVT =
228124.556305. LVT and GVT are dimensionless quantities.
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2.1 LVT in the conservative algorithm and
KPZ equation

Korniss with co-authors noticed that the LVT profile evolution
is similar to the process of surface growth [14]. They used an
approach known as “simulation of simulation” to model the
evolution of the LVT profile in conservative PDES. Specifically,
they built a simulation model of LVT growth in a PDES simulation
process. It is shown that the equation describing the random process
of growth of local virtual time is a simplified form of the 1 + 1 KPZ
equation, describing the growth of a one-dimensional profile in
time. The KPZ universality class is characterized by three scaling
exponents [15] that have the same values across a wide range of
different models, including the LVT profile evolution model. This
method allows us to use statistical physics tools to analyze parallel
algorithms.

2.2 LVT in the optimistic algorithm and
roughening transition

The above LVT evolution approach is adapted for optimistic
PDES [16, 25]. The evolution of LVT in the optimistic
synchronization scheme demonstrates features of the roughening
transition universality class [18], to which the restricted solid-on-
solid (RSOS) model, random deposition (RD) model, directed
percolation (DP) model, and other statistical physics
models belong [17].

There is a widespread opinion regarding the universality of
growth models in the class of directed percolation [26], based on
proposals formulated by Janssen [27] and [28]. According to these
proposals, the model should belong to the DP universality class if the
following four conditions are satisfied: 1) the model demonstrates a
continuous phase transition from a roughening state into a unique
stationary state; 2) the transition is characterized by a non-negative
one-component order parameter; 3) the dynamic temporary rules
are based only on short-range processes; and 4) the system does not
have special attributes such as additional symmetry or quenched
randomness.

In our case, all four conditions are fulfilled: 1) below the value of
the parameter qc, the average speed of the profile becomes equal to
zero, and above this value qc, the profile width increases; thus, the
system demonstrates a roughening transition at a critical value qc of
the parameter q, defined in Eq. 2; 2) the order parameter is profile
velocity, which is non-negative; 3) the rules of LP interactions are
local; and 4) we have no quenched randomness and nothing special
about the symmetry of the model. Therefore, we can expect that the
LVT model will belong to the universality class of directed
percolation.

2.3 LVT model and PDES analysis

LVT evolution models in PDES allow one to analyze the main
fundamental properties of the PDES algorithm. For example, the
zero speed of an LVT profile illustrates zero utilization time usage or
possible deadlocks. Increasing profile width shows imperfect
synchronization between LPs, which also reduces the simulation

efficiency. The greater the LP LVT time difference, the more
rollbacks can occur. A divergent LVT profile width may also
indicate insufficient load balance (some LPs are ahead of others).

As mentioned above, the distinctive feature of the PDES model
is similar to growing interface models in physics. Interestingly, a
model with entirely different rules forms so-called universality
classes, which are characterized by a set of universal critical
exponents. These exponents describe the behavior of the model
near the critical point. It can be assumed that most modifications to
the Time Warp algorithm will not change the universal behavior
of systems.

3 PCS network model

A two-dimensional mobile network, also known as a personal
communication service (PCS) network, is a wireless communication
network with distributed communication ports, each with its own
coverage area or cell zone, set of communication channels, and users
[19, 29, 30]. Users send and receive phone calls using these
communication channels. When a user makes a phone call, the
system tries to allocate a channel for the connection. If all channels
are busy, the phone call terminates. The network is represented by
square cells, assuming that each cell is assigned a fixed number of
radio channels. The goal of PCS modeling is to minimize the
probability of dropped calls.

The PCS model is implemented in the ROSS simulator [21].
ROSS serves as a simulation engine that provides a simulation loop
for generating, dispatching, and processing events by parallel
processes. It is implemented in the C++ programming language
and uses the message-passing interface (MPI) for parallel operation.
Parallel processes are optimistically synchronized.

Let us describe the system in the language of logical processes
and events. In this model, ports or cell zones are LP objects. LPs are
located on a square lattice (Figure 2). The behavior of a phone call is

FIGURE 2
Communication topology of the PCS network model.
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modeled by different types of events. The system implements four
different types of events: 1) NextCall—receipt of a call to a cell; 2)
CompletionCall—completed cell call; 3)MoveOut—calling exit from
the current cell (remote event); and 4)Moveln—indicates the arrival
of a switching call in the cell.

In PCS, the time between events is distributed exponentially.
The following parameters set the distribution means:

• MOVE_CALL_MEAN—average time between
MoveOut events;

• NEXT_CALL_MEAN—average time between
NextCall events;

• CALL_TIME_MEAN—average call duration.

Thus, a call can be scheduled to be sent to the current cell or to
one of the neighboring cells. In the ROSS implementation, such
events passing between LPs are called remote events. The
proportion of deleted events is available in the output statistics.
Let us denote this fraction as p. In other words, LPs are located on a
square lattice with periodic boundary conditions, and the interaction
between nearby LPs occurs with probability p. In addition to the
number of remote events p, ROSS statistics provides data such as the
total number of events processed, the number of events rolled back,
and the rate of events. LVTs are available during the simulation.

3.1 Simulation of PCS

When modeling a PCS network, our primary focus is not on the
likelihood of a phone going offline or other “physical” consequences.
Instead, our analysis focuses on simulation performance as a
function of simulation parameters. In the context of PDES,
efficiency is typically measured in terms of event rate. This
metric represents the number of events processed per unit of
time. The frequency of events can be obtained from the output
statistics of ROSS.

Furthermore, wemonitor LVT throughout the simulation. From
these data, we calculate two key metrics: the average speed of the
LVT profile, as defined in Eq. 1, and the average width of the LVT
profile, as defined in Eq. 3. These metrics provide valuable
information about the performance and behavior of the
simulated PCS network.

Average profile speed v(t):

v t( ) � τ t + 1( ) − τ t( ), (1)
where t is a GVT value when these data were collected and τ(t) is the
LVT profile value averaged over N LPs, which is given as

τ t( ) � 1
N

∑
N

i�1
τi t( ).

Average profile squared width:

w2 t( ) � 1
N

∑
N

i�1
τ i t( ) − τ t( )[ ]2.

We would like to cover some technical details of the collection of
ROSS statistics and other service calculations that are performed
during the GVT calculation. GVT is calculated after processing a

batch of events, which is determined by a model parameter. We set
this parameter to 256 events per LP, which means the GVT is
calculated when each LP has processed 256 events.

One of the main goals of the paper is to confirm the evolutionary
model of the LVT. To achieve this, it is necessary to establish a
connection between the parameters of the PCS model and
LVT model.

In the context of the LVT evolution model [20], the key
parameters are the fraction of remote events p and the growth
rate q. In PCS, the main parameters are the means of distributions,
including MOVE_CALL_MEAN, NEXT_CALL_MEAN, and

TABLE 1 Correspondence between MCM and the values of p and q for the
number of nodes N = 256 in the PCS model.

MCM p q

300 0.1821 0.24

450 0.1368 0.30

600 0.1078 0.36

650 0.1002 0.37

700 0.0927 0.39

750 0.0874 0.41

800 0.0828 0.43

1000 0.0666 0.50

1250 0.0531 0.57

1500 0.0439 0.64

1750 0.0373 0.68

2000 0.0323 0.71

3000 0.0209 0.76

4000 0.0154 0.7759

4500 0.0135 0.7761

FIGURE 3
Correlation between parameters p and q. Blue dots show data
from Table 1 for the number of nodes N = 256, and red dots
correspond to N = 64.
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CALL_TIME_MEAN. Among them, MOVE_CALL_MEAN is the
only parameter that directly affects the number of remote events.
Therefore, we have chosen MOVE_CALL_MEAN as the
main parameter.

The analog of the parameter p in the PCS model may then be
directly derived from the statistics as a percent of remote events. The
growth rate q can be calculated using the following equation:

q � 1 − number of rollbacks
number of all processed events

, (2)

where the number of rollbacks and the total number of processed
events are available from the statistics.

To simulate the PCS network model, we use the ROSS simulation
engine on two compute nodes, each equipped with two Intel(R) Xeon
Platinum 8164 2.0 GHz processors and 2 × 768 GB of on-chip DDR4
2666MHz memory. The number of LPs is set to 64, 144, or 256. The
MOVE_CALL_MEAN (MCM) parameter ranges from 50 to 100000.
For each MCM value, we record the corresponding p and q values and
then calculate their averages for 10 independent runs (for example, see
Table 1). Figure 3 illustrates how the growth rate of q varies with the
ratio p of remote events. The lower the number of interprocess
communications, the lower the number of rollbacks, and
consequently, the higher the growth rate. These averaged values of p
and q are subsequently used as parameters of the LVT model.

4 LVT-PCS model

Let us construct a model of the evolution of the LVT in the
described PCS model, the LVT-PCS model. An important difference
between the LVT–PCS model and the general optimistic LVTmodel
[25] is that the parameters p and q are now interdependent and
cannot be chosen independently. However, we expect that in the
vicinity of the roughening transition, the behavior of the LVT–PCS
model will be essentially similar to that of the general LVT model
and belong to the DP universality class.

In the LVT–PCS profile evolution model, we, as usual, use the
assumption that events are Poisson arrivals, so the time between
them is exponentially distributed. Simulation parameters are

• N—total number of LPs,
• T—total number of time steps,
• q—growth rate,
• p—probability of remote events.

The values of q and p are set equal to the values of q and p,
obtained from the PCS simulation on ROSS.

We first create the LP topology. Since the LPs in ROSS are
implemented on a two-dimensional square lattice, in LVT–PCS, we
also place the LPs on a two-dimensional square lattice (Figure 2).
Each LP can exchange messages with its four nearest neighbors.

The simulation starts with a flat profile τi = 0 and i = 0. N − 1,
where τi is the local virtual time of the ith LP. Next, at each modeling
step t, the free growth of the profile is first simulated, and then,
rollbacks are simulated.

Modeling free growth means increasing the LVT of each LP by
an exponentially distributed random variable ηi with the unit mean:

τi t + 1( ) � τ i t( ) + ηi, i � 1, . . . , N.

At this optimistic stage, we model the profile growth, assuming
that no violation of the causality has occurred. After this step, we
simulate rollbacks. The total number of LPs that need to rollback
their LVTs is regulated by the growth rate parameter q (see Eq. 2).
Let us denote the average number of rolled back LPs as bN.
Assuming that all N LPs proceed at the first step and bN LPs
rollback on average, from Eq. 2, we have

q � 1 − bN

N + bN
� 1
1 + b

. (3)

From Eq. 3, we obtain

b � 1
q
− 1.

Therefore, to simulate rollbacks, we randomly select, on average,
bN LPs, which local time will rollback. If the LVT of LP is greater
than that of one of its neighbors, chosen with probability p, then the
LVT is reduced to the neighbor’s time.

After each time step t, we calculate the average profile velocity
v(t) (1) and the average profile width w2(t) (3). In computer
science parlance, the average speed of a profile v is related to the
efficiency of the simulation, which is the average load of the
parallel processes. In addition, the average profile width w2 is
associated with desynchronization between processing elements.
The larger the profile width, the more desynchronized the
simulation.

The final results are calculated as the average of R independent
runs of the random process:

〈τ t( )〉 � ∑R τ t( )
R

,

〈v t( )〉 � ∑R v t( )
R

,

〈w2 t( )〉 � ∑R w
2 t( )

R
.

FIGURE 4
Event rate in the PCS model as a function of rollback frequency
for N = 64, 144, and 256. Error bars are smaller than symbols. Inset:
critical behavior of the event rate depending on the reduced
parameter q − qc.
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4.1 Common simulation protocol for PCS
and LVT–PCS models

The dependent modeling procedure for the PCS and LVT–PCS
models is as follows:

1. Simulate the PCS network model with the MOVE_CALL_
MEAN parameter chosen from the range [50, 100000].

2. Monitor LVT during simulation.
3. Save the corresponding values of q and p.
4. Simulate the LVT–PCS model with the same values of p and q.

5 Data analysis

Themain result of our simulation is that the behavior of the LVT
profiles in both models is qualitatively similar near the roughening
transition qc. Near the transition, there are more remote events, and
the LVT growth speed becomes lower, as does the event rate
(i.e., efficiency), and the average profile width stops growing [31,
20] (i.e., synchronization becomes better), and at the transition value
qc, there is a deadlock in the PCS model.

A comparison of the average profile velocity in the LVT–PCS
and PCS models and the event rate in the PCS model is presented in
Figures 4, 5. The average velocity in the LVT model corresponds to
event utilization in the PCS models (i.e., event rate).

The dependence of the event rate ER on the value of the
parameter q is shown in Figure 4. It can be seen that the
symbols calculated for system sizes N = 64, 144, and
256 approach each other at a low event rate. We approximate
the event rate data using the expression ER � ER0(q − qc)] +
const and estimated values qc = 0.064 and ] = 1.345(9) in the
case of the largest system size N = 256. Fitting smaller values of N is
unreliable as it is well-known that for small system values, scaling
corrections can be large [32]. The value ] ≈ 1.3 [17] apparently

corresponds to the DP 2 + 1 universality class. The value qc is a
deadlock critical value, i.e., deadlocks occur at point q = qc, and the
profile speed becomes zero. The conditions mentioned at the end of
Section 2.2 are satisfied—there is a roughening transition at q = qc,
the event rate is non-negative, the rules are local, and there is no
quenched randomness. To summarize, we can conclude that the
behavior of the PCS model near the deadlock value belongs to the
DP 2 + 1 universality class.

We use the p and q values estimated in the PCS model to
simulate the LVT–PVS model. Figure 5 shows the resulting
dependence of the average profile velocity in the LVT–PCS
model on the parameter q. There are three ranges of q with
different velocity dependences. First, for the case of N = 256, this
is zero velocity below the value qc = 0.185(1), which is the
roughening critical point [18]. Second, we use the profile
approximation v � v0(q − qc)] + const of the data in the range
qc < q < 0.3. We estimate the value of the exponent ] = 1.3(1),

FIGURE 5
Average LVT velocity in the LVT–PCSmodel as a function of q for
N= 64, 144, and 256. Error bars are smaller than symbols. Inset: critical
behavior of the LVT velocity depending on the reduced parameter
q − qc.

FIGURE 6
Average profile width in the LVT–PCS model as a function of
simulation time. The width increases as w2 ~ t2β.

FIGURE 7
Value of 2β depending on the parameters p and q in the LVT–PCS
model for system size N = 256.
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which is close to the value ]DP of the directed percolation model in
the 2 + 1 dimension, ]DP ≈ 1.3 [18, 17]. Third, it is a random
deposition mode, with a value close to 0.8, where the profile grows
randomly on each LP and the average speed reaches a value of unity,
the maximum possible profile speed.

Finite-size effects are visible in Figure 5 as a shift in the position
q* of velocity that vanishes with the size of the system. General
theory (for example, see [32]) predicts that the value of the
parameter q* depends on the size of the system and scales with
some exponent. We cannot correctly estimate q*(N) for systems of
sizes 64 and 144 and provide only a qualitative explanation of the
shift. The LVT–PCSmodel captures important properties of the PCS
model that were not known prior to our analysis, exploiting the
profile’s similarity to those of the statistical physics of
surface growth.

Figure 6 shows the growth of the squared profile width in the
LVT–PCS model for two system sizes N = 64 and 256 and for several
values of parameter pairs (q, p). For values of q below the corresponding
value of q*(N), the width does not increase after some time of transition
to the absorbing state. At large values of q, saturation occurs as a
function of the values of (q, p), and before this, the system has a value of
the exponent β close to 1/2. We summarize estimates of the effective
exponent β in Figure 7, which shows a smooth change in 2β, as q
increases. This is another illustration of the cross-over from the DP
fixed point to the random deposition fixed point.

6 Summary and discussion

In this study, we applied the previously proposed optimistic LVT
evolution model [16, 20] to analyze the simplest mobile network
model, the portable communication service (PCS) model. We
propose a way to relate the parameters of the PCS model and
our LVT model. We call the resulting model the LVT–PCS model,
emphasizing the fact that it uses parameter values specific to the PCS
model. This is a way to model the specific behavior of a PDES model
using the LVT growth model.

We first simulate the PCS model using the ROSS simulator [21]
and extract the values of q and p. Next, we use q and p as input
parameters when simulating the LVT–PCS model. In the LVT–PCS
model, the parameter q is related to the number of rollbacks in the
optimistic algorithm and the parameter p is the probability of time
synchronization with one of the cell neighbors. By matching the
parameters, our model was used to analyze deadlocks and
synchronizations in the PCS model.

We found a roughening transition at qc in the LVT–PCS model,
which apparently belongs to the directed percolation universality class
of [17, 26] in dimension 2 + 1. This corresponds to a deadlock in the
PCS model. For values of q > qc, the velocity profile behaves as a power
of qwith an exponent close to 1.3, which is an estimate of the correlation
length exponent in the DP 2 + 1 universality class. Thus, we know how
the event rate behaves in the PCSmodel near the deadlock. An increase
in the width of the LVT profile w was observed over time, with an
exponent also corresponding to the DP 2 + 1 universality class.

There is a second extremum with a value of q close to unity,
which corresponds to the universality class of random ballistic
deposition. Again, the behavior of the PCS and LVT–PVS
models is similar at this limit.

Between these two extremes, one should not expect universal
behavior since it represents a transition from one fixed point of the
DP universality class at q = qc to a second fixed point of the ballistic
deposition universality class at q = 1. The crossover region is known
to reflect specific details of the models, and it is not surprising that
slightly different behavior is observed in the intermediate q region at
approximately 0.5.

We hope that the proposed approach can be generalized and
applied to other optimistic PDES models. Future research may
consider extending this approach to other models and assessing
its effectiveness. Additionally, it would be useful to study the
practical implications of this approach, such as its potential to
improve system performance, reduce resource usage, and
improve scalability. These results may have important
implications for the computational community and ultimately
lead to more efficient and effective modeling methods.
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