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Background: Crohn’s disease (CD) is a non-specific chronic inflammatory 
disease of the gastrointestinal tract and is a phenotype of inflammatory bowel 
disease (IBD). The current study sought to compile the resting-state functional 
differences in the brain between CD patients and healthy controls.

Methods: The online databases PubMed, Web of Science Core, and EMBASE 
were used to find the published neuroimage studies. The search period was from 
the beginning through December 15, 2023. The predetermined inclusion and 
exclusion criteria allowed for the identification of the studies. The studies were 
assembled by two impartial reviewers, who also assessed their quality and bias.

Results: This review comprised 16 resting-state fMRI studies in total. The 
included studies generally had modest levels of bias. According to the research, 
emotional processing and pain processing were largely linked to increased 
or decreased brain activity in patients with CD. The DMN, CEN, and limbic 
systems may have abnormalities in patients with CD, according to research on 
brain networks. Several brain regions showed functional changes in the active 
CD group compared to the inactive CD group and the healthy control group, 
respectively. The abnormalities in brain areas were linked to changes in mood 
fluctuations (anxiety, melancholy) in patients with CD.

Conclusion: Functional neuroimaging helps provide a better understanding of 
the underlying neuropathological processes in patients with CD. In this review, 
we  summarize as follows: First, these findings indicate alterations in brain 
function in patients with CD, specifically affecting brain regions associated with 
pain, emotion, cognition, and visceral sensation; second, disease activity may 
have an impact on brain functions in patients with CD; and third, psychological 
factors may be associated with altered brain functions in patients with CD.
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Introduction

The inflammatory bowel diseases (IBD) are chronic inflammatory disorders affecting the 
gastrointestinal tract, including Crohn’s disease (CD) and ulcerative colitis (UC) (Sands, 2015; 
Gracie et al., 2019). Histopathologically, CD is characterized by irregular, localized, and full-
thickness inflammation throughout the whole gastrointestinal system, while UC is characterized 
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by widespread inflammation limited to the mucosal layer of the colon. 
As a more serious type of disease, the symptoms of CD are manifested 
as abdominal pain, diarrhea, bloody stool, weight loss, long-term 
complications (abscesses, fistulae, and strictures), and extraintestinal 
manifestations (affected joints, skin, eyes, and other organs), which 
seriously affect the quality of life of patients (Bakshi et al., 2021; Rogler 
et al., 2021). Approximately 25% of patients with CD develop symptoms 
before age 20 (Baldassano and Piccoli, 1999). A recent systematic 
review pointed out that the prevalence was highly variable and was 
rising rapidly in newly industrialized countries, such as Asia and Latin 
America (Kaplan and Windsor, 2021). It was estimated that in the next 
30 years, the incidence rate of CD and ulcerative colitis in these 
countries should approximate the coalescing incidence range in the 
western world: 12–26 per 100,000 people (Kaplan and Windsor, 2021).

Although the pathophysiology of CD is not fully understood, 
several factors might contribute to CD, including genetic susceptibility, 
environmental factors, intestinal dysbiosis, and dysregulated mucosal 
immune responses (Sartor, 2006). In recent years, the relationship 
between psychological morbidity and inflammatory activity has 
aroused interest. The incidence of CD in combination with 
psychological comorbidity, including stress, anxiety, and depression, 
has been estimated at up to 35% (Neuendorf et al., 2016). The brain–
gut axis is frequently used to explain the complex mechanisms 
between neuroendocrine pathways, the peripheral, central, and 
autonomic nervous systems, and the gastrointestinal tract (Bonaz and 
Bernstein, 2013). It describes how symptoms of CD affect brain 
structure and function, and how these changes can impact the neural 
substrate of the complex interactions between psychological 
comorbidity, pain, and gastrointestinal functions (Aziz and 
Thompson, 1998; Bernstein, 2017). Conversely, brain dysfunction 
could affect the digestive system by mediating the release of 
adrenocorticotropic hormone and increasing intestinal permeability 
through the axis. It is important to further understand the alterations 
in brain function related to CD to elucidate the pathophysiology.

Nowadays, the development of blood oxygenation level-dependent 
functional magnetic resonance imaging (BOLD-fMRI) has allowed 
non-invasive detection of brain activity changes. The categories of 
inspection techniques are task state and resting state (rs-fMRI). Rs-fMRI 
is typically used to detect changes in BOLD associated with minimal 
physical or mental activity in the absence of task design (Raimondo 
et  al., 2021). Analytical methods are comprised of amplitude of 
low-frequency fluctuation (ALFF) (Zou et  al., 2008), regional 
homogeneity (ReHo) (Zang et al., 2004), functional connectivity (FC) 
(Roy et al., 2009), etc. Using rs-fMRI, several studies have reported brain 
dysfunction involved in the default mode network (DMN) (Thomann 
et al., 2017; Hou et al., 2019), central executive network (CEN) (Hou 
et al., 2019; Li L. et al., 2021), and limbic regions (Fan et al., 2019) in 
patients with CD. These brain networks are considered to modulate pain 
perception, affect, and environmental factors on gut function, and their 
function abnormality may lead to visceral hypersensitivity and intestinal 
inflammatory responses. Task-state fMRI is typically used to detect 
changes in brain activity based on specific tasks or events (Glover, 2011). 
By performing a Stroop color-word interference task, Agostini et al. 
(2013, 2017) reported that the stressful task in CD patients elicited 
abnormal brain activities in the amygdala, hippocampus, insula, 
putamen, cerebellar regions, and midcingulate cortex (MCC). They 
pointed out that the dysfunction of these brain regions in patients with 
CD may dysregulate the autonomic stress-evoked responses and 

neuroendocrine systems and abnormally integrate emotional processes 
with sensory information input from the gut (Agostini et al., 2013, 
2017). However, due to the inconsistency of research methods, multi-
network interactions, and inconsistent research conclusions, the 
interaction between changes in brain dysfunction and gut characteristics 
in patients with CD is still largely unclear.

In the current study, we conducted a systematic review to identify 
the abnormalities in resting-state brain functions and their association 
with psychological comorbidity and abdominal pain in patients with 
CD, respectively.

Materials and methods

This study was conducted according to the preferred reporting 
items for systematic reviews and meta-analyses (PRISMA) 2020 
statement (Page et al., 2021) and followed the recommendations for 
neuroimaging meta-analysis (Nichols et  al., 2017). No published 
protocol existed for this study.

Search strategy

The Ovid, PubMed, and Web of Science databases were searched 
systematically by 2 researchers, respectively, from their inceptions to 
December 15th, 2023, using the keywords: “Crohn’s disease,” 
“Magnetic Resonance Imaging,” “functional MRI,” “resting-state 
fMRI,” etc. Supplementary material showed the specific search 
strategies. Ethical approval was not necessary, as this study was a 
systematic review based on published studies.

Eligibility criteria

Inclusion criteria for studies were as follows: (1) articles were 
written in English; (2) patients were diagnosed with CD; (3) patients 
with CD and healthy controls (HCs) were above 18 years old; and (4) 
imaging technology for brain screening was not limited. Exclusion 
criteria for studies were as follows: (1) studies were non-population 
(e.g., cell lines, animal studies); (2) literature types were abstract, letter, 
review, or other non-research article, (3) studies were brain structure 
only; (4) duplicate literature; (5) sample size was small (CD cases less 
than 10); (6) studies were lack of HCs; and (7) task-state studies.

Data selection and collection

Ling Yang searched for literature in the appropriate data library 
according to the search formula. After removing duplicates, Ling Yang 
and Peipei He screened the titles and abstracts to remove literature 
unrelated to the topic of the systematic review. The remaining studies 
were reviewed in full text and identified based on the inclusion criteria. 
The disagreement between two researchers was solved by discussion. 
Ling Yang extracted the basic characteristics of the included study, 
including lead author, year, country, imaging technique, analysis 
methods, sample size, subject characteristics, and main results. The 
references to the retrieved articles were manually searched for additional 
studies. Missing data were tried to be obtained from the authors.
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Risk of bias assessment

Lingqin Zhang and Peipei He evaluated the quality and risk of bias 
of the included literature based on Nichols et al.’s (2017) study. There 
were six items that needed to be  evaluated: research objectives, 
recruitment, eligible criteria, population demographics, imaging 
methodology, and comparison group. If the included studies met all 
six items, they would be evaluated as low risk; if they met five items, 
they would be evaluated as medium risk; and if they met four items or 
less, they would be evaluated as high risk.

Results

A total of 5,039 studies were retrieved from three databases, after 
removing duplicate literature, 3,495 studies remained. Most articles 
(n = 3,369) were excluded after reading the title, as they were not 
related to the main issues discussed in this system review. Of the 
remaining 126 studies, we  removed 89 inappropriate studies (36 
reviews, 45 studies related to other areas of CD, 4 case reports or 
series, 1 protocol, and 3 animal studies). Of the 37 potential studies, 
the full text of 3 studies were not available, 7 studies involved ulcerative 
colitis or functional abdominal pain patients, 7 studies involved brain 
structure only, 3 studies involved task state, and another study was 
excluded because of CD cases less than 10. Finally, a total of 16 eligible 
original studies were included in this study, and the flowchart of 
literature screening and qualification review was shown in Figure 1.

Study characteristics

We analyzed 16 original studies published in neuroscience, 
gastroenterology, and multidisciplinary journals from 2013 to 2023, 
including a total of 548 patients with CD and 502 healthy controls. 
Eleven studies come from China, one from the United States, two 
from Italy, one from Germany, and one from Canada. For CD 
categories, 9 studies included inactive CD patients, 1 study included 
active CD patients, 4 studies included active CD patients and inactive 
CD patients, and 2 studies did not mention the categories of patients. 
One study explored CD with or without pain versus HCs. Table 1 
summarized the study’s characteristics.

Study quality and risk of bias

Lingqin Zhang and Peipei He evaluated the quality and risk of bias 
of the included literature based on the six items and reached an 
agreement. Among all studies, 15 were evaluated as having a low risk 
of bias. One study was evaluated as having a medium risk of bias 
because of the lack of detailed recruitment and eligibility criteria. 
Details can be seen from the Table 2.

Brain functional activities at rest

Brain functional activities at rest may reflect the blood 
oxygenation level-dependent (BOLD) signals obtained from the time 
series collected when subjects are in slow breathing and minimal 

physical or mental activity (Rosazza and Minati, 2011). The analytical 
methods include the ReHo and ALFF. It is believed that the brain’s 
functional activity and spontaneous fluctuations are reflected in the 
ALFF (Zhang and Li, 2010). Additionally, another alternative indicator 
of the brain spontaneous function is ReHo. We  summarized six 
studies that employed ALFF or ReHo. Compared to HCs, patients 
with CD showed hypoactivity at resting-state in:(1) frontal lobe, 
including the medial prefrontal cortex (mPFC), supplementary motor 
area (SMA), inferior frontal operculum cortex, and precentral gyrus 
(Bao C. et al., 2016; Bao C. H. et al., 2016; Bao et al., 2018; Huang 
et al., 2022); (2) parietal lobe, including precentral gyrus and S2 (Bao 
C. et al., 2016; Bao et al., 2018); (3) temporal lobe; including superior 
temporal cortex and middle temporal cortex (Bao C. et al., 2016; 
Huang et al., 2022); (4) insula (Bao C. et al., 2016); (5) limbic lobe and 
nucleus, including the median cingulate cortex (MCC), posterior 
cingulate cortex (PCC), amygdala, thalamus and hippocampal/
parahippocampal cortex, periaqueductal gray (PAG) (Bao C. et al., 
2016; Li L. et al., 2021). Hyperactivity was found in: (1) the frontal 
lobe, including the superior frontal cortex, middle frontal cortex, and 
SMA (Bao C. et al., 2016; Bao C. H. et al., 2016; Bao et al., 2018; Li 
L. et al., 2021; Huang et al., 2022; Kong et al., 2022); (2) the parietal 
lobe, including the precuneus, angular gyrus, and superior parietal 
cortex (Bao C. et al., 2016; Bao et al., 2018); (3) the temporal lobe, 
including the inferior temporal cortex and middle temporal cortex 
(Bao C. et al., 2016); (4) insula (Bao C. H. et al., 2016; Bao et al., 2018); 
(5) limbic lobe and nucleus, including the ACC, MCC, and 
hippocampal/parahippocampal cortex (Bao C. et  al., 2016; Bao 
C. H. et al., 2016; Bao et al., 2018; Li L. et al., 2021; Kong et al., 2022). 
Clinical characteristics and psychological evaluation were assessed 
using the Crohn’s disease activity index (CDAI), Hospital Anxiety and 
Depression Scale (HADS), Visual Analog Scale (VAS), Social Support 
Rating Scale (SSRS), etc. In these studies, HADS-D scores were 
positively correlated with mWavelet-ALFF values of the left ACC 
(Kong et al., 2022). The psychological assessments of objective support 
scores were positively correlated with the ReHo values of the right 
frontal superior medial brain regions in active CD patients and 
negatively correlated with the right postcentral and supplementary 
motor area brain regions (Huang et al., 2022). The ReHo values of the 
left frontal middle brain regions were positively correlated with the 
depression, obsessive-compulsive, and bigoted scores and negatively 
correlated with the systemic symptoms score in these CD patients 
(Huang et al., 2022).

Brain functional connectivities at rest

Resting-state functional connectivity (rs-FC) refers to correlations 
in the low-frequency spontaneous fluctuations of BOLD signals across 
brain regions (Biswal et al., 1995). Region of interest (ROI) -wise FC 
analysis makes it possible to identify networks spanning the entire 
brain, identify regional changes within a cortical area, and determine 
individual variances between subjects (Braga and Buckner, 2017). In 
this review, five studies were conducted on region of interest (ROI) 
-wise FC analysis. Regarding ROI selection, we concluded that the 
ROI was primarily located in the bilateral hippocampus, bilateral 
amygdala, left superior frontal gyrus, left ACC, bilateral 
parahippocampus, thalamus, left dorsal anterior insula, and the 
bilateral posterior insula.
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Bao et al. (2018) found that patients with CD had lower resting-
state FC between the hippocampus and the limbic system compared 
with the HCs. This research group also found that patients with CD 
revealed lower FC of the amygdala with the insula, parahippocampus, 
and the anterior middle cingulate cortex/dorsal ACC (Fan et  al., 
2019). A negative correlation between the disease duration and left 
amygdala-insula connectivity was observed (Fan et al., 2019). Two 
studies indicated abnormal FC between regions involved in the 
regulation of visceral sensation and pain processing. The FC, between 
the left superior frontal gyrus and the left precentral, middle temporal 
gyri, left ACC, left postcentral, middle frontal gyri, inferior frontal 
orbital cortex, and the right rolandic operculum, were found to 
be increased (Li L. et al., 2021), compared to the HCs. Qiu et al. (2022) 
found decreased FC between the left parahippocampus and bilateral 
thalamus, as well as the right parahippocampus and bilateral thalamus 
in CD patients. Taking left dorsal anterior insula and bilateral 
posterior insula as ROIs, Zhang et al. (2022) found insula-related FC 
differences were mainly located in the MCC, SMA, dorsolateral 
prefrontal cortex (dlPFC), caudate, ACC, S1, amygdala, and the 
parahippocampus/hippocampus, compared to the HCs. After 
controlling for anxiety and depression, Zhang et al. (2022) discovered 
there were no longer any FC differences between the left dorsal 
anterior insula and the ACC or between the right posterior insula and 
the dlPFC, ACC, and amygdala.

Resting-state functional connectivity networks are calculated 
from the degree of long-range second order temporal correlation 

pattern of activation signals in different brain regions (Perani, 2008). 
The presence of various sub-networks is revealed by subsequent 
study utilizing independent component analysis (Calhoun et al., 
2009) or graph clustering approaches (Shi and Malik, 2000), 
particularly the dorsal attention, control/frontoparietal, salience, 
auditory, and default mode networks (Buckner et al., 2013). In this 
review, six studies were assessed using functional connectivity 
networks in patients with CD. Thomann et al. (2017) found that 
patients with CD presented abnormal connectivity in the DMN 
subsystems, which was associated with anxiety scores in CD 
patients. Hou et al. (2019) discovered increased FC in the central 
executive network (CEN) and DMN, which were found in the right 
precuneus and right posterior cingulate cortex, respectively, in the 
right middle frontal gyrus and right inferior parietal lobule. Another 
study found increased FC between the frontoparietal (FP) network 
and the salience network (SN), and decreased FC between regions 
within the DMN (Kornelsen et al., 2020). Li et al. (2022) explored 
the abnormal FC of intra- and inter-brain networks in CD patients, 
and found increased FC of the language network with the left 
middle temporal gyrus and decreased FC of the prime visual 
network with the left calcarine. Agostini et  al. (2023) reported 
increased connectivity within the left FP network in inactive CD 
patients compared to active CD patients, decreased connectivity in 
the motor network in the active CD group compared to the HC 
group, and reduced connectivity in the motor network and in the 
language network in active CD patients compared to HCs. Thapaliya 

FIGURE 1

The flow diagram of the review.
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et al. (2023) observed increased connectivity in the FP network and 
visual network, as well as decreased connectivity in the SN and 
DMN. High abdominal pain levels were associated with lower 
connectivity in precuneus and parietal operculum and higher 
cerebellar connectivity. Greater disease duration was related with 
higher connectivity in middle temporal gyrus and planum 
(Thapaliya et al., 2023).

Detailed information was shown in Supplementary material.

Discussion

In this study, we included 16 fMRI studies to analyze the difference 
in brain activity between patients with CD and healthy controls. Most 
(15 of 16) imaging studies included in this review were fully presented 
and contained all necessary entries. Through the descriptive analysis 
of this study, we  found that the abnormal local brain activities, 
interested region related FC, and whole-brain functional connectivity 
networks in patients with CD at rest, mainly refer to brain regions in 
the frontal lobe, parietal lobe, insula, CC, amygdala, thalamus, PAG, 
hippocampal/parahippocampal cortex and SMA.

The increased-decreased local brain 
activities in Crohn’s disease

In this study, the patients with CD showed abnormal fluctuations 
in extensive frontal and parietal brain regions, insula, CC, amygdala, 
thalamus, PAG, hippocampal/parahippocampal cortex, and SMA. The 
amygdala, frontal regions, ACC, and hippocampal/parahippocampal 
cortex are important nodes in brain emotional regulation circuit, and 
play an important role in emotional perception, experience, memory 
storage (Bermpohl et al., 2006; Yang et al., 2019). It has been reported 
that patients with irritable bowel syndrome (IBS) have abnormalities 
in the frontal regions, amygdala, frontal regions, ACC, and 
hippocampal/parahippocampal cortex (Hong et al., 2013; Ma et al., 
2015). Animal research demonstrated that induced colitis increases 
circulating pro-inflammatory cytokines, which influence various 
brain areas, including the hippocampus, and generate anxiety- and 
depressive-like behaviors (Heydarpour et  al., 2016; Haj-Mirzaian 
et al., 2017). In addition, correlation analysis supported an association 
between frontal regions, ACC and symptoms of anxiety and 
depression in patients with CD (Huang et al., 2022; Kong et al., 2022). 
Hence, chronic intestinal inflammatory stimulation in CD patients 

TABLE 1 Study characteristics of included Crohn’s disease studies.

Author, year Country Imaging 
technique

Analyze 
methods

Sample 
size (CD/

HCs)

Sex in CD 
(Male/

Female)

Comparison Matched 
parameters 
between groups

Bao C. et al. (2016) China rsfMRI ReHo 25/25/36 16/9

19/6

CD with pain vs. CD 

without pain vs. 

HCs

Age, sex, BMI

Bao C. H. et al. (2016) China rsfMRI ReHo 52/36 37/15 CD vs. HCs Age, sex, BMI

Thomann et al. (2017) Germany rsfMRI FNC 15/14 6/9 CD vs. HCs Age, sex, education, BMI, 

cardiovascular factors

Bao et al. (2018) China rsfMRI ALFF; ROI-

wise FC

60/40 43/17 CD vs. HCs Age, sex, BMI, education

Liu et al. (2018) China rsfMRI Topological 

analysis

43/37 28/15 CD vs. HCs Age, sex, BMI, education

Hou et al. (2019) United States rsfMRI FNC 18/18 10/8 CD vs. HCs Age, sex, education

Fan et al. (2019) China rsfMRI ROI-wise FC 42/35 27/15 CD vs. HCs Age, sex, BMI

Kornelsen et al. (2020) Canada rsfMRI FNC 35/21 18/17 CD vs. HCs Age, sex, BMI

Li J. et al. (2021) China rsfMRI ALFF; ReHo; 

ROI-wise FC

15/26 11/4 CD vs. HCs Age, sex, education

Kong et al. (2022) China rsfMRI ALFF 15/19/20 9/6

13/6

active CD vs. 

inactive CD vs. HCs

Age, sex

Li et al. (2022) China rsfMRI FNC 20/22 8/12 CD vs. HCs Age, sex, handedness, and 

education

Qiu et al. (2022) China rsfMRI ROI-wise FC 22/22 12/10 CD vs. HCs Age, sex, education

Huang et al. (2022) China rsfMRI ReHo 58/57/92 47/11

44/13

active CD vs. 

inactive CD vs. HCs

Age, sex, handedness, and 

education

Zhang et al. (2022) China rsfMRI ROI-wise FC 45/40 25/20 CD vs. HCs Age, sex

Agostini et al. (2023) Italy rsfMRI FNC 19/14/18 7/12

6/8

active CD vs. 

inactive CD vs. HCs

Age, sex, education

Thapaliya et al. (2023) Italy rsfMRI FNC 25/25 16/9 active CD vs. HCs Age, sex, BMI

fMRI, functional magnetic resonance; rs-fMRI, resting-state functional magnetic resonance; BOLD, blood oxygenation level-dependent; ReHo, regional homogeneity; FC, functional 
connectivity; FNC, functional network connectivity; ALFF, amplitude of low frequency fluctuation; ROI, Region of interest; CD, Crohn’s disease; HCs, health controls; BMI, body mass index.
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may result in aberrant resting state function in the core brain area of 
the emotional network.

The thalamus serves as the doorway to the cerebral cortex and is 
important in pain ascending transmission and pain communication 
(Basbaum et al., 2009). The PAG is a key neuronal substrate of the 
descending pain modulatory systems, involved in the processing and 
moderating of responses to somatic and visceral unpleasant stimuli 
(Staud, 2012). Several studies on chronic pain condition, such as 
fibromyalgia (Burgmer et al., 2009), chronic low back pain (Meier 
et al., 2017) and functional dyspepsia (Lee et al., 2016), have found 
abnormalities in one or more brain regions mentioned above. 
Additionally, it has been found that patients with ulcerative colitis 
(UC) have abnormalities in the thalamus (Agostini et  al., 2011). 
Abnormally prolonged sensitization of visceral afferents in the 
gastrointestinal tract following acute inflammation can contribute to 
chronic pain (Gampierakis et al., 2019), this process is maintained by 
dysregulation of descending control emanating from the brain, where 
functional abnormalities in the thalamus and PAG have been observed 
(Agostini et  al., 2011; Wei et  al., 2015). In accordance with these 
studies, Bao C. et al. (2016) found hypoactivity at resting-state in 
thalamus and PAG, compared to HCs. The whole-brain analysis 
discovered an association between the ReHo values of the PAG and 
the daily pain levels in another investigation (Bao C. H. et al., 2016). 
In patients with CD, long-term chronic inflammation and visceral 
pain stimuli may transmit to cortical and subcortical areas and may 
cause aberrant resting state function in the main brain area of visceral 
sensation and pain processing.

The altered FC and brain networks in 
Crohn’s disease

The cerebral cortex processes information by interacting various 
dispersed regions. Seven major brain networks have been identified 
utilizing connect omics to track functional connections, including the 
sensorimotor system, central executive network (CEN), default mode 
network (DMN), salience network (SN), dorsal attention network 
(DAN), visual system, and limbic/paralimbic system (Thomas Yeo 
et al., 2011). Most of the studies included in this review suggested the 
altered FC and brain networks mainly located in the DMN, CEN, and 
limbic regions. The DMN, is vital for maintaining resting brain 
function, which essentially include medial PFC, ACC/PCC, the 
precuneus, bilateral inferior parietal regions and other brain regions 
(Smallwood et al., 2021), and is thought to be involved in affective and 
cognitive self-referential processing (Smallwood et  al., 2021). 
Thomann et al. (2017) found that increased FC within the ACC, left 
superior medial frontal gyrus and the MCC in CD patients compared 
to healthy controls. Hou et al. (2019) identified increased FC in the 
DMN subregions between the right precuneus and right PCC in CD 
patients compared to healthy controls. Thapaliya et al. (2023) showed 
decreased FC in the DMN in the parahippocampal gyrus. The three 
investigations discovered functional abnormalities in patients with 
CD that impacted the DMN and partially implied self-referential 
neural network dysregulation.

Unlike the DMN, the CEN exhibits activation in cognitive and 
emotional challenge activities. The CEN includes many regions, 

TABLE 2 The quality and risk of bias for studies.

Author, year Research 
objectives

Recruitment Eligible 
criteria

Population 
demographics

Imaging 
methodology

Comparison 
group

Risk of 
bias

Bao C. et al. (2016) Y Y Y Y Y CD with pain vs. CD 

without pain vs. HCs

Low

Bao C. H. et al. (2016) Y Y Y Y Y CD vs. HCs Low

Thomann et al. (2017) Y N Y Y Y CD vs. HCs Medium

Bao et al. (2018) Y Y Y Y Y CD vs. HCs Low

Liu et al. (2018) Y Y Y Y Y CD vs. HCs Low

Hou et al. (2019) Y Y Y Y Y CD vs. HCs Low

Fan et al. (2019) Y Y Y Y Y CD vs. HCs Low

Kornelsen et al. 

(2020)

Y Y Y Y Y CD vs. HCs Low

Li L. et al. (2021) Y Y Y Y Y CD vs. HCs Low

Kong et al. (2022) Y Y Y Y Y Active CD vs. inactive 

CD vs. HCs

Low

Li et al. (2022) Y Y Y Y Y CD vs. HCs Low

Qiu et al. (2022) Y Y Y Y Y CD vs. HCs Low

Huang et al. (2022) Y Y Y Y Y Active CD vs. inactive 

CD vs. HCs

Low

Zhang et al. (2022) Y Y Y Y Y CD vs. HCs Low

Agostini et al. (2023) Y Y Y Y Y Active CD vs. inactive 

CD vs. HCs

Low

Thapaliya et al. (2023) Y Y Y Y Y Active CD vs. HCs Low

CD, Crohn’s disease; HCs, health controls.
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including the lateral prefrontal cortex, anterior cingulate cortex and 
inferior parietal lobule, etc., which are considered to support cognitive 
control, decision-making processes, and regulation of emotion (Seeley 
et al., 2007; Vincent et al., 2008). Several studies found alterations in the 
frontoparietal control system, including superior frontal gyrus, middle 
frontal gyrus, inferior frontal orbital cortex, inferior parietal, fusiform 
gyrus, PCC, postcentral gyrus, et al. (Hou et al., 2019; Li L. et al., 2021; 
Agostini et  al., 2023; Thapaliya et  al., 2023) in patients with 
CD. Abnormal FC between the frontal and inferior parietal lobule may 
reflect the disturbed functions of top-down control (Ciaramelli et al., 
2008). On the other hand, excessive concerns about the gastrointestinal 
symptoms in patients with CD may further exacerbate visceral 
hypersensitivity and induce abnormalities in CEN. Additionally, patients 
with CD often experience psychological stress. Prolonged exposure to 
psychological stress in the context of CD may lead to modifications to 
brain regions responsible for the processing of emotions.

The limbic system refers to structures that are located at the border 
or edge of the hemispheres, plays an important role in emotional 
responses, as well as in learning, memory, and behavior (Pessoa and 
Hof, 2015; Rolls, 2019). The limbic structures include the cingulate 
cortex, the hippocampus, and the amygdala. The hippocampus is a key 
structure in neuroimmunological regulation, affecting humoral 
immunity and cellular immunity through the hypothalamic–pituitary–
adrenal (HPA) axis and neurohumoral pathways (Lathe, 2001). For 
animal models in CD studies, hippocampal microglia activation, 
alterations in cytokine expression, and neurogenesis may lead to CNS 
excitability and behavioral changes (Riazi et al., 2015; Zonis et al., 2015; 
Heydarpour et al., 2016). The amygdala belongs to the limbic system 
and plays an important role in the regulation of emotion, visceral 
sensory processing, and pain processing (especially pain modulation 
and the emotional affective dimension of pain) (Berman et al., 2012; 
Neugebauer, 2015; Yang et al., 2019). The cingulate cortex is regarded 
as a special brain area that extends the emotional and memory domains 
and the internal neural network of the gastrointestinal tract (Vogt, 
2013; Rolls, 2019; Kong et al., 2021; Yeung, 2021). The ACC receives 
inputs from the amygdala while the PCC has connections to the 
hippocampal (Rolls, 2019). Together, studies included found aberrant 
FC of the cingulate cortex, the hippocampus, and the amygdala with 
other functional brain networks in patients with CD, which may 
partially reflect the abnormal functions in visceral sensation, pain 
processing, and emotion regulation associated with CD.

The altered brain activities and FC in active 
Crohn’s disease

Furthermore, four of the studies we included conducted analysis 
by stratifying patients according to their inflammatory activity. 
Compared with the inactive CD group, the active CD group exhibited 
significantly higher signals in the left ACC, the left superior frontal 
gyrus (Kong et al., 2022), the temporal superior regions, and the right 
temporal pole superior regions, and exhibited lower signals in the left 
occipital middle (Huang et  al., 2022). In FC analysis, decreased 
connectivity was found in the superior parietal lobule in the active CD 
group (Agostini et al., 2023). The results of these studies confirmed a 
difference in resting state brain activity and FC between active CD 
patients and inactive CD patients. These altered brain regions may 
play crucial roles in attention, execution, memory, and emotional 

processing, which are associated with inflammatory factors (Tegeler 
et  al., 2016; Shi et  al., 2022). This suggests intricate connections 
between brain activity, disease activity, cognition, and emotion that 
require additional investigation in patients with CD.

Compared with the HC group, the active CD group demonstrated 
higher signals in the frontal superior medial region, frontal middle 
region, and lower signals in the supplementary motor area, the role of 
the temporal middle gyrus, and the postcentral gyrus (Huang et al., 
2022). In FC analysis, decreased connectivity was found in motor-
related areas (Agostini et al., 2023), in the SN and DMN (Thapaliya 
et al., 2023), and increased connectivity in the FP network and visual 
network (Thapaliya et  al., 2023). This could be  attributed to the 
significant contribution of chronic disease signal stimulation, in 
addition to the impact of active inflammation. The above-mentioned 
brain regions not only play a role in cognition, emotion, and pain 
processing, but also in somatosensory processing and voluntary motor 
control. The noxious signals of intestinal inflammation are transmitted 
to the brain via the brain-gut axis, resulting in changes in brain 
function. Similarly, the brain also controls the gastrointestinal tract 
through this channel. The abnormalities of these brain functions may 
result in dysfunction of cognition and emotion, disruption of the 
homeostatic responses to noxious stimuli, and visceral hypersensitivity.

Psychological factors in Crohn’s disease

Psychological factors, including anxiety and depression, have been 
estimated to be more than 30% in patients with Crohn’s disease and 
ulcerative colitis (Neuendorf et  al., 2016), which often lead to 
aggravation of gastrointestinal symptoms (Li J. et al., 2021). Thomann 
et al. (2017) showed a significant positive correlation between MCC 
and anxiety levels in patients with CD, not in HC. Zhang et al. (2022) 
reported that significant insula-related FC differences disappeared in 
CD patients when anxiety and depression were considered covariates. 
Huang et al. (2022) found abnormal resting-state brain activity was 
associated with psychological assessment scores in patients with active 
CD. These abnormal functional brain regions associated with 
psychological comorbidity were involved in the processing of negative 
emotions, which may reflect high sensitivity to negative emotions and 
disturbed visceral sensory processing in CD patients.

Limitations

There are several limitations that need to be mentioned in this 
study. We  did not conduct a meta-analysis due to significant 
differences in the analysis methods, inclusion, and exclusion criteria 
of the included studies. Findings of the studies included are 
heterogenous. Possible reasons for this include the following: First, the 
fMRI signal lacks the ability to effectively distinguish between 
function-specific processing and neuromodulation, as well as between 
bottom-up and top-down signals, which can potentially lead to 
confusion between excitation and inhibition; second, there are 
numerous methods available for analyzing fMRI data, each with its 
own advantages and disadvantages; third, the sample size in 
neuroimaging research is typically small, and there are insufficiencies 
in statistical efficiency; fourth, the original studies mainly recruited 
participants of Asian descent, resulting in a limited representation of 
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subjects from around the world. The confounding effects resulting 
from genetic and cultural variations could not be assessed.

Furthermore, there were 4 studies that included active CD patients 
and inactive CD patients, and 2 studies did not mention the categories 
of included patients. The inconsistent CD categories may cause some 
unexpected confounds. Additionally, one study included assessed the 
brain changes before and after electro-acupuncture and moxibustion 
treatments, so much so that it was impossible to investigate the 
treatment effects systematically.

Conclusion

Functional neuroimaging helps provide a better understanding of 
the underlying neuropathological processes in patients with CD. In 
this review, we summarize as follows: First, these findings indicate 
alterations in brain function in patients with CD, specifically affecting 
brain regions associated with pain, emotion, cognition, and visceral 
sensation; second, disease activity may have an impact on brain 
functions in patients with CD; and third, psychological factors may 
be associated with altered brain functions in patients with CD.
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